Janse CJ

References (4)

Title : A Plasmodium phospholipase is involved in disruption of the liver stage parasitophorous vacuole membrane - Burda_2015_PLoS.Pathog_11_e1004760
Author(s) : Burda PC , Roelli MA , Schaffner M , Khan SM , Janse CJ , Heussler VT
Ref : PLoS Pathog , 11 :e1004760 , 2015
Abstract : The coordinated exit of intracellular pathogens from host cells is a process critical to the success and spread of an infection. While phospholipases have been shown to play important roles in bacteria host cell egress and virulence, their role in the release of intracellular eukaryotic parasites is largely unknown. We examined a malaria parasite protein with phospholipase activity and found it to be involved in hepatocyte egress. In hepatocytes, Plasmodium parasites are surrounded by a parasitophorous vacuole membrane (PVM), which must be disrupted before parasites are released into the blood. However, on a molecular basis, little is known about how the PVM is ruptured. We show that Plasmodium berghei phospholipase, PbPL, localizes to the PVM in infected hepatocytes. We provide evidence that parasites lacking PbPL undergo completely normal liver stage development until merozoites are produced but have a defect in egress from host hepatocytes. To investigate this further, we established a live-cell imaging-based assay, which enabled us to study the temporal dynamics of PVM rupture on a quantitative basis. Using this assay we could show that PbPL-deficient parasites exhibit impaired PVM rupture, resulting in delayed parasite egress. A wild-type phenotype could be re-established by gene complementation, demonstrating the specificity of the PbPL deletion phenotype. In conclusion, we have identified for the first time a Plasmodium phospholipase that is important for PVM rupture and in turn for parasite exit from the infected hepatocyte and therefore established a key role of a parasite phospholipase in egress.
ESTHER : Burda_2015_PLoS.Pathog_11_e1004760
PubMedSearch : Burda_2015_PLoS.Pathog_11_e1004760
PubMedID: 25786000
Gene_locus related to this paper: plaba-q4z5z8 , plafa-MAL6P1.135 , plafa-PF10.0018

Title : A putative homologue of CDC20\/CDH1 in the malaria parasite is essential for male gamete development - Guttery_2012_PLoS.Pathog_8_e1002554
Author(s) : Guttery DS , Ferguson DJ , Poulin B , Xu Z , Straschil U , Klop O , Solyakov L , Sandrini SM , Brady D , Nieduszynski CA , Janse CJ , Holder AA , Tobin AB , Tewari R
Ref : PLoS Pathog , 8 :e1002554 , 2012
Abstract : Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Deltacdc20 mutant parasites were largely different from those observed in the Deltamap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis.
ESTHER : Guttery_2012_PLoS.Pathog_8_e1002554
PubMedSearch : Guttery_2012_PLoS.Pathog_8_e1002554
PubMedID: 22383885

Title : A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses - Hall_2005_Science_307_82
Author(s) : Hall N , Karras M , Raine JD , Carlton JM , Kooij TW , Berriman M , Florens L , Janssen CS , Pain A , Christophides GK , James K , Rutherford K , Harris B , Harris D , Churcher C , Quail MA , Ormond D , Doggett J , Trueman HE , Mendoza J , Bidwell SL , Rajandream MA , Carucci DJ , Yates JR, 3rd , Kafatos FC , Janse CJ , Barrell B , Turner CM , Waters AP , Sinden RE
Ref : Science , 307 :82 , 2005
Abstract : Plasmodium berghei and Plasmodium chabaudi are widely used model malaria species. Comparison of their genomes, integrated with proteomic and microarray data, with the genomes of Plasmodium falciparum and Plasmodium yoelii revealed a conserved core of 4500 Plasmodium genes in the central regions of the 14 chromosomes and highlighted genes evolving rapidly because of stage-specific selective pressures. Four strategies for gene expression are apparent during the parasites' life cycle: (i) housekeeping; (ii) host-related; (iii) strategy-specific related to invasion, asexual replication, and sexual development; and (iv) stage-specific. We observed posttranscriptional gene silencing through translational repression of messenger RNA during sexual development, and a 47-base 3' untranslated region motif is implicated in this process.
ESTHER : Hall_2005_Science_307_82
PubMedSearch : Hall_2005_Science_307_82
PubMedID: 15637271
Gene_locus related to this paper: plaba-q4ymx5 , plaba-q4ysr8 , plaba-q4ytp7 , plaba-q4yy11 , plaba-q4z0q9 , plaba-q4z5y0 , plaba-q4z5z8 , plaba-q4z215 , plach-q4x817 , plach-q4xb56 , plach-q4xbi1 , plach-q4xd64 , plach-q4xfc7 , plach-q4xm16 , plach-q4xmx8 , plach-q4xmy0 , plach-q4xsf9 , plach-q4xsg4 , plach-q4xsw6 , plach-q4xvc8 , plach-q4xxw0 , plach-q4xxy1 , plach-q4y0k9 , plach-q4y5u9 , plach-q4y6j0 , plach-q4y638 , plach-q4y740 , playo-PY05572 , playo-q7rq09

Title : Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii - Carlton_2002_Nature_419_512
Author(s) : Carlton JM , Angiuoli SV , Suh BB , Kooij TW , Pertea M , Silva JC , Ermolaeva MD , Allen JE , Selengut JD , Koo HL , Peterson JD , Pop M , Kosack DS , Shumway MF , Bidwell SL , Shallom SJ , Van Aken SE , Riedmuller SB , Feldblyum TV , Cho JK , Quackenbush J , Sedegah M , Shoaibi A , Cummings LM , Florens L , Yates JR , Raine JD , Sinden RE , Harris MA , Cunningham DA , Preiser PR , Bergman LW , Vaidya AB , van Lin LH , Janse CJ , Waters AP , Smith HO , White OR , Salzberg SL , Venter JC , Fraser CM , Hoffman SL , Gardner MJ , Carucci DJ
Ref : Nature , 419 :512 , 2002
Abstract : Species of malaria parasite that infect rodents have long been used as models for malaria disease research. Here we report the whole-genome shotgun sequence of one species, Plasmodium yoelii yoelii, and comparative studies with the genome of the human malaria parasite Plasmodium falciparum clone 3D7. A synteny map of 2,212 P. y. yoelii contiguous DNA sequences (contigs) aligned to 14 P. falciparum chromosomes reveals marked conservation of gene synteny within the body of each chromosome. Of about 5,300 P. falciparum genes, more than 3,300 P. y. yoelii orthologues of predominantly metabolic function were identified. Over 800 copies of a variant antigen gene located in subtelomeric regions were found. This is the first genome sequence of a model eukaryotic parasite, and it provides insight into the use of such systems in the modelling of Plasmodium biology and disease.
ESTHER : Carlton_2002_Nature_419_512
PubMedSearch : Carlton_2002_Nature_419_512
PubMedID: 12368865
Gene_locus related to this paper: playo-PY04076 , playo-PY04938 , playo-PY05572 , playo-q7pdu6 , playo-q7r7y2 , playo-q7rbj8 , playo-q7rdk4 , playo-q7rgi9 , playo-q7rh25 , playo-q7rki0 , playo-q7rl68 , playo-q7rl69 , playo-q7rmm1 , playo-q7rn16 , playo-q7rpk0 , playo-q7rq09 , playo-q7rq49 , playo-q7rq68