Florens L

References (4)

Title : Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex - Cai_2010_J.Biol.Chem_285_4268
Author(s) : Cai Y , Jin J , Swanson SK , Cole MD , Choi SH , Florens L , Washburn MP , Conaway JW , Conaway RC
Ref : Journal of Biological Chemistry , 285 :4268 , 2010
Abstract : Human MOF (MYST1), a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs), is the human ortholog of the Drosophila males absent on the first (MOF) protein. MOF is the catalytic subunit of the male-specific lethal (MSL) HAT complex, which plays a key role in dosage compensation in the fly and is responsible for a large fraction of histone H4 lysine 16 (H4K16) acetylation in vivo. MOF was recently reported to be a component of a second HAT complex, designated the non-specific lethal (NSL) complex (Mendjan, S., Taipale, M., Kind, J., Holz, H., Gebhardt, P., Schelder, M., Vermeulen, M., Buscaino, A., Duncan, K., Mueller, J., Wilm, M., Stunnenberg, H. G., Saumweber, H., and Akhtar, A. (2006) Mol. Cell 21, 811-823). Here we report an analysis of the subunit composition and substrate specificity of the NSL complex. Proteomic analyses of complexes purified through multiple candidate subunits reveal that NSL is composed of nine subunits. Two of its subunits, WD repeat domain 5 (WDR5) and host cell factor 1 (HCF1), are shared with members of the MLL/SET family of histone H3 lysine 4 (H3K4) methyltransferase complexes, and a third subunit, MCRS1, is shared with the human INO80 chromatin-remodeling complex. In addition, we show that assembly of the MOF HAT into MSL or NSL complexes controls its substrate specificity. Although MSL-associated MOF acetylates nucleosomal histone H4 almost exclusively on lysine 16, NSL-associated MOF exhibits a relaxed specificity and also acetylates nucleosomal histone H4 on lysines 5 and 8.
ESTHER : Cai_2010_J.Biol.Chem_285_4268
PubMedSearch : Cai_2010_J.Biol.Chem_285_4268
PubMedID: 20018852
Gene_locus related to this paper: human-KANSL3

Title : A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses - Hall_2005_Science_307_82
Author(s) : Hall N , Karras M , Raine JD , Carlton JM , Kooij TW , Berriman M , Florens L , Janssen CS , Pain A , Christophides GK , James K , Rutherford K , Harris B , Harris D , Churcher C , Quail MA , Ormond D , Doggett J , Trueman HE , Mendoza J , Bidwell SL , Rajandream MA , Carucci DJ , Yates JR, 3rd , Kafatos FC , Janse CJ , Barrell B , Turner CM , Waters AP , Sinden RE
Ref : Science , 307 :82 , 2005
Abstract : Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific. We observed posttranscriptional gene silencing through translational repression of messenger RNA during sexual development, and a 47-base 3' untranslated region motif is implicated in this process.
ESTHER : Hall_2005_Science_307_82
PubMedSearch : Hall_2005_Science_307_82
PubMedID: 15637271
Gene_locus related to this paper: plaba-q4ymx5 , plaba-q4ysr8 , plaba-q4ytp7 , plaba-q4yy11 , plaba-q4z0q9 , plaba-q4z5y0 , plaba-q4z5z8 , plaba-q4z215 , plach-q4x817 , plach-q4xb56 , plach-q4xbi1 , plach-q4xd64 , plach-q4xfc7 , plach-q4xm16 , plach-q4xmx8 , plach-q4xmy0 , plach-q4xsf9 , plach-q4xsg4 , plach-q4xsw6 , plach-q4xvc8 , plach-q4xxw0 , plach-q4xxy1 , plach-q4y0k9 , plach-q4y5u9 , plach-q4y6j0 , plach-q4y638 , plach-q4y740 , playo-PY05572 , playo-q7rq09

Title : A proteomic view of the Plasmodium falciparum life cycle - Florens_2002_Nature_419_520
Author(s) : Florens L , Washburn MP , Raine JD , Anthony RM , Grainger M , Haynes JD , Moch JK , Muster N , Sacci JB , Tabb DL , Witney AA , Wolters D , Wu Y , Gardner MJ , Holder AA , Sinden RE , Yates JR , Carucci DJ
Ref : Nature , 419 :520 , 2002
Abstract : The completion of the Plasmodium falciparum clone 3D7 genome provides a basis on which to conduct comparative proteomics studies of this human pathogen. Here, we applied a high-throughput proteomics approach to identify new potential drug and vaccine targets and to better understand the biology of this complex protozoan parasite. We characterized four stages of the parasite life cycle (sporozoites, merozoites, trophozoites and gametocytes) by multidimensional protein identification technology. Functional profiling of over 2,400 proteins agreed with the physiology of each stage. Unexpectedly, the antigenically variant proteins of var and rif genes, defined as molecules on the surface of infected erythrocytes, were also largely expressed in sporozoites. The detection of chromosomal clusters encoding co-expressed proteins suggested a potential mechanism for controlling gene expression.
ESTHER : Florens_2002_Nature_419_520
PubMedSearch : Florens_2002_Nature_419_520
PubMedID: 12368866

Title : Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii - Carlton_2002_Nature_419_512
Author(s) : Carlton JM , Angiuoli SV , Suh BB , Kooij TW , Pertea M , Silva JC , Ermolaeva MD , Allen JE , Selengut JD , Koo HL , Peterson JD , Pop M , Kosack DS , Shumway MF , Bidwell SL , Shallom SJ , Van Aken SE , Riedmuller SB , Feldblyum TV , Cho JK , Quackenbush J , Sedegah M , Shoaibi A , Cummings LM , Florens L , Yates JR , Raine JD , Sinden RE , Harris MA , Cunningham DA , Preiser PR , Bergman LW , Vaidya AB , van Lin LH , Janse CJ , Waters AP , Smith HO , White OR , Salzberg SL , Venter JC , Fraser CM , Hoffman SL , Gardner MJ , Carucci DJ
Ref : Nature , 419 :512 , 2002
Abstract : Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.
ESTHER : Carlton_2002_Nature_419_512
PubMedSearch : Carlton_2002_Nature_419_512
PubMedID: 12368865
Gene_locus related to this paper: playo-PY04076 , playo-PY04938 , playo-PY05572 , playo-q7pdu6 , playo-q7r7y2 , playo-q7rbj8 , playo-q7rdk4 , playo-q7rgi9 , playo-q7rh25 , playo-q7rki0 , playo-q7rl68 , playo-q7rl69 , playo-q7rmm1 , playo-q7rn16 , playo-q7rpk0 , playo-q7rq09 , playo-q7rq49 , playo-q7rq68