Guyot R

References (3)

Title : High-quality genome sequence of white lupin provides insight into soil exploration and seed quality - Hufnagel_2020_Nat.Commun_11_492
Author(s) : Hufnagel B , Marques A , Soriano A , Marques L , Divol F , Doumas P , Sallet E , Mancinotti D , Carrere S , Marande W , Arribat S , Keller J , Huneau C , Blein T , Aime D , Laguerre M , Taylor J , Schubert V , Nelson M , Geu-Flores F , Crespi M , Gallardo K , Delaux PM , Salse J , Berges H , Guyot R , Gouzy J , Peret B
Ref : Nat Commun , 11 :492 , 2020
Abstract : White lupin (Lupinus albus L.) is an annual crop cultivated for its protein-rich seeds. It is adapted to poor soils due to the production of cluster roots, which are made of dozens of determinate lateral roots that drastically improve soil exploration and nutrient acquisition (mostly phosphate). Using long-read sequencing technologies, we provide a high-quality genome sequence of a cultivated accession of white lupin (2n = 50, 451 Mb), as well as de novo assemblies of a landrace and a wild relative. We describe a modern accession displaying increased soil exploration capacity through early establishment of lateral and cluster roots. We also show how seed quality may have been impacted by domestication in term of protein profiles and alkaloid content. The availability of a high-quality genome assembly together with companion genomic and transcriptomic resources will enable the development of modern breeding strategies to increase and stabilize white lupin yield.
ESTHER : Hufnagel_2020_Nat.Commun_11_492
PubMedSearch : Hufnagel_2020_Nat.Commun_11_492
PubMedID: 31980615
Gene_locus related to this paper: lupal-a0a6a5lz53 , lupal-a0a6a5mjk3

Title : The pomegranate (Punica granatum L.) genome and the genomics of punicalagin biosynthesis - Qin_2017_Plant.J_91_1108
Author(s) : Qin G , Xu C , Ming R , Tang H , Guyot R , Kramer EM , Hu Y , Yi X , Qi Y , Xu X , Gao Z , Pan H , Jian J , Tian Y , Yue Z , Xu Y
Ref : Plant J , 91 :1108 , 2017
Abstract : Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound.
ESTHER : Qin_2017_Plant.J_91_1108
PubMedSearch : Qin_2017_Plant.J_91_1108
PubMedID: 28654223
Gene_locus related to this paper: prupe-a0a251r634 , pungr-a0a218xv87 , pungr-a0a218xi98 , pungr-a0a218wma5 , pungr-a0a218w0a8 , pungr-a0a218w138 , pungr-a0a218w7t6 , pungr-a0a218weu3 , pungr-a0a218xzu6

Title : The coffee genome provides insight into the convergent evolution of caffeine biosynthesis - Denoeud_2014_Science_345_1181
Author(s) : Denoeud F , Carretero-Paulet L , Dereeper A , Droc G , Guyot R , Pietrella M , Zheng C , Alberti A , Anthony F , Aprea G , Aury JM , Bento P , Bernard M , Bocs S , Campa C , Cenci A , Combes MC , Crouzillat D , Da Silva C , Daddiego L , De Bellis F , Dussert S , Garsmeur O , Gayraud T , Guignon V , Jahn K , Jamilloux V , Joet T , Labadie K , Lan T , Leclercq J , Lepelley M , Leroy T , Li LT , Librado P , Lopez L , Munoz A , Noel B , Pallavicini A , Perrotta G , Poncet V , Pot D , Priyono , Rigoreau M , Rouard M , Rozas J , Tranchant-Dubreuil C , VanBuren R , Zhang Q , Andrade AC , Argout X , Bertrand B , de Kochko A , Graziosi G , Henry RJ , Jayarama , Ming R , Nagai C , Rounsley S , Sankoff D , Giuliano G , Albert VA , Wincker P , Lashermes P
Ref : Science , 345 :1181 , 2014
Abstract : Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.
ESTHER : Denoeud_2014_Science_345_1181
PubMedSearch : Denoeud_2014_Science_345_1181
PubMedID: 25190796
Gene_locus related to this paper: cofca-a0a068vi93 , cofca-a0a068uy77 , cofca-a0a068tzh7 , cofca-a0a068tuj7 , cofca-a0a068v983 , cofca-a0a068tnj0 , cofca-a0a068tyf7 , cofca-a0a068u1v4.1 , cofca-a0a068vks5 , cofar-a0a6p6xcv5