Futahashi R

References (3)

Title : Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont - Futahashi_2013_PLoS.One_8_e64557
Author(s) : Futahashi R , Tanaka K , Tanahashi M , Nikoh N , Kikuchi Y , Lee BL , Fukatsu T
Ref : PLoS ONE , 8 :e64557 , 2013
Abstract : The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.
ESTHER : Futahashi_2013_PLoS.One_8_e64557
PubMedSearch : Futahashi_2013_PLoS.One_8_e64557
PubMedID: 23691247
Gene_locus related to this paper: 9hemi-r4wde3 , 9hemi-r4wpu6

Title : Comprehensive microarray-based analysis for stage-specific larval camouflage pattern-associated genes in the swallowtail butterfly, Papilio xuthus - Futahashi_2012_BMC.Biol_10_46
Author(s) : Futahashi R , Shirataki H , Narita T , Mita K , Fujiwara H
Ref : BMC Biol , 10 :46 , 2012
Abstract : BACKGROUND: Body coloration is an ecologically important trait that is often involved in prey-predator interactions through mimicry and crypsis. Although this subject has attracted the interest of biologists and the general public, our scientific knowledge on the subject remains fragmentary. In the caterpillar of the swallowtail butterfly Papilio xuthus, spectacular changes in the color pattern are observed; the insect mimics bird droppings (mimetic pattern) as a young larva, and switches to a green camouflage coloration (cryptic pattern) in the final instar. Despite the wide variety and significance of larval color patterns, few studies have been conducted at a molecular level compared with the number of studies on adult butterfly wing patterns.
RESULTS: To obtain a catalog of genes involved in larval mimetic and cryptic pattern formation, we constructed expressed sequence tag (EST) libraries of larval epidermis for P. xuthus, and P. polytes that contained 20,736 and 5,376 clones, respectively, representing one of the largest collections available in butterflies. A comparison with silkworm epidermal EST information revealed the high expression of putative blue and yellow pigment-binding proteins in Papilio species. We also designed a microarray from the EST dataset information, analyzed more than five stages each for six markings, and confirmed spatial expression patterns by whole-mount in situ hybridization. Hence, we succeeded in elucidating many novel marking-specific genes for mimetic and cryptic pattern formation, including pigment-binding protein genes, the melanin-associated gene yellow-h3, the ecdysteroid synthesis enzyme gene 3-dehydroecdysone 3b-reductase, and Papilio-specific genes. We also found many cuticular protein genes with marking specificity that may be associated with the unique surface nanostructure of the markings. Furthermore, we identified two transcription factors, spalt and ecdysteroid signal-related E75, as genes expressed in larval eyespot markings. This finding suggests that E75 is a strong candidate mediator of the hormone-dependent coordination of larval pattern formation.
CONCLUSIONS: This study is one of the most comprehensive molecular analyses of complicated morphological features, and it will serve as a new resource for studying insect mimetic and cryptic pattern formation in general. The wide variety of marking-associated genes (both regulatory and structural genes) identified by our screening indicates that a similar strategy will be effective for understanding other complex traits.
ESTHER : Futahashi_2012_BMC.Biol_10_46
PubMedSearch : Futahashi_2012_BMC.Biol_10_46
PubMedID: 22651552
Gene_locus related to this paper: papxu-i4dli1 , papxu-a0a194q858

Title : The genome of a lepidopteran model insect, the silkworm Bombyx mori - Xia_2008_Insect.Biochem.Mol.Biol_38_1036
Author(s) : Xia Q , Wang J , Zhou Z , Li R , Fan W , Cheng D , Cheng T , Qin J , Duana J , Xu H , Li Q , Li N , Wang M , Dai F , Liu C , Lin Y , Zhao P , Zhang H , Liu S , Zha X , Li C , Zhao A , Pan M , Pan G , Shen Y , Gao Z , Wang Z , Wang G , Wu Z , Hou Y , Chai C , Yu Q , He N , Zhang Z , Li S , Yang H , Lu C , Xiang Z , Mita K , Kasahara M , Nakatani Y , Yamamoto K , Abe H , Ahsan B , Daimoni T , Doi K , Fujii T , Fujiwara H , Fujiyama A , Futahashi R , Hashimotol S , Ishibashi J , Iwami M , Kadono-Okuda K , Kanamori H , Kataoka H , Katsuma S , Kawaoka S , Kawasaki H , Kohara Y , Kozaki T , Kuroshu RM , Kuwazaki S , Matsushima K , Minami H , Nagayasu Y , Nakagawa T , Narukawa J , Nohata J , Ohishi K , Ono Y , Osanai-Futahashi M , Ozaki K , Qu W , Roller L , Sasaki S , Sasaki T , Seino A , Shimomura M , Shin-I T , Shinoda T , Shiotsuki T , Suetsugu Y , Sugano S , Suwa M , Suzuki Y , Takiya S , Tamura T , Tanaka H , Tanaka Y , Touhara K , Yamada T , Yamakawa M , Yamanaka N , Yoshikawa H , Zhong YS , Shimada T , Morishita S
Ref : Insect Biochemistry & Molecular Biology , 38 :1036 , 2008
Abstract : Bombyx mori, the domesticated silkworm, is a major insect model for research, and the first lepidopteran for which draft genome sequences became available in 2004. Two independent data sets from whole-genome shotgun sequencing were merged and assembled together with newly obtained fosmid- and BAC-end sequences. The remarkably improved new assembly is presented here. The 8.5-fold sequence coverage of an estimated 432 Mb genome was assembled into scaffolds with an N50 size of approximately 3.7 Mb; the largest scaffold was 14.5 million base pairs. With help of a high-density SNP linkage map, we anchored 87% of the scaffold sequences to all 28 chromosomes. A particular feature was the high repetitive sequence content estimated to be 43.6% and that consisted mainly of transposable elements. We predicted 14,623 gene models based on a GLEAN-based algorithm, a more accurate prediction than the previous gene models for this species. Over three thousand silkworm genes have no homologs in other insect or vertebrate genomes. Some insights into gene evolution and into characteristic biological processes are presented here and in other papers in this issue. The massive silk production correlates with the existence of specific tRNA clusters, and of several sericin genes assembled in a cluster. The silkworm's adaptation to feeding on mulberry leaves, which contain toxic alkaloids, is likely linked to the presence of new-type sucrase genes, apparently acquired from bacteria. The silkworm genome also revealed the cascade of genes involved in the juvenile hormone biosynthesis pathway, and a large number of cuticular protein genes.
ESTHER : Xia_2008_Insect.Biochem.Mol.Biol_38_1036
PubMedSearch : Xia_2008_Insect.Biochem.Mol.Biol_38_1036
PubMedID: 19121390
Gene_locus related to this paper: bommo-a0mnw6 , bommo-a1yw85 , bommo-a9ls22 , bommo-ACHE1 , bommo-ACHE2 , bommo-b0fgv8 , bommo-b1q137 , bommo-b1q139 , bommo-b1q140 , bommo-b1q141 , bommo-b2zdz0 , bommo-b3gef6 , bommo-b3gef7 , bommo-b3gs55 , bommo-b3gs56 , bommo-d2ktu3 , bommo-d2ktu5 , bommo-d9ile0 , bommo-e1cga5 , bommo-e1cga6 , bommo-g8fpz6 , bommo-h9iu43 , bommo-h9iu46 , bommo-h9iu47.1 , bommo-h9iu47.2 , bommo-h9iue5 , bommo-h9ivg2 , bommo-h9iwj7 , bommo-h9iwj8 , bommo-h9ix58 , bommo-h9ixi1.1 , bommo-h9ixi1.2 , bommo-h9iy47 , bommo-h9izw1 , bommo-h9j0s4 , bommo-h9j1y0 , bommo-h9j3r0 , bommo-h9j3w6 , bommo-h9j3w7 , bommo-h9j5t0 , bommo-h9j8g3 , bommo-h9j9k9 , bommo-h9j066 , bommo-h9j067 , bommo-h9j593 , bommo-h9j594 , bommo-h9j990 , bommo-h9jde8 , bommo-h9jde9 , bommo-h9jdf0 , bommo-h9jds4 , bommo-h9jle7 , bommo-h9jn83 , bommo-h9jn85 , bommo-h9jrg2 , bommo-h9jyh9 , bommo-JHE , bommo-m1rmh6 , bommo-q1hq05 , bommo-q4tte1 , bommo-h9j592 , bommo-h9j604 , bommo-h9jpm8 , bommo-h9iss4 , bommo-h9j2c7