Wang M

References (165)

Title : The role of the nucleus basalis of Meynert in neuromodulation therapy: a systematic review from the perspective of neural network oscillations - Jiao_2024_Front.Aging.Neurosci_16_1376764
Author(s) : Jiao L , Kang H , Geng Y , Liu X , Wang M , Shu K
Ref : Front Aging Neurosci , 16 :1376764 , 2024
Abstract : As a crucial component of the cerebral cholinergic system and the Papez circuit in the basal forebrain, dysfunction of the nucleus basalis of Meynert (NBM) is associated with various neurodegenerative disorders. However, no drugs, including existing cholinesterase inhibitors, have been shown to reverse this dysfunction. Due to advancements in neuromodulation technology, researchers are exploring the use of deep brain stimulation (DBS) therapy targeting the NBM (NBM-DBS) to treat mental and neurological disorders as well as the related mechanisms. Herein, we provided an update on the research progress on cognition-related neural network oscillations and complex anatomical and projective relationships between the NBM and other cognitive structures and circuits. Furthermore, we reviewed previous animal studies of NBM lesions, NBM-DBS models, and clinical case studies to summarize the important functions of the NBM in neuromodulation. In addition to elucidating the mechanism of the NBM neural network, future research should focus on to other types of neurons in the NBM, despite the fact that cholinergic neurons are still the key target for cell type-specific activation by DBS.
ESTHER : Jiao_2024_Front.Aging.Neurosci_16_1376764
PubMedSearch : Jiao_2024_Front.Aging.Neurosci_16_1376764
PubMedID: 38650866

Title : Pharmacokinetics, Pharmacodynamics, and Safety of Single Dose HSK7653 Tablets in Chinese Subjects with Normal or Impaired Renal Function - Shi_2024_Clin.Pharmacokinet__
Author(s) : Shi D , Chen L , Li G , Wu N , Zhang F , Wang X , Mu N , Chen X , Yang X , Lu J , Lu Y , Wang M , Zhang D
Ref : Clinical Pharmacokinetics , : , 2024
Abstract : OBJECTIVE: HSK7653 is a novel, ultralong-acting dipeptidyl peptidase-4 (DPP-4) inhibitor, promising for type 2 diabetes mellitus with a dosing regimen of once every 2 weeks. This trial investigates the pharmacokinetics (PKs), pharmacodynamics (PDs),and safety of HSK7653 in outpatients with normal or impaired renal function. METHODS: This is a multicenter, open-label, nonrandomized, parallel-controlled phase I clinical study that investigates the pharmacokinetic profiles of HSK7653 after a single oral administration in 42 subjects with mild (n = 8), moderate (n = 10), severe renal impairment (n = 10), and end-stage renal disease (without dialysis, n = 5) compared with matched control subjects with normal renal function (n = 9). Safety was evaluated throughout the study, and the pharmacodynamic effects were assessed on the basis of a DPP-4 inhibition rate. RESULTS: HSK7653 exposure levels including the maximum plasma concentration (C(max)), area under the plasma concentration-time curve from zero to last time of quantifiable concentration (AUC(0-t)), and area under the plasma concentration-time curve from zero to infinity (AUC(0-inf)) showed no significant differences related to the severity of renal impairment. Renal clearance (CL(R)) showed a certain downtrend along with the severity of renal impairment. The CL(R) of the group with severe renal impairment and the group with end-stage renal disease were basically similar. The DPP-4 inhibition rate-time curve graph was similar among the renal function groups. All groups had favorable safety, and no serious adverse events occurred. CONCLUSIONS: HSK7653 is a potent oral DPP-4 inhibitor with a long plasma half-life, supporting a dosing regimen of once every 2 weeks. Impaired renal function does not appear to impact the pharmacokinetic and pharmacodynamic properties of HSK7653 after a single administration in Chinese subjects. HSK7653 is also well tolerated without an increase in adverse events with increasing renal impairment. These results indicate that dose adjustment of HSK7653 may not be required in patients with renal impairment. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05497297.
ESTHER : Shi_2024_Clin.Pharmacokinet__
PubMedSearch : Shi_2024_Clin.Pharmacokinet__
PubMedID: 38184489

Title : Two Fluorescent Probes for Recognition of Acetylcholinesterase: Design, Synthesis, and Comparative Evaluation - Lin_2024_Molecules_29_
Author(s) : Lin X , Yi Q , Qing B , Lan W , Jiang F , Lai Z , Huang J , Liu Q , Jiang J , Wang M , Zou L , Huang X , Wang J
Ref : Molecules , 29 : , 2024
Abstract : In this study, two "on-off" probes (BF(2)-cur-Ben and BF(2)-cur-But) recognizing acetylcholinesterase (AChE) were designed and synthesized. The obtained probes can achieve recognition of AChE with good selectivity and pH-independence with a linear range of 0.5~7 U/mL and 0.5~25 U/mL respectively. BF(2)-cur-Ben has a lower limit of detection (LOD) (0.031 U/mL), higher enzyme affinity (K(m) = 16 +/- 1.6 microM), and higher inhibitor sensitivity. A responsive mechanism of the probes for AChE was proposed based on HPLC and mass spectra (MS) experiments, as well as calculations. In molecular simulation, BF(2)-cur-Ben forms more hydrogen bonds (seven, while BF(2)-cur-But has only four) and thus has a more stable enzyme affinity, which is mirrored by the results of the comparison of K(m) values. These two probes could enable recognition of intracellular AChE and probe BF(2)-cur-Ben has superior cell membrane penetration due to its higher log p value. These probes can monitor the overexpression of AChE during apoptosis of lung cancer cells. The ability of BF(2)-cur-Ben to monitor AChE in vivo was confirmed by a zebrafish experiment.
ESTHER : Lin_2024_Molecules_29_
PubMedSearch : Lin_2024_Molecules_29_
PubMedID: 38731452

Title : Traditional uses, phytochemistry, pharmacology, toxicity and clinical application of traditional Chinese medicine Cynoglossum amabile: a review - Fan_2024_Front.Pharmacol_15_1325283
Author(s) : Fan Y , Wang M , Zhang Q , Ouyang S , Mao W , Xu C , Long C
Ref : Front Pharmacol , 15 :1325283 , 2024
Abstract : Cynoglossum amabile, a member of the Boraginaceae family, is a well-known traditional Chinese medicine and ethnomedicine known as Daotihu. Despite several studies confirming the presence of bioactive pyrrolizidine alkaloids such as amabiline, ambelline, echinatine, europine, and others in C. amabile, there has been no comprehensive review of its traditional uses, phytochemistry, and pharmacology thus far. This review was conducted by thoroughly examining the literature and analyzing network databases. It covers various aspects of C. amabile, including botanical characteristics, geographical distribution, traditional applications, phytochemistry, pharmacological activities, toxicology, and clinical applications. The results have shown that C. amabile has been traditionally used for medicinal, edible, and ornamental purposes in China for many centuries. The whole plant, root, and leaf of C. amabile are used by different ethnic groups, such as Lisu, Bai, Naxi, Yi, Jinuo, and Han, to treat malaria, hepatitis, dysentery, leucorrhea, tuberculosis cough, fracture, joint dislocation, trauma bleeding, and skin carbuncle abscess. A total of 47 chemical components, including alkaloids (pyrrolizidine alkaloids, PAs), sterols, organic acids, and saccharides, were isolated from C. amabile. Pharmacological studies show that the chemical extracts of C. amabile possess various biological activities, such as anti-inflammatory, anti-tumor, anti-microbial, cardiovascular effects, ganglionic action, and acetylcholinesterase inhibition. However, it is important to note that C. amabile exhibits hepatotoxicity, with its toxicity being linked to its primary PAs components. Although preliminary studies suggest potential applications in the treatment of prostate diseases and alopecia, further research is needed to validate these clinical uses. Our review highlights the traditional uses, phytochemistry, biological activity, toxicity, and clinical applications of C. amabile. It emphasizes the essential guiding role of the indigenous medicinal knowledge system in developing new drugs. Previous studies have shown that the phytochemical and pharmacological characteristics of C. amabile are significantly related to its traditional medicinal practices. Cynoglossum amabile has excellent market potential and can be further analyzed in terms of phytochemistry, pharmacology, and toxicology, which are critical for its clinical drug safety, quality evaluation, and resource development.
ESTHER : Fan_2024_Front.Pharmacol_15_1325283
PubMedSearch : Fan_2024_Front.Pharmacol_15_1325283
PubMedID: 38655180

Title : Highly Sensitive and Rapid Screening Technique for the Detection of Organophosphate Pesticides and Copper Compounds Using Bifunctional Recombinant TrxA-PvCarE1 - Cao_2024_J.Agric.Food.Chem__
Author(s) : Cao J , Wang M , She Y , Zheng L , Jin F , Shao Y , Wang J , Abd El-Aty AM
Ref : Journal of Agricultural and Food Chemistry , : , 2024
Abstract : Enabling the detection of organophosphate pesticide (OP) residues through enzyme inhibition-based technology is crucial for ensuring food safety and human health. However, the use of acetylcholinesterase, the primary target enzyme for OPs, isolated from animals in practical production poses challenges in terms of sensitivity and batch stability. To address this issue, we identified a highly sensitive and reproducible biorecognition element, TrxA-PvCarE1, derived from red kidney beans and successfully overexpressed it in Escherichia coli. The resulting recombinant TrxA-PvCarE1 exhibited remarkable sensitivity toward 10 OPs, surpassing that of commercial acetylcholinesterase. Additionally, this approach demonstrated the capability to simultaneously detect copper compounds with high sensitivity, expanding the range of pesticides detectable using the traditional enzyme inhibition method. Spiking recovery tests conducted on cowpea and carrot samples verified the suitability of the TrxA-PvCarE1-based technique for real-life sample analysis. In summary, this study highlights a promising comprehensive candidate for the rapid detection of pesticide residues.
ESTHER : Cao_2024_J.Agric.Food.Chem__
PubMedSearch : Cao_2024_J.Agric.Food.Chem__
PubMedID: 38408326
Gene_locus related to this paper: phavu-PvCarE1

Title : Three-in-One Peptide Prodrug with Targeting, Assembly and Release Properties for Overcoming Bacterium-Induced Drug Resistance and Potentiating Anti-Cancer Immune Response - Gao_2024_Adv.Mater__e2312153
Author(s) : Gao G , Jiang YW , Chen J , Xu X , Sun X , Xu H , Liang G , Liu X , Zhan W , Wang M , Xu Y , Zheng J , Wang G
Ref : Adv Mater , :e2312153 , 2024
Abstract : The presence of bacteria in tumor results in chemotherapeutic drug resistance and weakens the immune response in colorectal cancer. To overcome bacterium-induced chemotherapeutic drug resistance and potentiate anti-tumor immunity, herein we rationally design a novel molecule Biotin-Lys(SA-Cip-OH)-Lys(SA-CPT)-Phe-Phe-Nap (Biotin-Cip-CPT-Nap) containing four functional motifs (i.e., a biotin motif for targeting, Phe-Phe(-Nap) motif for self-assembly, ciprofloxacin derivative (Cip-OH) motif for antibacterial effect, and camptothecin (CPT) motif for chemotherapy). Using the designed molecule, a novel strategy of intracellular enzymatic nanofiber formation and synergistic antibacterium-enhanced chemotherapy and immunotherapy is achieved. Under endocytosis mediated by highly expressed biotin receptor in colorectal cancer cell membrane and the catalysis of highly expressed carboxylesterase in the cytoplasm, this novel molecule can be transformed into Biotin-Nap, which self-assembled into nanofibers. Meanwhile, antibiotic ciprofloxacin derivative (Cip-OH) and chemotherapeutic drug camptothecin (CPT) are released, overcoming bacterium-induced drug resistance and enhancing the therapeutic efficacy of immunotherapy towards colorectal cancer. This work offers a feasible strategy for the design of novel multifunctional prodrugs to improve the efficiency of colorectal cancer treatment. This article is protected by copyright. All rights reserved.
ESTHER : Gao_2024_Adv.Mater__e2312153
PubMedSearch : Gao_2024_Adv.Mater__e2312153
PubMedID: 38444205

Title : Efficient polyethylene terephthalate biodegradation by an engineered Ideonella sakaiensis PETase with a fixed substrate-binding W156 residue - ?Yin_2023_Green.Chemistry__
Author(s) : Yin Q , Zhang J , Ma S , Gu T , Wang M , You S , Ye S , Su R , Wang Y , Qi W
Ref : Green Chemistry , : , 2023
Abstract : Ideonella sakaiensis PETase (IsPETase) is a unique polyethylene terephthalate (PET) hydrolase that displays great potential for mitigating PET waste at moderate temperatures. Although IsPETase exhibits greater specific activity towards PET, rapid activity loss limits its commercial application. Herein, semi-saturation mutation was carried out to stabilize the most flexible region in IsPETase and a thermostable S92P/D157A variant with a Tm value of 70.8 degreesC (deltaTm = 24.1 degreesC) was constructed, which enabled a 109.3-fold increase in products released from amorphous PET depolymerization at 40 degreesC. The further depolymerization of untreated post-consumer PET obtained 17.34 mM products (95.0% TPA). The crystal structure indicated that the ""wobbling"" W156 residue in IsPETaseWT was fixed in the substrate-binding conformation in the S92P/D157A variant, which contributed to an increase in thermostability and could provide steady interaction with the substrate. Previous studies emphasized that the W156 residue exhibiting a ""wobbling effect"" is critical to substrate binding, while the different structure-function relationship of the S92P/D157A variant indicated that the wobbling of W156 may not be a pre-requisite for efficient PET biodegradation. Instead, engineering PET hydrolases for fixing the conserved W156 residue in the substrate-binding conformation was proposed. The S92P/D157A variant exhibited a preference for PET in the gauche conformation, which is consistent with its efficiency towards the degradation of low crystallinity PET, further cementing the importance of conformation selection and providing complementary evidence for the function of the fixed W156 residue in PET binding and catalytic processes. Collectively, our results could contribute to the understanding and engineering of more effective PET hydrolases, promoting the industrial application of the enzymatic PET recycling process.
ESTHER : ?Yin_2023_Green.Chemistry__
PubMedSearch : ?Yin_2023_Green.Chemistry__
PubMedID:
Gene_locus related to this paper: idesa-peth

Title : The structural and molecular mechanisms of type II PETases: a mini review - Duan_2023_Biotechnol.Lett__
Author(s) : Duan S , Zhang N , Chao T , Wu Y , Wang M
Ref : Biotechnol Lett , : , 2023
Abstract : The advent of plastics has led to significant advances for humans, although the accompanying pollution has also been a source of concern for countries globally. Consequently, a biological method to effectively degrade polyethylene terephthalate (PET) has been an area of significant scientific interest. Following the report of the highly efficient PET hydrolase from the bacterium Ideonella sakaiensis strain 201-F6 (i.e., IsPETase) in 2016, its structure has been extensively studied, showing that it belongs to the type II PETase group. Unlike type I PETases that include most known cutinases, structural investigations of type II PETases have only been conducted since 2017. Type II PETases are further divided into type IIa and IIb enzymes. Moreover, even less research has been conducted on type IIa plastic-degrading enzymes. Here, we present a review of recent studies of the structure and mechanism of type II PETases, using the known structure of the type IIa PETase PE-H from the marine bacterium Pseudomonas aestusnigri in addition to the type IIb enzyme IsPETase as representatives. These studies have provided new insights into the structural features of type II PETases that exhibit PET catalytic activity. In addition, recent studies investigating the rational design of IsPETases are reviewed and summarized alongside a discussion of controversies surrounding PETase investigations.
ESTHER : Duan_2023_Biotechnol.Lett__
PubMedSearch : Duan_2023_Biotechnol.Lett__
PubMedID: 37535135

Title : An Individualized Nomogram for Predicting Mortality Risk of Septic Shock Patients During Hospitalization: A ten Years Retrospective Analysis - Wang_2023_Infect.Drug.Resist_16_6247
Author(s) : Wang M , Shi Y , Pan X , Wang B , Lu B , Ouyang J
Ref : Infect Drug Resist , 16 :6247 , 2023
Abstract : PURPOSE: We intend to develop a nomogram for predicting the mortality risk of hospitalized septic shock patients. PATIENTS AND METHODS: Data were collected from patients hospitalized with septic shock in Affiliated Dongyang Hospital of Wenzhou Medical University in China, over 10 years between January 2013 and January 2023. The eligible study participants were divided into modeling and validation groups. Factors independently related to the mortality in the modeling group were obtained by stepwise regression analysis. A logistic regression model and a nomogram were built. The model was evaluated based on the discrimination power (the area under the curve of the receiver operating characteristic, AUC), the calibration degree and decision curve analysis. In the validation group, the discrimination powers of the logistic regression model, the sequential organ failure assessment (SOFA) scoring model and machine learning model were compared. RESULTS: A total of 1253 patients, including 878 patients in the modeling group and 375 patients in the validation group, were included in this study. Age, respiratory failure, serum cholinesterase, lactic acid, blood phosphorus, blood magnesium, total bilirubin, and pH were independent risk factors related to the mortality risk of septic shock. The AUCs of the prediction model for the modeling and validation groups were 0.881 and 0.868, respectively. The models had a good calibration degree and clinical applicability. The AUC of the SOFA model for the validation population was 0.799, significantly lower than that of our model. The AUCs of the random forest and ensemble models were 0.865 and 0.863, respectively, comparable to that of our logistical prediction model. CONCLUSION: The model established in this study can effectively predict the mortality risk in patients hospitalized with septic shock. Thus, the model could be used clinically to determine the best therapy or management for patients with septic shock.
ESTHER : Wang_2023_Infect.Drug.Resist_16_6247
PubMedSearch : Wang_2023_Infect.Drug.Resist_16_6247
PubMedID: 37750174

Title : Ultra-small magnetic Candida antarctica lipase B nanoreactors for enzyme synthesis of bixin-maltitol ester - Lv_2023_Food.Chem_421_136132
Author(s) : Lv D , Wang M , He W , Wu J , Liu X , Guan Y
Ref : Food Chem , 421 :136132 , 2023
Abstract : Bixin has desirable bioactivities but poor water solubility, which limits its practical applications. Enzymatic transesterification of methyl to alditol groups in bixin by Candida antarctica lipase B (CALB) improves bixin water solubility. Herein, magnetic CALB nanoreactors with diameter of 11.7 nm and CALB layer thickness of 3.5 nm were developed by covalently linking CALB onto silicon covered Fe(3)O(4) nanoparticles. The CALB loading capacity in nanoreactors achieved 30%. The Michaelis constant (Km) and maximum reaction rate of magnetic CALB nanoreactors were 56.1 mmol/L and 0.2 mmol/(L.min). Magnetic CALB nanoreactors could circularly catalyze bixin-maltitol ester synthesis and keep catalytic efficiency of 62.6% after eight repetitive enzymatic reactions. Additionally, the optimal bixin-maltitol ester synthesis procedure was heating bixin-maltitol mixture at molar ratio of 1:7 in anhydrous 2-methyl-2-butanol-dimethylsulfoxide (8:2, v/v) at 50 degreesC for 24 h. Bixin-maltitol ester showed improved water solubility at pH 5.5 and 7.0.
ESTHER : Lv_2023_Food.Chem_421_136132
PubMedSearch : Lv_2023_Food.Chem_421_136132
PubMedID: 37094396

Title : Introducing Mn into ZIF-8 nanozyme for enhancing its catalytic activities and adding specific recognizer for detection of organophosphorus pesticides - Feng_2023_Mikrochim.Acta_190_437
Author(s) : Feng Y , Hu P , Wang M , Sun X , Pan W , Wang J
Ref : Mikrochim Acta , 190 :437 , 2023
Abstract : In order to design and establish a highly efficient and selective nanozyme-based sensing platform for the UV-vis detection of organophosphorus pesticides (OPs), Mn was introduced into ZIF-8 nanozyme for enhancing its catalytic activities and adding specific recognizer. The Mn-doped ZIF-8 (Mn-ZIF-8) nanocomposites were synthesized with a very facile one-pot method by heating the mixture of ZnO, 2-methylimidazole (Hmin) and Mn(CH(3)COO)(2).4H(2)O in a solvent-free system at 180 degreesC for 8 h. The Mn-ZIF-8 nanocomposite showed a higher peroxidase activity and an additional thiocholine (TCh)-degradable property compared to the pristine ZIF-8. OPs could inhibit acetylcholinesterase (AChE) to catalyze the hydrolysis of acetylthiocholine (ATCh) to produce TCh, thus blocking the degradation of Mn-ZIF-8 and protecting the catalysis of the oxidation of colorless 3,3',5,5'-tetramethylbenzydine (TMB) to blue oxidized TMB (ox-TMB). Accordingly, a detection method for OPs with high sensitivity and selectivity was designed and established on the basis of the Mn-ZIF-8 nanozyme with a linear range of 0.1-20 nM and a limit of detection (LOD) as low as 54 pM.
ESTHER : Feng_2023_Mikrochim.Acta_190_437
PubMedSearch : Feng_2023_Mikrochim.Acta_190_437
PubMedID: 37843605

Title : Enhancing the Hydrolysis and Acyl Transfer Activity of Carboxylesterase DLFae4 by a Combinational Mutagenesis and In-Silico Method - Li_2023_Foods_12_1169
Author(s) : Li L , Ding L , Shao Y , Sun S , Wang M , Xiang J , Zhou J , Wu G , Song Z , Xin Z
Ref : Foods , 12 :1169 , 2023
Abstract : In the present study, a feruloyl esterase DLFae4 identified in our previous research was modified by error-prone PCR and site-directed saturation mutation to enhance the catalytic efficiency and acyltransferase activity further. Five mutants with 6.9-118.9% enhanced catalytic activity toward methyl ferulate (MFA) were characterized under the optimum conditions. Double variant DLFae4-m5 exhibited the highest hydrolytic activity (270.97 U/mg), the Km value decreased by 83.91%, and the Kcat/Km value increased by 6.08-fold toward MFA. Molecular docking indicated that a complex hydrogen bond network in DLFae4-m5 was formed, with four of five bond lengths being shortened compared with DLFae4, which might account for the increase in catalytic activity. Acyl transfer activity assay revealed that the activity of DLFae4 was as high as 1550.796 U/mg and enhanced by 375.49% (5823.172 U/mg) toward 4-nitrophenyl acetate when residue Ala-341 was mutated to glycine (A341G), and the corresponding acyl transfer efficiency was increased by 7.7 times, representing the highest acyltransferase activity to date, and demonstrating that the WGG motif was pivotal for the acyltransferase activity in family VIII carboxylesterases. Further experiments indicated that DLFae4 and variant DLFae4 (A341G) could acylate cyanidin-3-O-glucoside effectively in aqueous solution. Taken together, our study suggested the effectiveness of error-prone PCR and site-directed saturation mutation to increase the specific activity of enzymes and may facilitate the practical application of this critical feruloyl esterase.
ESTHER : Li_2023_Foods_12_1169
PubMedSearch : Li_2023_Foods_12_1169
PubMedID: 36981096

Title : Discovery and mechanism-guided engineering of BHET hydrolases for improved PET recycling and upcycling - Li_2023_Nat.Commun_14_4169
Author(s) : Li A , Sheng Y , Cui H , Wang M , Wu L , Song Y , Yang R , Li X , Huang H
Ref : Nat Commun , 14 :4169 , 2023
Abstract : Although considerable research achievements have been made to address the plastic crisis using enzymes, their applications are limited due to incomplete degradation and low efficiency. Herein, we report the identification and subsequent engineering of BHETases, which have the potential to improve the efficiency of PET recycling and upcycling. Two BHETases (ChryBHETase and BsEst) are identified from the environment via enzyme mining. Subsequently, mechanism-guided barrier engineering is employed to yield two robust and thermostable deltaBHETases with up to 3.5-fold enhanced k(cat)/K(M) than wild-type, followed by atomic resolution understanding. Coupling deltaBHETase into a two-enzyme system overcomes the challenge of heterogeneous product formation and results in up to 7.0-fold improved TPA production than seven state-of-the-art PET hydrolases, under the conditions used here. Finally, we employ a deltaBHETase-joined tandem chemical-enzymatic approach to valorize 21 commercial post-consumed plastics into virgin PET and an example chemical (p-phthaloyl chloride) for achieving the closed-loop PET recycling and open-loop PET upcycling.
ESTHER : Li_2023_Nat.Commun_14_4169
PubMedSearch : Li_2023_Nat.Commun_14_4169
PubMedID: 37443360
Gene_locus related to this paper: 9flao-ChryBHETase , bacsu-pnbae

Title : GDSL Esterase\/Lipase GELP1 Involved in the Defense of Apple Leaves against Colletotrichum gloeosporioides Infection - Ji_2023_Int.J.Mol.Sci_24_
Author(s) : Ji Z , Wang M , Zhang S , Du Y , Cong J , Yan H , Guo H , Xu B , Zhou Z
Ref : Int J Mol Sci , 24 : , 2023
Abstract : GDSL esterases/lipases are a subclass of lipolytic enzymes that play critical roles in plant growth and development, stress response, and pathogen defense. However, the GDSL esterase/lipase genes involved in the pathogen response of apple remain to be identified and characterized. Thus, in this study, we aimed to analyze the phenotypic difference between the resistant variety, Fuji, and susceptible variety, Gala, during infection with C. gloeosporioides, screen for anti-disease-associated proteins in Fuji leaves, and elucidate the underlying mechanisms. The results showed that GDSL esterase/lipase protein GELP1 contributed to C. gloeosporioides infection defense in apple. During C. gloeosporioides infection, GELP1 expression was significantly upregulated in Fuji. Fuji leaves exhibited a highly resistant phenotype compared with Gala leaves. The formation of infection hyphae of C. gloeosporioides was inhibited in Fuji. Moreover, recombinant His:GELP1 protein suppressed hyphal formation during infection in vitro. Transient expression in Nicotiana benthamiana showed that GELP1-eGFP localized to the endoplasmic reticulum and chloroplasts. GELP1 overexpression in GL-3 plants increased resistance to C. gloeosporioides. MdWRKY15 expression was upregulated in the transgenic lines. Notably, GELP1 transcript levels were elevated in GL-3 after salicylic acid treatment. These results suggest that GELP1 increases apple resistance to C. gloeosporioides by indirectly regulating salicylic acid biosynthesis.
ESTHER : Ji_2023_Int.J.Mol.Sci_24_
PubMedSearch : Ji_2023_Int.J.Mol.Sci_24_
PubMedID: 37373491

Title : Development of a Nomogram for Predicting Mortality Risk in Sepsis Patients During Hospitalization: A Retrospective Study - Lu_2023_Infect.Drug.Resist_16_2311
Author(s) : Lu B , Pan X , Wang B , Jin C , Liu C , Wang M , Shi Y
Ref : Infect Drug Resist , 16 :2311 , 2023
Abstract : PURPOSE: We attempted to establish a model for predicting the mortality risk of sepsis patients during hospitalization. PATIENTS AND METHODS: Data on patients with sepsis were collected from a clinical record mining database, who were hospitalized at the Affiliated Dongyang Hospital of Wenzhou Medical University between January 2013 and August 2022. These included patients were divided into modeling and validation groups. In the modeling group, the independent risk factors of death during hospitalization were determined using univariate and multi-variate regression analyses. After stepwise regression analysis (both directions), a nomogram was drawn. The discrimination ability of the model was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, and the GiViTI calibration chart assessed the model calibration. The Decline Curve Analysis (DCA) was performed to evaluate the clinical effectiveness of the prediction model. Among the validation group, the logistic regression model was compared to the models established by the SOFA scoring system, random forest method, and stacking method. RESULTS: A total of 1740 subjects were included in this study, 1218 in the modeling population and 522 in the validation population. The results revealed that serum cholinesterase, total bilirubin, respiratory failure, lactic acid, creatinine, and pro-brain natriuretic peptide were the independent risk factors of death. The AUC values in the modeling group and validation group were 0.847 and 0.826. The P values of calibration charts in the two population sets were 0.838 and 0.771. The DCA curves were above the two extreme curves. Moreover, the AUC values of the models established by the SOFA scoring system, random forest method, and stacking method in the validation group were 0.777, 0.827, and 0.832, respectively. CONCLUSION: The nomogram model established by combining multiple risk factors could effectively predict the mortality risk of sepsis patients during hospitalization.
ESTHER : Lu_2023_Infect.Drug.Resist_16_2311
PubMedSearch : Lu_2023_Infect.Drug.Resist_16_2311
PubMedID: 37155474

Title : Multiomics Analyses Identify Proline Endopeptidase-Like Protein As a Key Regulator of Protein Trafficking, a Pathway Underlying Alzheimer's Disease Pathogenesis - Duarte_2023_Mol.Pharmacol_104_1
Author(s) : Duarte ML , Wang M , Gomes I , Liu C , Sharma A , Fakira AK , Gupta A , Mack SM , Zhang B , Devi LA
Ref : Molecular Pharmacology , 104 :1 , 2023
Abstract : Current treatments for Alzheimer's disease (AD) help reduce symptoms for a limited time but do not treat the underlying pathology. To identify potential therapeutic targets for AD, an integrative network analysis was previously carried out using 364 human postmortem control, mild cognitive impairment, and AD brains. This analysis identified proline endopeptidase-like protein (PREPL), an understudied protein, as a downregulated protein in late-onset AD patients. In this study we investigate the role of PREPL. Analyses of data from human postmortem samples and PREPL knockdown (KD) cells suggest that PREPL expression modulates pathways associated with protein trafficking, synaptic activities, and lipid metabolism. Furthermore, PREPL KD impairs cell proliferation and modulates the structure of vesicles, levels of neuropeptide-processing enzymes, and secretion of neuropeptides. In addition, decrease in PREPL levels leads to changes in the levels of a number of synaptic proteins as well as changes in the levels of secreted amyloid beta (Abeta) 42 peptide and Tau phosphorylation. Finally, we report that local decrease in PREPL levels in mouse hippocampus attenuates long-term potentiation, suggesting a role in synaptic plasticity. Together, our results indicate that PREPL affects neuronal function by modulating protein trafficking and synaptic function, an important mechanism of AD pathogenesis. SIGNIFICANCE STATEMENT: Integrative network analysis reveals proline endopeptidase-like protein (PREPL) to be downregulated in human sporadic late-onset Alzheimer's disease brains. Down regulation of PREPL leads to increases in amyloid beta secretion, Tau phosphorylation, and decreases in protein trafficking and long-term potentiation.
ESTHER : Duarte_2023_Mol.Pharmacol_104_1
PubMedSearch : Duarte_2023_Mol.Pharmacol_104_1
PubMedID: 37147110
Gene_locus related to this paper: human-PREPL

Title : Construction of a Label-Free Ratiometric Biosensor Based on Target Recycling Amplification and Hg-ZnSe QDs for Assay of BChE and OPs - Zhang_2023_J.Agric.Food.Chem_71_11884
Author(s) : Zhang J , Wang M , Liu J , Lv Y , Su X
Ref : Journal of Agricultural and Food Chemistry , 71 :11884 , 2023
Abstract : Herein, we constructed a label-free ratiometric fluorescence biosensing strategy for the determination of butyrylcholinesterase (BChE) activity and organophosphorus (OPs) concentration. BChE promoted the hydrolysis of iodized s-butyrylthiocholine (BTCh) into a reducing substance thiocholine, which can decompose CoOOH nanosheets (CoOOH NSs) to Co(2+). Subsequently, the single-stranded DNA (ssDNA) on the surface of CoOOH NSs was released. Then, ssDNA hybridized with hairpin DNA (h-DNA) and triggered the target recycling amplification process, producing large amounts of G-quadruplex. After adding thioflavin T (ThT), the target BChE was converted into activatable G-quadruplex/ThT with an amplified yellow fluorescence signal. The addition of OPs could significantly inhibit the hydrolysis of BTCh by BChE and thus unable to produce the yellow fluorescence G-quadruplex/ThT complex. Throughout the entire process, the fluorescence intensity of Hg-ZnSe QDs as a reference signal remained unchanged at 630 nm. Furthermore, this work provided an effective approach for detecting the BChE activity in serum samples and OPs in fruits and vegetables.
ESTHER : Zhang_2023_J.Agric.Food.Chem_71_11884
PubMedSearch : Zhang_2023_J.Agric.Food.Chem_71_11884
PubMedID: 37554068

Title : SERCA2 dysfunction triggers hypertension by interrupting mitochondrial homeostasis and provoking oxidative stress - Wang_2023_Free.Radic.Biol.Med_212_284
Author(s) : Wang Y , Wang M , Su H , Song J , Ren M , Hu P , Liu G , Tong X
Ref : Free Radic Biol Med , 212 :284 , 2023
Abstract : BACKGROUND AND AIM: Sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase 2 (SERCA2) is critical in maintaining Ca(2+) homeostasis. The cysteine 674 (C674) is the key redox regulatory cysteine in regulating SERCA2 activity, which is irreversibly oxidized in the renal cortex of hypertensive mice. We have reported that the substitution of C674 by serine causes SERCA2 dysfunction and increases blood pressure by induction of endoplasmic reticulum stress (ERS). This study is to explore whether the dysfunction of SERCA2 causes hypertension by interrupting mitochondrial homeostasis and inducing oxidative stress. METHODS & RESULTS: We used heterozygous SERCA2 C674S gene mutation knock-in (SKI) mice, where one copy of C674 was substituted by serine to represent partial C674 oxidation. In renal proximal tubule (RPT) cells, the substitution of C674 by serine decreased mitochondrial Ca(2+) content, increased mitochondrial membrane potential, ATP content, and reactive oxygen species (ROS), which could be reversed by ERS inhibitor 4-phenylbutyric acid or SERCA2 agonist CDN1163. In SKI RPT cells, the redox modulator Tempol alleviated oxidative stress, downregulated the protein expression of ERS markers and soluble epoxide hydrolase, upregulated the protein expression of dopamine D1 receptor, and reduced Na(+)/K(+)- ATPase activity. In SKI mice, SERCA2 agonists CDN1163 and [6]-Gingerol, or the redox modulator Tempol increased urine output and lowered blood pressure. CONCLUSION: The irreversible oxidation of C674 is not only an indicator of increased ROS, but also further inducing oxidative stress to cause hypertension. Activation of SERCA2 or inhibition of oxidative stress is beneficial to alleviate hypertension caused by SERCA2 dysfunction.
ESTHER : Wang_2023_Free.Radic.Biol.Med_212_284
PubMedSearch : Wang_2023_Free.Radic.Biol.Med_212_284
PubMedID: 38163553

Title : The N-terminal hydrophobicity modulates a distal structural domain conformation of zearalenone lacton hydrolase and its application in protein engineering - Wang_2023_Enzyme.Microb.Technol_165_110195
Author(s) : Wang H , Lu Z , Lin X , Wang M , Jiang T , Zhao G , La X , Xv J , Jiang S , Zhang G
Ref : Enzyme Microb Technol , 165 :110195 , 2023
Abstract : Zearalenone (ZEN) is one of the most common mycotoxins in maize, wheat, barley, sorghum, rye and other grains. ZEN contamination in feed is an international health issue due to its estrogenicity by competitively binding to estrogen receptors. Enzymatic detoxification of ZEN is superior to physical and chemical methods in terms of safety, environmental impact and preserving nutritional value and palatability, but is hampered by both the currently limited repertoire of detoxifying enzymes and the lack of knowledge about their structure-function relationships. In this study, a ZEN lacton hydrolase candidate (ZHD11C) was identified from thermo-tolerant Fonsecaea multimorphosa CBS 102226, and characterized to be more thermostable than these reported homologues. An intriguing feature of ZHD11C is that the N-terminal hydrophobicity affects its thermal stability and causes conformational change of a domain far from the N-terminal. This finding was successfully applied to enhance the thermostability of the most active ZEN lacton hydrolase ZHD518 through rationally tailoring its N-terminal hydrophobicity. Our results not only provide more insights into the structure-function relationships of ZEN lacton hydrolases, but generate better candidate for bio-decontamination of zearalenone in feed industries.
ESTHER : Wang_2023_Enzyme.Microb.Technol_165_110195
PubMedSearch : Wang_2023_Enzyme.Microb.Technol_165_110195
PubMedID: 36764030

Title : A covalent crosslinking strategy to construct a robust peptide-based artificial esterase - Tian_2023_Soft.Matter__
Author(s) : Tian Y , Yang L , Peng X , Qi W , Wang M
Ref : Soft Matter , : , 2023
Abstract : Peptide-based artificial enzymes derived from the supramolecular assembly of short peptides have attracted growing attention in recent years. However, the stability of these artificial enzymes is still a problem since their noncovalent supramolecular structure is quite sensitive and frail under environmental conditions. In this study, we reported a covalent crosslinking strategy for the fabrication of a robust peptide-based artificial esterase. Inspired by the di-tyrosine bonds in many natural structural proteins, multi-tyrosines were designed into a peptide sequence with histidine as the catalytic residue for the ester hydrolysis reaction. Upon the photo-induced oxidation reaction, the short peptide YYHYY rapidly transferred into nanoparticle-shaped aggregates (CL-YYHYY) and displayed improved esterase-like catalytic activity than some previously reported noncovalent-based artificial esterases. Impressively, CL-YYHYY showed outstanding reusability and superior stability under high temperature, strong acid and alkaline and organic solvent conditions. This study provides a promising approach to improving the catalytic activity and stability of peptide-based artificial enzymes.
ESTHER : Tian_2023_Soft.Matter__
PubMedSearch : Tian_2023_Soft.Matter__
PubMedID: 37129250

Title : Effects of Lipid Metabolism-Related Genes PTGIS and HRASLS on Phenotype, Prognosis, and Tumor Immunity in Lung Squamous Cell Carcinoma - Lei_2023_Oxid.Med.Cell.Longev_2023_6811625
Author(s) : Lei K , Liang R , Tan B , Li L , Lyu Y , Wang K , Wang W , Hu X , Wu D , Lin H , Wang M
Ref : Oxid Med Cell Longev , 2023 :6811625 , 2023
Abstract : BACKGROUND: Lipid metabolism reprogramming played an important role in cancer occurrence, development, and immune regulation. The aim of this study was to identify and validate lipid metabolism-related genes (LMRGs) associated with the phenotype, prognosis, and immunological characteristics of lung squamous cell carcinoma (LUSC). METHODS: In the TCGA cohort, bioinformatics and survival analysis were used to identify lipid metabolism-related differentially expressed genes (DEGs) associated with the prognosis of LUSC. PTGIS/HRASLS knockdown and overexpression effects on the LUSC phenotype were analyzed in vitro experiments. Based on the expression distribution of PTGIS/HRASLS, LUSC patients were divided into two clusters by consensus clustering. Clinical information, prognosis, immune infiltration, expression of immune checkpoints, and tumor mutation burden (TMB) level were compared between the TCGA and GSE4573 cohorts. The genes related to clustering and tumor immunity were screened by weighted gene coexpression network analysis (WGCNA), and the target module genes were analyzed by functional enrichment analysis, protein-protein interaction (PPI) analysis, and immune correlation analysis. RESULTS: 191 lipid metabolism-related DEGs were identified, of which 5 genes were independent prognostic genes of LUSC. PTGIS/HRASLS were most closely related to LUSC prognosis and immunity. RT-qPCR, western blot (WB) analysis, and immunohistochemistry (IHC) showed that the expression of PTGIS was low in LUSC, while HRASLS was high. Functionally, PTGIS promoted LUSC proliferation, migration, and invasion, while HRASLS inhibited LUSC proliferation, migration, and invasion. The two clusters' expression and distribution of PTGIS/HRASLS had the opposite trend. Cluster 1 was associated with lower pathological staging (pT, pN, and pTNM stages), better prognosis, stronger immune infiltration, higher expression of immune checkpoints, and higher TMB level than cluster 2. WGCNA found that 28 genes including CD4 and IL10RA were related to the expression of PTGIS/HRASLS and tumor immune infiltration. PTGIS/HRASLS in the GSE4573 cohort had the same effect on LUSC prognosis and tumor immunity as the TCGA cohort. CONCLUSIONS: PTGIS and HRASLS can be used as new therapeutic targets for LUSC as well as biomarkers for prognosis and tumor immunity, which has positive significance for guiding the immunotherapy of LUSC.
ESTHER : Lei_2023_Oxid.Med.Cell.Longev_2023_6811625
PubMedSearch : Lei_2023_Oxid.Med.Cell.Longev_2023_6811625
PubMedID: 36703911

Title : Gut microbiome helps honeybee (Apis mellifera) resist the stress of toxic nectar plant (Bidens pilosa) exposure: Evidence for survival and immunity - Tang_2023_Environ.Microbiol__
Author(s) : Tang Q , Li W , Wang Z , Dong Z , Li X , Li J , Huang Q , Cao Z , Gong W , Zhao Y , Wang M , Guo J
Ref : Environ Microbiol , : , 2023
Abstract : Honeybee (Apis mellifera) ingestion of toxic nectar plants can threaten their health and survival. However, little is known about how to help honeybees mitigate the effects of toxic nectar plant poisoning. We exposed honeybees to different concentrations of Bidens pilosa flower extracts and found that B. pilosa exposure significantly reduced honeybee survival in a dose-dependent manner. By measuring changes in detoxification and antioxidant enzymes and the gut microbiome, we found that superoxide dismutase, glutathione-S-transferase and carboxylesterase activities were significantly activated with increasing concentrations of B. pilosa and that different concentrations of B. pilosa exposure changed the structure of the honeybee gut microbiome, causing a significant reduction in the abundance of Bartonella (p < 0.001) and an increase in Lactobacillus. Importantly, by using Germ-Free bees, we found that colonization by the gut microbes Bartonella apis and Apilactobacillus kunkeei (original classification as Lactobacillus kunkeei) significantly increased the resistance of honeybees to B. pilosa and significantly upregulated bee-associated immune genes. These results suggest that honeybee detoxification systems possess a level of resistance to the toxic nectar plant B. pilosa and that the gut microbes B. apis and A. kunkeei may augment resistance to B. pilosa stress by improving host immunity.
ESTHER : Tang_2023_Environ.Microbiol__
PubMedSearch : Tang_2023_Environ.Microbiol__
PubMedID: 37291689

Title : Novel Ce-based coordination polymer nanoparticles with excellent oxidase mimic activity applied for colorimetric assay to organophosphorus pesticides - Wang_2022_Food.Chem_397_133810
Author(s) : Wang J , Wang X , Wang M , Bian Q , Zhong J
Ref : Food Chem , 397 :133810 , 2022
Abstract : Cerium, as a lanthanide, has attracted considerable interest because of its excellent catalytic activity. Here, we propose a novel cerium-based coordination polymer nanoparticles named DPA-Ce-GMP, which have excellent oxidase-mimicking properties. Furthermore, a colorimetric probe that can act as an inhibitor to suppress the activity of acetylcholinesterase (AChE) was developed for detecting organophosphorus pesticides (OPs). DPA-Ce-GMP catalyzes colorless 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue color, and AChE catalyzes acetylthiocholine to produce thiocholine (TCh), which can weaken DPA-Ce-GMP-catalyzed TMB. After the addition of OPs, the enzymatic activity of AChE was inhibited to produce less amount of TCh, resulting in more DPA-Ce-GMP-catalyst oxidized TMB to show an increasing blue color. Dichlorvos, as the samples, with the limit of 0.024 microg/L. Overall, we believe that the colorimetric probe can be used for the rapid, low-cost, and large-scale field detection of OPs in food samples.
ESTHER : Wang_2022_Food.Chem_397_133810
PubMedSearch : Wang_2022_Food.Chem_397_133810
PubMedID: 35917788

Title : The Functional Characterization of Carboxylesterases Involved in the Degradation of Volatile Esters Produced in Strawberry Fruits - Zhang_2022_Int.J.Mol.Sci_24_383
Author(s) : Zhang L , Zhou K , Wang M , Li R , Dai X , Liu Y , Jiang X , Xia T , Gao L
Ref : Int J Mol Sci , 24 :383 , 2022
Abstract : Volatile ester compounds are important contributors to the flavor of strawberry, which affect consumer preference. Here, the GC-MS results showed that volatile esters are the basic aroma components of strawberry, banana, apple, pear, and peach, and the volatile esters were significantly accumulated with the maturation of strawberry fruits. The main purpose of this study is to discuss the relationship between carboxylesterases (CXEs) and the accumulation of volatile ester components in strawberries. FaCXE2 and FaCXE3 were found to have the activity of hydrolyzing hexyl acetate, Z-3-hexenyl acetate, and E-2-hexenyl acetate to the corresponding alcohols. The enzyme kinetics results showed that FaCXE3 had the higher affinity for hexyl acetate, E-2-hexenyl acetate, and Z-3-hexenyl acetate compared with FaCXE2. The volatile esters were mainly accumulated at the maturity stages in strawberry fruits, less at the early stages, and the least during the following maturation stages. The expression of FaCXE2 gradually increased with fruit ripening and the expression level of FaCXE3 showed a decreasing trend, which suggested the complexity of the true function of CXEs. The transient expression of FaCXE2 and FaCXE3 genes in strawberry fruits resulted in a significantly decreased content of volatile esters, such as Z-3-hexenyl acetate, methyl hexanoate, methyl butyrate, and other volatile esters. Taken together, FaCXE2 and FaCXE3 are indeed involved in the regulation of the synthesis and degradation of strawberry volatile esters.
ESTHER : Zhang_2022_Int.J.Mol.Sci_24_383
PubMedSearch : Zhang_2022_Int.J.Mol.Sci_24_383
PubMedID: 36613824
Gene_locus related to this paper: frave-FanCXE17 , frave-FanCXE19 , frave-FanCXE3 , frave-FanCXE2 , fraan-FaTA

Title : Development of indole-2-carbonyl piperazine urea derivatives as selective FAAH inhibitors for efficient treatment of depression and pain - Shang_2022_Bioorg.Chem_128_106031
Author(s) : Shang Y , Wang M , Hao Q , Meng T , Li L , Shi J , Yang G , Zhang Z , Yang K , Wang J
Ref : Bioorg Chem , 128 :106031 , 2022
Abstract : Fatty acid amide hydrolase (FAAH), aserinehydrolase with significant role in thehydrolysis of endocannabinoids, is a promising therapeutic target for peripheral and central nervous system related disorders, including pain, neuroinflammation and depression. Employing a structure-based approach, a novel series of indole-2-carbonyl piperazine urea derivatives were designed and synthesized as FAAH inhibitors for the treatment of pain-depression comorbidity. Among them, compound 4i emerged as the most potent inhibitor (IC(50) = 0.12 microM) with fine selectivity versus CES2, ABHD6, MAGL and the cannabinoid receptor, which also displayed superior metabolic stability in human liver microsome and an adequate pharmacokinetic profile in rodents. Treatment of depressed rats with 4i demonstrated favorable antidepressant-like effects not only by increasing the level of BDNF in the hippocampus but also by restraining the apoptosis of hippocampal neurons. Also, 4i effectively suppressed the LPS-induced neuroinflammation in vitro. Moreover, 4i exhibited potent analgesic activity, which indicated its promising therapeutical application for pain and depression. These meaningful results shed light on FAAH inhibitors as promising pain-depression comorbidity therapeutics.
ESTHER : Shang_2022_Bioorg.Chem_128_106031
PubMedSearch : Shang_2022_Bioorg.Chem_128_106031
PubMedID: 36037600

Title : Discovery of pyrrole derivatives as acetylcholinesterase-sparing butyrylcholinesterase inhibitor - Sun_2022_Front.Pharmacol_13_1043397
Author(s) : Sun S , Shi T , Peng Y , Zhang H , Zhuo L , Peng X , Li Q , Wang M , Wang S , Wang Z
Ref : Front Pharmacol , 13 :1043397 , 2022
Abstract : Inspired by the crucial roles of (hetero)aryl rings in cholinesterase inhibitors and the pyrrole ring in new drug discovery, we synthesized 19 pyrrole derivatives and investigated their cholinesterase inhibitory activity. As a result, compounds 3o, 3p, and 3s with a 1,3-diaryl-pyrrole skeleton showed high selectivity toward BChE over AChE with a best IC(50) value of 1.71 +/- 0.087smicroM, which were comparable to donepezil. The pharmaceutical potential of these structures was further predicted and compounds 3o and 3p were proved to meet well with the Lipinsky's five rules. In combination of the inhibition kinetic studies with the results of molecular docking, we concluded that compound 3p inhibited BChE in a mixed competitive mode. This research has proved the potential of the 1,3-diaryl-pyrrole skeleton as a kind of selective BChE inhibitor.
ESTHER : Sun_2022_Front.Pharmacol_13_1043397
PubMedSearch : Sun_2022_Front.Pharmacol_13_1043397
PubMedID: 36561337

Title : Fosthiazate exposure induces oxidative stress, nerve damage, and reproductive disorders in nontarget nematodes - Liu_2022_Environ.Sci.Pollut.Res.Int_30_12522
Author(s) : Liu S , Wu Q , Zhong Y , He Z , Wang Z , Li R , Wang M
Ref : Environ Sci Pollut Res Int , 30 :12522 , 2022
Abstract : As a forceful nematicide, fosthiazate has been largely applied in the management of root-knot nematodes and other herbivorous nematodes. However, the toxicity of fosthiazate to nontarget nematodes is unclear. To explore the toxicity and the mechanisms of fosthiazate in nontarget nematodes, Caenorhabditis elegans was exposed to 0.01-10 mg/L fosthiazate. The results implied that treatment with fosthiazate at doses above 0.01 mg/L could cause injury to the growth, locomotion behavior, and reproduction of the nematodes. Moreover, L1 larvae were more vulnerable to fosthiazate exposure than L4 larvae. Reactive oxygen species (ROS) production and lipofuscin accumulation were fairly increased in 1 mg/L fosthiazate-exposed nematodes. Treatment with 0.1 mg/L fosthiazate significantly inhibited the activity of acetylcholinesterase (p < 0.01). Furthermore, subacute exposure to 10 mg/L fosthiazate strongly influenced the expression of genes related to oxidative stress, reproduction, and nerve function (e.g., gst-1, sod-1, puf-8, wee-1.3, and ace-1 genes). These findings suggested that oxidative stress, reproduction and nerve disorders could serve as key endpoints of toxicity induced by fosthiazate. The cyp-35a family gene was the main metabolic fosthiazate in C. elegans, and the cyp-35a5 subtype was the most sensitive, with a change in expression level of 2.11-fold compared with the control. These results indicate that oxidative stress and neurological and reproductive disorders played fundamental roles in the toxicity of fosthiazate in C. elegans and may affect the abundance and function of soil nematodes.
ESTHER : Liu_2022_Environ.Sci.Pollut.Res.Int_30_12522
PubMedSearch : Liu_2022_Environ.Sci.Pollut.Res.Int_30_12522
PubMedID: 36112285

Title : Pesticide Residues in Commonly Consumed Vegetables in Henan Province of China in 2020 - Ma_2022_Front.Public.Health_10_901485
Author(s) : Ma C , Wei D , Liu P , Fan K , Nie L , Song Y , Wang M , Wang L , Xu Q , Wang J , Shi J , Geng J , Zhao M , Jia Z , Huan C , Huo W , Wang C , Mao Z , Huang S , Zeng X
Ref : Front Public Health , 10 :901485 , 2022
Abstract : BACKGROUND: Pesticides are widely used in agricultural production to control insect pests and regulate plant growth in China, which may result in the presence of some pesticide residues in the vegetables. However, few studies of monitoring pesticides have been conducted in Henan Province. The aim of this study was to evaluate the level of pesticide residues in commonly consumed vegetables in the regions of Henan Province. METHODS: In this study, we collected 5,576 samples of 15 different vegetables in 17 areas from Henan Province during 2020. Eight kinds of pesticides were analyzed by gas chromatography-mass spectrometry (GC-MS), including procymidone, lambda-cyhalothrin, cypermethrin, pendimethalin, isocarbophos, isazophos, fenthion and deltamethrin. The chi-square test was used to compare the detection rates of pesticide residues in different regions. RESULTS: Of all the pesticides above, procymidone, lambda-cyhalothrin, cypermethrin, pendimethalin and isocarbophos were detected in vegetables, the detection rates were 27.0%, 16.2%, 11.4%, 3.5%, and 1.9%, respectively. However, isazophos, fenthion, and deltamethrin were not detected. In addition, procymidone, lambda-cyhalothrin, and cypermethrin were detected in urban areas, while pendimethalin was detected in rural areas. The detection rates of cypermethrin and pendimethalin in rural were 19.8% and 5.4%, respectively, which in urban were at relatively lower levels (13.7% and 1.9%, respectively) (P < 0.05). Compared the differences of pesticide detection rates among five areas of Henan province, we found that there were statistical differences in the detection rates of procymidone, cypermethrin and lambda-cyhalothrin in different regions (all P < 0.05). CONCLUSION: The results have revealed that the pesticide residues are present. Higher detection rates and more types of pesticides were found in rural areas than urban areas. In addition, there were higher detection rates in Eastern Henan. The findings provided valuable information on the current pesticide residues status, which can be a reference of pesticide supervision and management.
ESTHER : Ma_2022_Front.Public.Health_10_901485
PubMedSearch : Ma_2022_Front.Public.Health_10_901485
PubMedID: 35757605

Title : The role of butyrylcholinesterase in the regulation of cognitive dysfunction in minimal hepatic encephalopathy: A potential blood marker of disease evolution - Yang_2022_Front.Neurol_13_900997
Author(s) : Yang X , Dang P , Liu W , Ma W , Ge X , Zhu K , Wang M , Huang X , Ding X , Wang X
Ref : Front Neurol , 13 :900997 , 2022
Abstract : BACKGROUND AND AIMS: Patients with cirrhosis commonly experience minimal hepatic encephalopathy (MHE), and alterations in neurotransmitters have been thought to be related to cognitive function. However, the relationship between alterations in peripheral and central butyrylcholinesterase (BuChE) with MHE disease progression remains unknown. As such, this study was designed to investigate potential changes in peripheral and central BuChE activity and their effects on cognitive function in the context of MHE. MATERIALS AND METHODS: We enrolled 43 patients with cirrhosis secondary to hepatitis B, 20 without MHE and 23 with MHE, and 25 with healthy controls (HC). All the selected subjects underwent resting-state functional MRI, and the original images were processed to obtain the regional homogeneity (ReHo) brain maps. Thereafter, the correlation of BuChE activity with ReHo, number connection test of type A (NCT-A), and digital symbol test (DST) scores with MHE patients were analyzed using Person correlation analysis. Meanwhile, we purchased 12 Sprague-Dawley (SD) rats and divided them into an experimental group (n = 6) and a control group (n = 6). The rats in the experimental group were intraperitoneally injected with thioacetamide (TAA) to prepare MHE model rats. After modeling, we used the Morris water maze (MWM) and elevated plus maze (EPM) to assess the cognition function and exploratory behavior of all rats. The activity of serum, hippocampus, and frontal lobe tissue BuChE was detected by ELISA. RESULTS: BuChE activity gradually decreased among the HC, patients with cirrhosis, and MHE groups (all P < 0.01). We observed a linear correlation between serum BuChE and NCT-A and DST scores in MHE patients (all P < 0.01). We noted that BuChE activity can negatively correlate with ReHo values in the left middle temporal gyrus and left inferior temporal gyrus, and positively correlate with ReHo values in the right inferior frontal gyrus, and also found that the peripheral BuChE activity of MHE rats was significantly lower than their control counterparts, and the BuChE activity in frontal lobe extracts was significantly higher than the control rats (all P < 0.05). CONCLUSION: The altered activity of BuChE may contribute to cognitive impairment in MHE patients, which may be a potential biomarker of disease evolution in the context of MHE.
ESTHER : Yang_2022_Front.Neurol_13_900997
PubMedSearch : Yang_2022_Front.Neurol_13_900997
PubMedID: 36341087

Title : Penicipurate A, a new polyketide derivative from the endophytic fungus Penicillium purpurogenum - Wang_2022_J.Asian.Nat.Prod.Res__1
Author(s) : Wang LY , Xia GY , Wang M , Wu YZ , Wang YN , Chai LM , Lin S
Ref : J Asian Nat Prod Res , :1 , 2022
Abstract : A new polyketide derivative containing a 3-hydroxydecanoic acid ester moiety, penicipurate A (1), was purified from the solid cultures of the fungus Penicillium purpurogenum, a fungal strain endophytic in the leaves of Edgeworthia chrysantha. The structure of 1 was established by spectroscopic methods, including UV, IR, HRESIMS, 1D, and 2D NMR and (13)C NMR chemical shifts calculations coupled with DP4+ analysis, as well as the chemical degradation method. Compound 1 showed moderate inhibitory activity against pancreatic lipase (PL) with an IC(50) value of 9.61 +/- 1.42 microM.
ESTHER : Wang_2022_J.Asian.Nat.Prod.Res__1
PubMedSearch : Wang_2022_J.Asian.Nat.Prod.Res__1
PubMedID: 35852111

Title : Comprehensive Enantioselectivity Evaluation of Insecticidal Activity and Mammalian Toxicity of Fenobucarb - He_2022_J.Agric.Food.Chem__
Author(s) : He Z , Li C , Xia W , Wang Z , Li R , Zhang Y , Wang M
Ref : Journal of Agricultural and Food Chemistry , : , 2022
Abstract : To comprehensively evaluate the efficiency and risk of the chiral pesticide fenobucarb, the bioactivity, toxicity, and environmental behavior of fenobucarb (FNC) enantiomers were investigated. The results showed that R-FNC possesses 1.8-2.7 times more bioactivity than S-FNC but 1.3-3.0 times lower toxicity than S-FNC against four nontarget organisms: Chlorella pyrenoidosa, HepG2, and Danio rerio and its embryos. The corresponding enzyme inhibitory activity showed consistent results; the acetylcholinesterase inhibitory activity of target organisms was ordered as R-FNC > rac-FNC > S-FNC, while the reduction in catalase activity after exposure to R-FNC was 2.5 times that after exposure to S-FNC in zebrafish. The enantioselective bioactivity mechanism of FNC enantiomers was further explored in silico. No significant enantioselective degradation was found in soils or rat liver microsomes. In sum, R-FNC possesses higher insecticidal activity and lower toxicity. The development of R-FNC as a commercial agrochemical is beneficial for reducing pesticide inputs.
ESTHER : He_2022_J.Agric.Food.Chem__
PubMedSearch : He_2022_J.Agric.Food.Chem__
PubMedID: 35451821

Title : The Cell-Cell Communication Signal Indole Controls the Physiology and Interspecies Communication of Acinetobacter baumannii - Cui_2022_Microbiol.Spectr__e0102722
Author(s) : Cui B , Chen X , Guo Q , Song S , Wang M , Liu J , Deng Y
Ref : Microbiol Spectr , :e0102722 , 2022
Abstract : Many bacteria utilize quorum sensing (QS) to control group behavior in a cell density-dependent manner. Previous studies have demonstrated that Acinetobacter baumannii employs an N-acyl-L-homoserine lactone (AHL)-based QS system to control biological functions and virulence. Here, we report that indole controls biological functions, virulence and AHL signal production in A. baumannii. The biosynthesis of indole is performed by A1S_3160 (AbiS, Acinetobacter baumannii indole synthase), which is a novel indole synthase annotated as an alpha/beta hydrolase in A. baumannii. Heterologous expression of AbiS in an Escherichia coli indole-deficient mutant also rescued the production of indole by using a distinct biosynthetic pathway from the tryptophanase TnaA, which produces indole directly from tryptophan in E. coli. Moreover, we revealed that indole from A. baumannii reduced the competitive fitness of Pseudomonas aeruginosa by inhibiting its QS systems and type III secretion system (T3SS). As A. baumannii and P. aeruginosa usually coexist in human lungs, our results suggest the crucial roles of indole in both the bacterial physiology and interspecies communication. IMPORTANCE Acinetobacter baumannii is an important human opportunistic pathogen that usually causes high morbidity and mortality. It employs the N-acyl-L-homoserine lactone (AHL)-type quorum sensing (QS) system, AbaI/AbaR, to regulate biological functions and virulence. In this study, we found that A. baumannii utilizes another QS signal, indole, to modulate biological functions and virulence. It was further revealed that indole positively controls the production of AHL signals by regulating abaI expression at the transcriptional levels. Furthermore, indole represses the QS systems and type III secretion system (T3SS) of P. aeruginosa and enhances the competitive ability of A. baumannii. Together, our work describes a QS signaling network where a pathogen uses to control the bacterial physiology and pathogenesis, and the competitive ability in microbial community.
ESTHER : Cui_2022_Microbiol.Spectr__e0102722
PubMedSearch : Cui_2022_Microbiol.Spectr__e0102722
PubMedID: 35862954
Gene_locus related to this paper: acicp-AbiS

Title : Interleukin-6 and YKL-40 predicted recurrent stroke after ischemic stroke or TIA: analysis of 6 inflammation biomarkers in a prospective cohort study - Li_2022_J.Neuroinflammation_19_131
Author(s) : Li J , Lin J , Pan Y , Wang M , Meng X , Li H , Wang Y , Zhao X , Qin H , Liu L
Ref : J Neuroinflammation , 19 :131 , 2022
Abstract : OBJECTIVE: Contribution of individual and combined inflammatory markers in prognosis after stroke was still undefined. We aimed to investigate the association of systemic and local vascular inflammatory markers and recurrent stroke as well as impact on poor functional outcome. METHODS: In this pre-specified substudy of the Third China National Stroke Registry (CNSR-III), 10,472 consecutive acute ischemic stroke or TIA patients with available centralized-measured levels of Interleukin-6 (IL-6), high sensitive C-reactive protein (hsCRP), IL-1 receptor antagonist (IL-1Ra), lipoprotein-associated phospholipase A(2) mass (Lp-PLA(2)) and activity (Lp-PLA(2)-A), and YKL-40 from 171 sites were enrolled. The primary outcomes consisted of stroke recurrence and poor functional outcome defined as modified Rankin Scale (mRS) score of 2-6 within 1 year. RESULTS: There were 1026 (9.8%) and 2395 (23.4%) patients with recurrent stroke and poor functional outcome within 1 year. The highest quartiles of IL-6 (adjusted HR, 1.36; 95% CI 1.13-1.64; P = 0.001), hsCRP (adjusted HR, 1.41; 95% CI 1.17-1.69; P = 0.0003) and YKL-40 (adjusted HR, 1.28; 95% CI 1.06-1.56; P = 0.01) were associated with increased risk of recurrent stroke; and the highest quartiles of IL-6 (adjusted OR 1.93; 95% CI 1.64-2.27; P < 0.0001), IL-1Ra (adjusted OR 1.60; 95% CI 1.37-1.87; P < 0.0001), hsCRP (adjusted OR 1.60; 95% CI 1.37-1.86; P < 0.0001) and YKL-40 (adjusted OR 1.21; 95% CI 1.03-1.42; P = 0.02) were correlated with increased risk of poor functional outcome. In the multivariate stepwise regression analysis including all markers with backward selection, elevated levels of IL-6 or YKL-40 were associated with recurrent stroke (IL6: OR, 1.34; 95% CI 1.19-1.52; P < 0.0001; YKL-40: OR, 1.01; 95% CI 1.01-1.03; P = 0.004) and poor functional outcome (IL6: OR, 1.68; 95% CI 1.46-1.93; P < 0.0001; YKL-40: OR, 1.02; 95% CI 1.01-1.03; P = 0.0001). Adding IL-6 and YKL-40 significantly increased the area under the receiver operating characteristic curves for the prediction models of Essen Stroke Risk Score (0.03, P < 0.0001) and Totaled Health Risks in Vascular Events Score (0.07, P < 0.0001), and yielded continuous net reclassification improvement (19.0%, P < 0.0001; 33.0, P < 0.0001). CONCLUSIONS: In the patients with ischemic stroke or TIA, IL-6 and YKL-40 were independently associated with recurrent stroke and poor functional outcome, and improved risk classification of clinical risk algorithms.
ESTHER : Li_2022_J.Neuroinflammation_19_131
PubMedSearch : Li_2022_J.Neuroinflammation_19_131
PubMedID: 35761288

Title : Enantioselective Metabolic Mechanism and Metabolism Pathway of Pydiflumetofen in Rat Liver Microsomes: In Vitro and In Silico Study - Wang_2022_J.Agric.Food.Chem_70_2520
Author(s) : Wang Z , Li R , Wu Q , Duan J , Tan Y , Sun X , Chen R , Shi H , Wang M
Ref : Journal of Agricultural and Food Chemistry , 70 :2520 , 2022
Abstract : Pydiflumetofen (PYD) has been used worldwide. However, the enantioselective fate of PYD within mammals is not clear. Thus, the enantioselective metabolism and its potential mechanisms of PYD were explored via in vitro and in silico. Consistent results were observed between metabolism and enzyme kinetics experiments, with S-PYD metabolizing faster than R-PYD in rat liver microsomes. Moreover, CYP3A1 and carboxylesterase 1 were found to be major enzymes participating in the metabolism of PYD. Based on the computational results, S-PYD bound with CYP3A1 and carboxylesterase 1 more tightly with lower binding free energy than R-PYD, explaining the mechanism of enantioselective metabolism. Nine phase I metabolites of PYD were identified, and metabolic pathways of PYD were speculated. This study is the first to clarify the metabolism of PYD in mammals, and further research to evaluate the toxicological implications of these metabolites will help in assessing the risk of PYD.
ESTHER : Wang_2022_J.Agric.Food.Chem_70_2520
PubMedSearch : Wang_2022_J.Agric.Food.Chem_70_2520
PubMedID: 35184556

Title : An esterase-activatable curcumin prodrug for tumor-targeting therapy - Liu_2022_Chem.Commun.(Camb)__
Author(s) : Liu L , Zhang L , Tao M , Wang M , Dong L , Hai Z
Ref : Chem Commun (Camb) , : , 2022
Abstract : A tumor-targeting therapy strategy is urgently needed to increase the accumulation of drugs in tumors and reduce the side effects in normal tissues. Herein, we developed an esterase-activatable curcumin prodrug Cur-RGD for tumor-targeting therapy. Armed with the tumor-targeting RGD peptide and in situ esterase-triggered drug release, this prodrug Cur-RGD can efficiently improve the therapeutic effect of curcumin in tumors.
ESTHER : Liu_2022_Chem.Commun.(Camb)__
PubMedSearch : Liu_2022_Chem.Commun.(Camb)__
PubMedID: 36373630

Title : Conjugation of haloalkane dehalogenase DhaA with arabinogalactan to increase its stability - Wang_2021_J.Biotechnol_335_47
Author(s) : Wang M , Yu W , Shen L , Zheng H , Guo X , Zhong J , Hu T
Ref : J Biotechnol , 335 :47 , 2021
Abstract : Haloalkane dehalogenase DhaA can catalyze the hydrolytic cleavage of carbonhalogen bonds, along with production of the corresponding alcohol, a proton and a halide. However, DhaA suffers from poor environmental tolerance, such as sensitivity to high temperature, low pH and hypersaline. Arabinogalactan (AG) is a hydrophilic polysaccharide with highly branched long chains. DhaA was conjugated with AG to improve the environmental stability of DhaA in the present study. Each DhaA was averagely conjugated with 4-5 AG molecules. Conjugation of AG essentially maintained the enzymatic activity of DhaA (91.4 %) without apparent structural alteration. The hydration layer formed by AG could reduce the solvent accessible area of DhaA and slow the protonation process, thereby improving the pH and high salt stability of DhaA. In particular, the remaining activities of the conjugate (AG-DhaA) were 35.3 % after treatment at pH4.0 for 1 h, and 80.8 % in 1 M NaCl after treatment for 16 h. As compared with DhaA, AG-DhaA showed slightly different kinetic parameters (K M of 1.90 micromol/L and k cat of 2.60 s -1).
ESTHER : Wang_2021_J.Biotechnol_335_47
PubMedSearch : Wang_2021_J.Biotechnol_335_47
PubMedID: 34118331

Title : The role of N-cadherin\/c-Jun\/NDRG1 axis in the progression of prostate cancer - Quan_2021_Int.J.Biol.Sci_17_3288
Author(s) : Quan Y , Zhang X , Butler W , Du Z , Wang M , Liu Y , Ping H
Ref : Int J Biol Sci , 17 :3288 , 2021
Abstract : The dysregulation of androgen receptor (AR) signaling is a critical event in the progression of prostate cancer (PCa) and hormone therapy consisting of androgen deprivation (ADT) or AR inhibition is therefore used to treat advanced cases. It is known that N-cadherin becomes upregulated following ADT and can directly induce PCa transformation to the castration-resistant stage (CRPC). However, the relationship between AR and N-cadherin is unclear and may promote better understanding of CRPC pathogenesis and progression. Here, we demonstrate a new axis of N-cadherin/c-Jun/N-myc downstream regulated gene 1 (NDRG1) that N-cadherin promotes c-Jun expression and suppresses NDRG1 to promote invasion and migration of PCa cells through epithelial to mesenchymal transition (EMT). Targeting N-cadherin in combination with enzalutamide (ENZ) treatment synergistically suppressed PC3 cell proliferation in vivo and in vitro. Further studies showed that compared to lower Gleason score (GS) (GS < 7) cases, high GS (GS > 7) cases exhibited elevated N-cadherin expression and reduced NDRG1 expression, corroborating our in vitro observations. We further demonstrate that c-Jun, AR, and DNA methyltransferase-1 (DNMT1) form a complex in the 12-O-tetradecanoyl phorbol-13-acetate (TPA) response elements (TREs) region of the NDRG1 promoter, which suppresses NDRG1 transcription through DNA hypermethylation. In conclusion, we demonstrate an underlying mechanism for how N-cadherin collaborates with AR and NDRG1 to promote CRPC progression. Controlling N-cadherin/c-Jun/NDRG1 axis may help to overcome resistance to commonly used hormone therapy to improve long-term patient outcomes.
ESTHER : Quan_2021_Int.J.Biol.Sci_17_3288
PubMedSearch : Quan_2021_Int.J.Biol.Sci_17_3288
PubMedID: 34512147

Title : Excitatory Impact of Dental Occlusion on Dorsal Motor Nucleus of Vagus - Liu_2021_Front.Neural.Circuits_15_638000
Author(s) : Liu X , Shi M , Ren H , Xie M , Zhang C , Wang D , Li J , Wang M
Ref : Front Neural Circuits , 15 :638000 , 2021
Abstract : Neurons in the trigeminal mesencephalic nucleus (Vme) have axons that branch peripherally to innervate the orofacial region and project centrally to several motor nuclei in brainstem. The dorsal motor nucleus of vagus nerve (DMV) resides in the brainstem and takes a role in visceral motor function such as pancreatic exocrine secretion. The present study aimed to demonstrate the presence of Vme-DMV circuit, activation of which would elicit a trigeminal neuroendocrine response. A masticatory dysfunctional animal model termed unilateral anterior crossbite (UAC) model created by disturbing the dental occlusion was used. Cholera toxin B subunit (CTb) was injected into the inferior alveolar nerve of rats to help identify the central axon terminals of Vme neurons around the choline acetyltransferase (ChAT) positive motor neurons in the DMV. The level of vesicular glutamate transporter 1 (VGLUT1) expressed in DMV, the level of acetylcholinesterase (AChE) expressed in pancreas, the level of glucagon and insulin expression in islets and serum, and the blood glucose level were detected and compared between UAC and the age matched sham-operation control mice. Data indicated that compared with the controls, there were more CTb/VGLUT1 double labeled axon endings around the ChAT positive neurons in the DMV of UAC groups. Mice in UAC group expressed a higher VGLUT1 protein level in DMV, AChE protein level in pancreas, glucagon and insulin level in islet and serum, and higher postprandial blood glucose level, but lower fasting blood glucose level. All these were reversed at 15-weeks when UAC cessation was performed from 11-weeks (all, P < 0.05). Our findings demonstrated Vme-DMV circuit via which the aberrant occlusion elicited a trigeminal neuroendocrine response such as alteration in the postprandial blood glucose level. Dental occlusion is proposed as a potential therapeutic target for reversing the increased postprandial glucose level.
ESTHER : Liu_2021_Front.Neural.Circuits_15_638000
PubMedSearch : Liu_2021_Front.Neural.Circuits_15_638000
PubMedID: 33776655

Title : Fabrication of Bioresource-Derived Porous Carbon-Supported Iron as an Efficient Oxidase Mimic for Dual-Channel Biosensing - Wang_2021_Anal.Chem__
Author(s) : Wang M , Zhou X , Wang S , Xie X , Wang Y , Su X
Ref : Analytical Chemistry , : , 2021
Abstract : Herein, we designed a new strategy for fabricating a renewable bioresource-derived N-doped hierarchical porous carbon-supported iron (Fe/NPC)-based oxidase mimic. The obtained results suggested that Fe/NPC possessed a large specific surface area (1144 m(2)/g) and pore volume (0.62 cm(3)/g) to afford extensive Fe-Nx active sites. Taking advantages of the remarkable oxidase-mimicking activity, outstanding stability, and reusability of Fe/NPC, a novel dual-channel biosensing system was strategically fabricated for sensitively determining acetylcholinesterase (AChE) through the integration of Fe/NPC and fluorescent silver nanoclusters (AgNCs) for the first time. The limits of detection for AChE can achieve as low as 0.0032 and 0.0073 U/L by the outputting fluorometric and colorimetric dual signals, respectively. Additionally, this dual-signal system was applied to analyze human erythrocyte AChE and its inhibitor with robust analytical performance. This work provides one sustainable and effective avenue to apply a bioresource for fabricating an Fe/NPC-based oxidase mimic with high catalytic performance and also gives new impetuses for developing novel biosensors by applying Fe/NPC-based enzyme mimics as substitutes for the natural enzyme.
ESTHER : Wang_2021_Anal.Chem__
PubMedSearch : Wang_2021_Anal.Chem__
PubMedID: 33535742

Title : Acer truncatum Bunge: A comprehensive review on ethnobotany, phytochemistry and pharmacology - Fan_2021_J.Ethnopharmacol__114572
Author(s) : Fan Y , Lin F , Zhang R , Wang M , Gu R , Long C
Ref : J Ethnopharmacol , :114572 , 2021
Abstract : ETHNOPHARMACOLOGICAL RELEVANCE: Acer truncatum Bunge is a multifunctional plant in northern China. It has traditionally been used to prevent cardiovascular and cerebrovascular diseases and treat skin trauma by different linguistic groups including Mongolian, Tibetan, and Korean. Although research has verified that A. truncatum contains a variety of active ingredients, especially nervonic acid, an important component in delaying brain aging, to date no review has been made to compile its traditional use, phytochemistry, and pharmacology. AIMS OF THE REVIEW: This review aimed to update the traditional uses, phytochemistry, and pharmacology of A. truncatum, which expect to provide theoretical support for the future utilization as well as highlight the further investigation of this important plant. MATERIALS AND METHODS: The ethnobotanical, phytochemical, and pharmacological information related to A. truncatum from 1949 to March 2021 were collated by surveying the traditional medicinal books and ethnomedicinal publications and searching the online databases including Google Scholar, Sci Finder, Web of Science, Springer Link, PubMed, Wiley, China National Knowledge Infrastructure (CNKI), Baidu Scholar, and Wan Fang Database. RESULTS: A. truncatum has traditionally been used for medicinal, edible and ornamental purposes in northern China for many centuries. Different parts of the plant including leaves, fruits and bark, are mainly used as herbal medicine to treat hyperpiesia, hyperlipidemia, bruises, back pain, etc. A total of 288 compounds in A. truncatum, including polyphenols, organic acids or lipids, and biological volatile organic compounds were isolated or identified by phytochemical studies. Pharmacological research showed that A. truncatum has various bioactivities such as acetylcholinesterase inhibition, antibacterial, antioxidant, antitumor, and fatty acid synthase inhibition effects. CONCLUSION: A. truncatum has been used as a traditional herbal medicine for centuries in northern China. Polyphenols, organic acids, lipids and other compounds were isolated or identified from different parts of the plant. Most of the pharmacological activities of A. truncatum have been reported, which showed its potential in the development of new drugs or nutraceuticals. However, detailed information on the molecular mechanisms, metabolic activity, and toxicology of active components is limited. Further comprehensive research to evaluate the medicinal properties of A. truncatum will be necessary.
ESTHER : Fan_2021_J.Ethnopharmacol__114572
PubMedSearch : Fan_2021_J.Ethnopharmacol__114572
PubMedID: 34487848

Title : Strigolactone mimic 2-nitrodebranone is highly active in Arabidopsis growth and development - Li_2021_Plant.J__
Author(s) : Li S , Li Y , Chen L , Zhang C , Wang F , Li H , Wang M , Wang Y , Nan F , Xie D , Yan J
Ref : Plant J , : , 2021
Abstract : Strigolactones play crucial roles in regulating plant architecture and development, as endogenous hormones, and orchestrating symbiotic interactions with fungi and parasitic plants, as components of root exudates. rac-GR24 is currently the most widely used strigolactone analog and serves as a reference compound in investigating the action of strigolactones. In this study, we evaluated a suite of debranones and found that 2-nitrodebranone (2NOD) exhibited higher biological activity than rac-GR24 in various aspects of plant growth and development in Arabidopsis, including hypocotyl elongation inhibition, root hair promotion and senescence acceleration. The enhanced activity of 2NOD in promoting AtD14-SMXL7 and AtD14-MAX2 interactions indicates that the molecular structure of 2NOD is a better match for the ligand perception site pocket of D14. Moreover, 2NOD showed lower activity than rac-GR24 in promoting Orobanche cumana seed germination, suggesting its higher ability to control plant architecture than parasitic interactions. In combination with the improved stability of 2NOD, these results demonstrate that 2NOD is a strigolactone analog that can specifically mimic the activity of strigolactones and that 2NOD exhibits strong potential as a tool for studying the strigolactone signaling pathway in plants.
ESTHER : Li_2021_Plant.J__
PubMedSearch : Li_2021_Plant.J__
PubMedID: 33860570

Title : Safety and pharmacokinetic interaction between fotagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin in healthy subjects - Ding_2021_Expert.Opin.Drug.Metab.Toxicol_17_725
Author(s) : Ding Y , Zhang H , Li C , Zheng W , Wang M , Li Y , Sun H , Wu M
Ref : Expert Opin Drug Metab Toxicol , 17 :725 , 2021
Abstract : BACKGROUND: Dipeptidyl peptidase-4 (DPP-4) inhibitors have significant clinical efficacy for type 2 diabetes mellitus (T2DM). The combination of fotagliptin (FOT) with metformin (MET) is a promising therapeutic approach in MET-resistant patients. The aim of the present study was to evaluate the pharmacokinetic (PK) interaction between FOT and MET in healthy subjects after multiple-dose administration. METHODS: Eighteen participants received a randomized open-label, three period treatment that included MET 1000 mg alone, co-administration of FOT 24 mg and MET, followed by FOT 24 mg alone. Serial blood samples were collected for PK analysis, which included geometric mean ratios (GMRs) with 90% confidence intervals (CIs), area under the concentration-time curve (AUC), and maximum plasma concentration (C(max)). RESULTS: Analysis results showed that for FOT alone or combination therapy, the 90% CIs of the GMR for AUC(0-24,ss) and C(max,ss) were 102.08% (98.9%, 105.36%) and 110.65% (102.19%, 119.82%), respectively. For MET, they were 113.41% (100.32%, 128.22%) and 97.11% (83.80%, 112.55%) for AUC(0-12,ss) and C(max,ss), respectively. FOT or MET monotherapy and the combination therapy with both drugs were well tolerated. CONCLUSIONS: No PK drug-drug interactions were found in the combination therapy with FOT and MET. Therefore, FOT can be co-administered with MET without dose adjustment. TRIAL REGISTRATION: The trial is registered at http://www.chinadrugtrials.org.cn/(Registration No. CTR20190221).
ESTHER : Ding_2021_Expert.Opin.Drug.Metab.Toxicol_17_725
PubMedSearch : Ding_2021_Expert.Opin.Drug.Metab.Toxicol_17_725
PubMedID: 33899649

Title : An Evolving Technology That Integrates Classical Methods with Continuous Technological Developments: Thin-Layer Chromatography Bioautography - Wang_2021_Molecules_26_
Author(s) : Wang M , Zhang Y , Wang R , Wang Z , Yang B , Kuang H
Ref : Molecules , 26 : , 2021
Abstract : Thin-layer chromatography (TLC) bioautography is an evolving technology that integrates the separation and analysis technology of TLC with biological activity detection technology, which has shown a steep rise in popularity over the past few decades. It connects TLC with convenient, economic and intuitive features and bioautography with high levels of sensitivity and specificity. In this study, we discuss the research progress of TLC bioautography and then establish a definite timeline to introduce it. This review summarizes known TLC bioautography types and practical applications for determining antibacterial, antifungal, antitumor and antioxidant compounds and for inhibiting glucosidase, pancreatic lipase, tyrosinase and cholinesterase activity constitutes. Nowadays, especially during the COVID-19 pandemic, it is important to identify original, natural products with anti-COVID potential compounds from Chinese traditional medicine and natural medicinal plants. We also give an account of detection techniques, including in situ and ex situ techniques; even in situ ion sources represent a major reform. Considering the current technical innovations, we propose that the technology will make more progress in TLC plates with higher separation and detection technology with a more portable and extensive scope of application. We believe this technology will be diffusely applied in medicine, biology, agriculture, animal husbandry, garden forestry, environmental management and other fields in the future.
ESTHER : Wang_2021_Molecules_26_
PubMedSearch : Wang_2021_Molecules_26_
PubMedID: 34361800

Title : Celastrol Attenuates Learning and Memory Deficits in an Alzheimer's Disease Rat Model - Xiao_2021_Biomed.Res.Int_2021_5574207
Author(s) : Xiao Y , Wang X , Wang S , Li J , Xu X , Wang M , Li G , Shen W
Ref : Biomed Res Int , 2021 :5574207 , 2021
Abstract : Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder that is associated with learning, memory, and cognitive deficits. Neuroinflammation and synapse loss are involved in the pathology of AD. Diverse measures have been applied to treat AD, but currently, there is no effective treatment. Celastrol (CEL) is a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F that has been shown to enhance cell viability and inhibit amyloid-beta production induced by lipopolysaccharides in vitro. In the present study, the protective effect of CEL on Abeta (25-35)-induced rat model of AD was assessed. Our results showed that CEL administration at a dose of 2 mg/kg/day improved spatial memory in the Morris water maze. Further biochemical analysis showed that CEL treatment of intrahippocampal Abeta (25-35)-microinjected rats attenuated hippocampal NF-kappaB activity; inhibited proinflammatory markers, namely, IL-1beta, IL-6, and TNF-alpha; and upregulated anti-inflammatory factors, such as IL-4 and IL-10. Furthermore, CEL upregulated hippocampal neurexin-1beta, neuroligin-1, CA1, and PSD95 expression levels, which may improve synaptic function. Simultaneously, CEL also increased glucose metabolism in Abeta (25-35)-microinjected rats. In conclusion, CEL could exert protective effects against learning and memory decline induced by intrahippocampal Abeta (25-35) through anti-inflammation, promote synaptic development, and maintain hippocampal energy metabolism.
ESTHER : Xiao_2021_Biomed.Res.Int_2021_5574207
PubMedSearch : Xiao_2021_Biomed.Res.Int_2021_5574207
PubMedID: 34350293

Title : Discovery of 7-O-1, 2, 3-triazole hesperetin derivatives as multi-target-directed ligands against Alzheimer's disease - Wang_2021_Chem.Biol.Interact__109489
Author(s) : Wang M , Fang L , Liu T , Chen X , Zheng Y , Zhang Y , Chen S , Li Z
Ref : Chemico-Biological Interactions , :109489 , 2021
Abstract : The development of multi-target-directed ligands (MTDLs) may improve complex central nervous system diseases such as Alzheimer's disease (AD). Here, a series of 7-O-1, 2, 3-triazole hesperetin derivatives was evaluated for their inhibition of cholinesterase, anti-neuroinflammatory, and neuroprotective activity. Among the hesperetin derivatives, compound a8 (7-O-((1-(3-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)hesperetin) possessed excellent anti-butyrylcholinesterase activity (IC(50) = 3.08 +/- 0.29 microM) and exhibited good anti-neuroinflammatory activity (IC(50) = 2.91 +/- 0.47 microM) against NO production through remarkably blocking the NF-kappaB signaling pathway and inhibiting the phosphorylation of P65. In addition, a8 showed a remarkable neuroprotective effect and lacked neurotoxicity up to 50 microM concentration. Furthermore, possessing significant self-mediated Abeta(1-42) aggregation inhibitory activity, chelated biometals and reduced ROS production were found in compound a8. In the bi-directional transport assay, a8 exhibited a blood-brain barrier penetrating ability. In this study, the Morris water maze task showed that compound a8 significantly improved the learning and memory impairment of the scopolamine-induced AD mice model. Results highlighted the potential of compound a8 to be a potential MTDL for the development of anti-AD agents.
ESTHER : Wang_2021_Chem.Biol.Interact__109489
PubMedSearch : Wang_2021_Chem.Biol.Interact__109489
PubMedID: 33905740

Title : Esterase-activatable and GSH-responsive Triptolide Nano-prodrug for the Eradication of Pancreatic Cancer - Sui_2021_Adv.Nanobiomed.Res_1_
Author(s) : Sui B , Cheng C , Shi S , Wang M , Xu P
Ref : Adv Nanobiomed Res , 1 : , 2021
Abstract : Triptolide (TPL) is a small molecule isolated from a traditional Chinese herb Tripterygium wilfordii Hook F and shows excellent anticancer effect for pancreatic cancer cells. However, the poor water solubility and severe liver toxicity of TPL hindered its clinical application. In this study, TPL was covalently conjugated to a polymer and entrapped inside the core of the TPL nanogel (nTPL) to protect it from premature leakage during blood circulation. With the help of lactobionic acid (LBA), nTPL-LBA could selectively target the tumors in an orthotopic pancreatic cancer mouse model. TPL could be subsequently released intracellularly in its original form due to the presence of elevated intracellular esterase and GSH, and eventually kills cancer cells. nTPL-LBA treatment reduced tumor burden by 99% while not introducing TPL associated liver and kidney toxicities. Most importantly, more than half of the nTPL-LBA treated animals were tumor-free, suggesting that nTPL-LBA is an effective approach in eradicating pancreatic cancer.
ESTHER : Sui_2021_Adv.Nanobiomed.Res_1_
PubMedSearch : Sui_2021_Adv.Nanobiomed.Res_1_
PubMedID: 34870282

Title : Stability comparison of four lipases and catalytic mechanism during the synthesis of 1,3-di-oleic-2-medium chain triacylglycerols in a trace water-in-oil system: Experimental analyses and computational simulations - Peng_2021_J.Food.Biochem__e13667
Author(s) : Peng B , Luo T , Chen F , Wang M , Fu JH , Zheng LF , Li J , Deng ZY
Ref : J Food Biochem , :e13667 , 2021
Abstract : In the present study, a kind of structured lipids, namely 1,3-di-oleic-2-medium chain (OMO) triacylglycerols, were synthesized through lipase-catalyzed reactions using coconut oil and rapeseed acid as materials in a trace water-in-oil system. Experimental analysis and computational simulations were undertaken to compare the stability of four lipases including Lipozyme RMIM, Lipozyme TLIM, Novozym 435, and Aspergillus oryzae immobilized lipase (AOIM), and illustrate catalytic mechanism of Novozym 435 during the synthesis of OMO. Fourier transform infrared and molecular dynamics simulation results demonstrated that a decrease in ordered structure (alpha-helix and beta-sheet) led to a reduction in enzyme activity. Compared with Lipozyme RMIM and Novozym 435, Lipozyme TLIM and AOIM exhibited better stability due to a short-chain lid in TLIM, which covers activity sites, and hydrogen bonds formed between activity center of AOIM and water. Among four lipases, AOIM exhibited best catalytic performance: a OMO yield of 30.7% at 3 hr and a good stability of long term (48 hr). Density functional theory results demonstrated that specifically, during the synthesis of OMO triacylglycerol, the addition of Novozym 435 (derived from Candida antarctica lipase B, CALB) substantially lowered reaction barriers (64.4 KJ/mol with CALB vs. 332.7 KJ/mol with no lipase), aiding in the generation of OMO because of the formations of transitional tetrahedral intermediates. A trace water-in-oil system was a green and efficient alternative for lipase-catalyzed production of OMO, and this study provided crucial insights into the stability/instability and catalytic mechanisms of lipase in the synthesis of structured lipids. PRACTICAL APPLICATIONS: We compared the stability of Lipozyme RMIM, Lipozyme 435, Lipozyme TLIM, and AOIM during the synthesis of the OMO triacylglycerols in a trace water-in-oil system, where exhibited a high catalytic activity of lipase in water-oil interface. AOIM had the highest stability and showed the best catalytic performance due to the formation of hydrogen bonds. Besides, for the first time, the transition tetrahedral structure was revealed in the enzymatic synthesis of medium- and long-chain triacylglycerols. This study provides a rational approach to compare lipase stability and a possible hint to choose appropriate enzyme in a specific catalytic condition.
ESTHER : Peng_2021_J.Food.Biochem__e13667
PubMedSearch : Peng_2021_J.Food.Biochem__e13667
PubMedID: 33837552

Title : Neuroprotective Potential of Mung Bean (Vigna radiata L.) Polyphenols in Alzheimer's Disease: A Review - Xu_2021_J.Agric.Food.Chem_69_11554
Author(s) : Xu H , Zhou Q , Liu B , Cheng KW , Chen F , Wang M
Ref : Journal of Agricultural and Food Chemistry , 69 :11554 , 2021
Abstract : Mung bean contains various neuroprotective polyphenols, so it might be a healthy food for Alzheimer's disease (AD) prevention. Totally, 19 major phenolic compounds were quantified in mung bean, including 10 phenolic acids and 9 flavonoids. After summarizing their contents and effective doses in rodent AD models, it was speculated that vitexin, isovitexin, sinapic acid, and ferulic acid might be the major bioactive compounds for mung bean-mediated neuroprotection. The mechanisms involved inhibition of beta-amyloidogenesis, tau hyperphosphorylation, oxidative stress, and neuroinflammation, and promotion of autophagy and acetylcholinesterase enzyme activity. Notably, the neuroprotective phenolic profile in mung bean changed after germination, with decreased vitexin and isovitexin, and increased rutin, isoquercitrin, isorhamnetin, and caffeic acid detected. However, only studies of individual phenolic compounds in mung bean are published at present. Hence, further studies are needed to elucidate the neuroprotective activities and mechanisms of extractions of mung bean seeds and sprouts, and the synergism between different phenolic compounds.
ESTHER : Xu_2021_J.Agric.Food.Chem_69_11554
PubMedSearch : Xu_2021_J.Agric.Food.Chem_69_11554
PubMedID: 34551518

Title : Influence of seasonal migration on evolution of insecticide resistance in Plutella xylostella - Wang_2021_Insect.Sci__
Author(s) : Wang M , Zhu B , Zhang L , Xiao Y , Liang P , Wu K
Ref : Insect Sci , : , 2021
Abstract : The diamondback moth, Plutella xylostella (L.), is one of the most destructive migratory pest species of cruciferous vegetables worldwide and has developed resistance to most of the insecticides used for its control. The migration regularity, migratory behavior, and relationship between flight and reproduction of P. xylostella have been widely reported. However, the effect of migration on insecticide resistance in this pest is still unclear. In this study, the effect of migration on P. xylostella resistance to seven insecticides was investigated using populations across the Bohai Sea that were collected in the early and late seasons during 2017-2019. The bioassay results showed that the early season populations of P. xylostella from South China possessed much higher resistance to insecticides because of intensive insecticide application; alternatively, the late season populations migrated from Northeast China, where the insecticides were only used occasionally, showed much lower insecticide resistance. The genome re-sequencing results revealed that, among the eight mutations involved in insecticide resistance, the frequencies of two acetylcholinesterase mutations (A298S and G324A) responsible for organophosphorus insecticide resistance were significantly decreased in the late season populations. The results indicated that P. xylostella migration between tropical and temperate regions significantly delayed the development of insecticide resistance. These findings illustrated the effect of regional migration on the evolution of insecticide resistance in P. xylostella, and provided foundational information for further research on the relationship between migration and insecticide resistance development in other insects. This article is protected by copyright. All rights reserved.
ESTHER : Wang_2021_Insect.Sci__
PubMedSearch : Wang_2021_Insect.Sci__
PubMedID: 34873833

Title : The cholinergic system, intelligence, and dental fluorosis in school-aged children with low-to-moderate fluoride exposure - Wang_2021_Ecotoxicol.Environ.Saf_228_112959
Author(s) : Wang S , Zhao Q , Li G , Wang M , Liu H , Yu X , Chen J , Li P , Dong L , Zhou G , Cui Y , Liu L , Wang A
Ref : Ecotoxicology & Environmental Safety , 228 :112959 , 2021
Abstract : Disruption of cholinergic neurotransmission can affect cognition, but little is known about whether low-to-moderate fluoride exposure affects cholinergic system and its effect on the prevalence of dental fluorosis (DF) and intelligence quotient (IQ). A cross-sectional study was conducted to explore the associations of moderate fluoride exposure and cholinergic system in relation to children's DF and IQ. We recruited 709 resident children in Tianjin, China. Ion selective electrode method was used to detect fluoride concentrations in water and urine. Cholinergic system was assessed by the detection of choline acetyltransferase (ChAT), acetylcholinesterase (AChE) and acetylcholine (ACh) levels in serum. Compared with children in the first quartile, those in fourth quartile the risk of either developing DF or IQ < 120 increased by 19% and 20% for water and urinary fluoride. The risk of having both increased by 58% and 62% in third and fourth quartile for water fluoride, 52% and 65% for urinary fluoride. Water fluoride concentrations were positively associated with AChE and negatively associated with ChAT and ACh, trends were same for urinary fluoride except for ACh. The risk of either developing DF or having non-high intelligence rose by 22% (95%CI: 1.07%, 1.38%) for the fourth quartile than those in the first quartile of AChE, for having the both, the risk was 1.27 (95%CI: 1.07, 1.50), 1.37 (95%CI: 1.17, 1.62) and 1.44 (95%CI: 1.23, 1.68) in second, third and fourth quartiles. The mediation proportion by AChE between water fluoride and either developing DF or IQ < 120 was 15.7%. For both to exist, the proportion was 6.7% and 7.2% for water and urinary fluoride. Our findings suggest low-to-moderate fluoride exposure was associated with dysfunction of cholinergic system for children. AChE may partly mediate the prevalence of DF and lower probability of having superior and above intelligence.
ESTHER : Wang_2021_Ecotoxicol.Environ.Saf_228_112959
PubMedSearch : Wang_2021_Ecotoxicol.Environ.Saf_228_112959
PubMedID: 34808511

Title : Dammarane Sapogenins Improving Simulated Weightlessness-Induced Depressive-Like Behaviors and Cognitive Dysfunction in Rats - Wang_2021_Front.Psychiatry_12_638328
Author(s) : Wang Q , Dong L , Wang M , Chen S , Li S , Chen Y , He W , Zhang H , Zhang Y , Pires Dias AC , Yang S , Liu X
Ref : Front Psychiatry , 12 :638328 , 2021
Abstract : Background: Our studies demonstrated that the space environment has an impact on the brain function of astronauts. Numerous ground-based microgravity and social isolation showed that the space environment can induce brain function damages in humans and animals. Dammarane sapogenins (DS), an active fraction from oriental ginseng, possesses neuropsychic protective effects and has been shown to improve depression and memory. This study aimed to explore the effects and mechanisms of DS in attenuating depressive-like behaviors and cognitive deficiency induced by simulated weightlessness and isolation [hindlimb suspension and isolation (HLSI)] in rats. Methods: Male rats were orally administered with two different doses of DS (37.5, 75 mg/kg) for 14 days, and huperzine-A (1 mg/kg) served as positive control. Rats were subjected to HLSI for 14 days except the control group during drug administration. The depressive-like behaviors were then evaluated by the open-field test, the novel object recognition test, and the forced swimming test. The spatial memory and working memory were evaluated by the Morris water maze (MWM) test, and the related mechanism was further explored by analyzing the activity of choline acetyltransferase (ChAT), acetylcholinesterase (AChE), and superoxide dismutase (SOD) in the hippocampus of rats. Results: The results showed that DS treatment significantly reversed the HLSI-induced depressive-like behaviors in the open-field test, the novel object recognition test, and the forced swimming test and improved the HLSI-induced cognitive impairment in the MWM test. Furthermore, after DS treatment, the ChAT and SOD activities of HLSI rats were increased while AChE activity was significantly suppressed. Conclusions: These findings clearly demonstrated that DS might exert a significant neuropsychic protective effect induced by spaceflight environment, driven in part by the modulation of cholinergic system and anti-oxidation in the hippocampus.
ESTHER : Wang_2021_Front.Psychiatry_12_638328
PubMedSearch : Wang_2021_Front.Psychiatry_12_638328
PubMedID: 33841208

Title : Two novel Mutations of the LPL Gene in two Chinese family cases with Familial Chylomicronemia Syndrome - Wang_2021_Clin.Chim.Acta__
Author(s) : Wang M , Zhou Y , He X , Deng C , Liu X , Li J , Zhou L , Li Y , Zhang Y , Liu H , Li L
Ref : Clinica Chimica Acta , : , 2021
Abstract : The aim of this study was to investigate the clinical features and genetic causes of two family cases with familial chylomicronemia syndrome (FCS). Clinical manifestations of proband 1 and her families, and also proband 2 showed severe hypertriglyceridemia, especially the triglycerides levels of two probands were extremely high. Gene sequencing results showed that the LPL genes in each of the two probands had a new mutation site. For the proband 1, a compound heterozygous mutation at c.429 (c.429+1G>T) was detected in the LPL gene, which was splicing mutation and inherited from her mother. Homozygous mutation was detected in the LPL gene of proband 2, the nucleotide mutation at c.802 (c.802C > T) exhibited missense mutation, his parents and brother had a heterozygous mutation at the same site. It was confirmed that the conservative lipoprotein lipase superfamily domain changed an amino acid from histidine to tyrosine at p. 268 (p. His268Tyr). Flow cytometry confirmed the deficient expression of LPL protein in two families. These results indicated that the mutation in LPL gene might be the cause of familial chylomicronemia syndrome.
ESTHER : Wang_2021_Clin.Chim.Acta__
PubMedSearch : Wang_2021_Clin.Chim.Acta__
PubMedID: 34324844
Gene_locus related to this paper: human-LPL

Title : An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides - Cao_2020_J.Agric.Food.Chem_68_7298
Author(s) : Cao J , Wang M , Yu H , She Y , Cao Z , Ye J , Abd El-Aty AM , Hacimuftuoglu A , Wang J , Lao S
Ref : Journal of Agricultural and Food Chemistry , 68 :7298 , 2020
Abstract : Acetylcholinesterase inactivating compounds, such as organophosphate (OP) and carbamate (CM) pesticides, are widely used in agriculture to ensure sustainable production of food and feed. As a consequence of their applications, they would result in neurotoxicity, even death. In this essence, the development of enzyme inhibition methods still shows great significance as rapid detection techniques for on-site large-scale screening of OPs and CMs. Initially, mechanisms and applications of various enzyme-inhibition-based methods and devices, including optical colorimetric assay, fluorometric assays, electrochemical biosensors, rapid test card, and microfluidic device, are highlighted in the present overview. Further, to enhance the enzyme sensitivity for detection; alternative enzyme sources or high yield enrichment methods (such as abzyme, artificial enzyme, and recombinant enzyme), as well as enzyme reactivation and identification, are also addressed in this comprehensive overview.
ESTHER : Cao_2020_J.Agric.Food.Chem_68_7298
PubMedSearch : Cao_2020_J.Agric.Food.Chem_68_7298
PubMedID: 32551623

Title : Tunicyclin L, a cyclic peptide from Psammosilene tunicoides: Isolation, characterization, conformational studies and biological activity - Hou_2020_Fitoterapia__104628
Author(s) : Hou Y , Wang M , Sun C , Peng C , Zhang Y , Li X
Ref : Fitoterapia , :104628 , 2020
Abstract : Tunicyclin L (1), cyclo (L-Pro(1)-Gly-L-Phe(1)-L-Ile-L-Pro(2)-L-Phe -L-Thr-L-Val), and 11 known compounds, including one cyclic peptide (2), eight carboline alkaloids (3-10), one lignan (11) and one flavone (12) were isolated from the roots of Psammosilene tunicoides. Their structures were elucidated on the basis of extensive UV, IR, MS, NMR spectroscopic data and comparison with literature. Single-crystal X-ray diffraction results revealed the stereochemistry of the 24-membered ring cyclic peptide (1). Among these known compounds, compound 6 was found to be a new natural product, and compounds 3, 4, and 11 were isolated from this plant for the first time. Five compounds (1, 3, 4, 7, and 9) showed moderate anti-acetylcholinesterase (AChE) activity.
ESTHER : Hou_2020_Fitoterapia__104628
PubMedSearch : Hou_2020_Fitoterapia__104628
PubMedID: 32433930

Title : Enantioselective disposition and metabolic products of isofenphos-methyl in rats and the hepatotoxic effects - Gao_2020_Environ.Int_143_105940
Author(s) : Gao B , Zhao S , Shi H , Zhang Z , Li L , He Z , Wen Y , Covaci A , Wang M
Ref : Environ Int , 143 :105940 , 2020
Abstract : Isofenphos-methyl (IFP), a chiral organophosphorus pesticide, is one of the main chemicals used to control underground insects and nematodes. Recently, the use of IFP on vegetables and fruits has been prohibited due to its high toxicity. In this study, we investigated the enantioselective distribution and metabolism of IFP and its metabolites, namely, isofenphos-methyl oxon (IFPO) and isocarbophos oxon (ICPO), in male Sprague Dawley (SD) rats. Forty eight hours (48 h) after exposure, ICPO was the main detectable compound in blood (up to 75%) and urine (up to 77%), and we found that (S)-ICPO was significantly more stable than (R)-ICPO (p < 0.05). Therefore, (S)-ICPO was proposed as a suitable candidate biomarker for the biomonitoring of IFP in human urine and blood. After 48 h exposure, 21.2-41.0%, 4.1-15.1%, and 8.6-18.7% of dosed IFP was detected in the liver of racemic, R and S enantiomer-exposed rats, respectively, and R-IFP and R-IFPO showed a faster degradation (p < 0.05). Our results showed that after one week of consecutive exposure to IFP, ICPO was accumulated in the liver of rats in both racemic and enantiopure groups (no difference between the groups, p > 0.05). We found that cytochrome P450 (CYP) (i.e. CYP2C11, CYP2D2 and CYP3A2 enzymes and carboxylesterases) is responsible for the enantioselective metabolism of IFP in liver. In addition, rats exposed to (S)-IFP exhibited hepatic lipid peroxidation, liver inflammation and hepatic fibrosis. This study provides useful information and a reference for the biomonitoring and risk assessment of IFP and organophosphorus pesticide exposure.
ESTHER : Gao_2020_Environ.Int_143_105940
PubMedSearch : Gao_2020_Environ.Int_143_105940
PubMedID: 32663714

Title : Chiral organophosphorous pesticides fosthiazate: absolute configuration, stereoselective bioactivity, toxicity, and degradation in vegetables - Li_2020_J.Agric.Food.Chem_68_7609
Author(s) : Li L , Xu JY , Lv B , Kaziem AE , Liu F , Shi HY , Wang M
Ref : Journal of Agricultural and Food Chemistry , 68 :7609 , 2020
Abstract : Fosthiazate is a widely used chiral organophosphorous nematicide with four stereoisomers. The present study systemically assessed the stereoselectivity of fosthiazate for the first time, including absolute configuration confirmation, stereoselective bioactivity toward nematode and aphid, toxicity to honeybees, and the stereoselective degradation in cucumber and pepper under field conditions. The absolute configurations of the four stereoisomers that eluted on the Superchiral IG-3 column were confirmed as (1S,3R)-(-)-fosthiazate, (1S,3S)-(-)-fosthiazate, (1R,3S)-(+)-fosthiazate, and (1R,3R)-(+)-fosthiazate. Compared with other two stereoisomers, (1S,3R)-fosthiazate and (1S,3S)-fosthiazate possess more than 100 times bioactive and 10 times toxic toward the target and non-target organisms, respectively. The molecular docking found that (1S,3R)-fosthiazate and (1S,3S)-fosthiazate had shorter binding distances and lower energies with acetylcholinesterase (AChE) which illuminated the mechanism of the experimental results. In addition, both the high-bioactive stereoisomers had faster degradation rates in cucumber and pepper. Based on the results of bioactivity, toxicity, and degradation behavior, the stereoisomer mixture of (1S,3R)-fosthiazate and (1S,3S)-fosthiazate will be a better option than the racemic fosthiazate to increase the bioactivity and reduce application dosage.
ESTHER : Li_2020_J.Agric.Food.Chem_68_7609
PubMedSearch : Li_2020_J.Agric.Food.Chem_68_7609
PubMedID: 32598147

Title : Modulation of the MAPKs pathways affects Abeta-induced cognitive deficits in Alzheimer's disease via activation of alpha7nAChR - Chang_2020_Neurobiol.Learn.Mem__107154
Author(s) : Chang KW , Zong HF , Yasir Rizvi M , Ma KG , Zhai W , Wang M , Yang WN , Ji SF , Qian YH
Ref : Neurobiol Learn Mem , :107154 , 2020
Abstract : Cognitive impairment in Alzheimer's disease (AD) is characterized by being deficient at learning and memory. Abeta1-42 oligomers have been shown to impair rodent cognitive function. We previously demonstrated that activation of alpha7nAChR, inhibition of p38 or JNK could alleviate Abeta-induced memory deficits in Y maze test. In this study, we investigated whether the effects of alpha7nAChR and MAPKs on Y maze test is reproducible with a hippocampus-dependent spatial memory test such as Morris water maze. We also assessed the possible co-existence of hippocampus-independent recognition memory dysfunction using a novel object recognition test and an alternative and stress free hippocampus-dependent recognition memory test such as the novel place recognition. Besides, previous research from our lab has shown that MAPKs pathways regulate Abeta internalization through mediating alpha7nAChR. In our study, whether MAPKs pathways exert their functions in cognition by modulating alpha7nAChR through regulating glutamate receptors and synaptic protein, remain little known. Our results showed that activation of alpha7nAChR restored spatial memory, novel place recognition memory, and short-term and long-term memory in novel object recognition. Inhibition of p38 restored spatial memory and short-term and long-term memory in novel object recognition. Inhibition of ERK restored short-term memory in novel object recognition and novel place recognition memory. Inhibition of JNK restored spatial memory, short-term memory in novel object recognition and novel place recognition memory. Beside this, the activation of alpha7nAChR, inhibition of p38 or JNK restored Abeta-induced levels of NMDAR1, NMDAR2A, NMDAR2B, GluR1, GluR2 and PSD95 in Abeta-injected mice without influencing synapsin 1. In addition, these treatments also recovered the expression of acetylcholinesterase (AChE). Finally, we found that the inhibition of p38 or JNK resulted in the upregulation of alpha7nAChR mRNA levels in the hippocampus. Our results indicated that inhibition of p38 or JNK MAPKs could alleviate Abeta-induced spatial memory deficits through regulating activation of alpha7nAChR via recovering memory-related proteins. Moreover, p38, ERK and JNK MAPKs exert different functions in spatial and recognition memory.
ESTHER : Chang_2020_Neurobiol.Learn.Mem__107154
PubMedSearch : Chang_2020_Neurobiol.Learn.Mem__107154
PubMedID: 31904546

Title : 14,15-Epoxyeicosatrienoic Acid Alleviates Pathology in a Mouse Model of Alzheimer's Disease - Chen_2020_J.Neurosci_40_8188
Author(s) : Chen W , Wang M , Zhu M , Xiong W , Qin X , Zhu X
Ref : Journal of Neuroscience , 40 :8188 , 2020
Abstract : Alzheimer's disease (AD) is the leading cause of late-onset dementia, and there exists an unmet medical need for effective treatments for AD. The accumulation of neurotoxic amyloid-beta (Abeta) plaques contributes to the pathophysiology of AD. EPHX2 encoding soluble epoxide hydrolase (sEH)-a key enzyme for epoxyeicosatrienoic acid (EET) signaling that is mainly expressed in lysosomes of astrocytes in the adult brain-is cosited at a locus associated with AD, but it is unclear whether and how it contributes to the pathophysiology of AD. In this report, we show that the pharmacologic inhibition of sEH with 1-trifluoromethoxyphenyl- 3-(1-propionylpiperidin-4-yl) urea (TPPU) or the genetic deletion of Ephx2 reduces Abeta deposition in the brains of both male and female familial Alzheimer's disease (5xFAD) model mice. The inhibition of sEH with TPPU or the genetic deletion of Ephx2 alleviated cognitive deficits and prevented astrocyte reactivation in the brains of 6-month-old male 5xFAD mice. 14,15-EET levels in the brains of these mice were also increased by sEH inhibition. In cultured adult astrocytes treated with TPPU or 14,15-EET, astrocyte Abeta clearance was increased through enhanced lysosomal biogenesis. Infusion of 14,15-EET into the hippocampus of 5xFAD mice prevented the aggregation of Abeta. Notably, a higher concentration of 14,15-EET (200 ng/ml) infusion into the hippocampus reversed Abeta deposition in the brains of 6-month-old male 5xFAD mice. These results indicate that EET signaling, especially 14,15-EET, plays a key role in the pathophysiology of AD, and that targeting this pathway is a potential therapeutic strategy for the treatment of AD.SIGNIFICANCE STATEMENT There are limited treatment options for Alzheimer's disease (AD). EPHX2 encoding soluble epoxide hydrolase (sEH) is located at a locus that is linked to late-onset AD, but its contribution to the pathophysiology of AD is unclear. Here, we demonstrate that sEH inhibition or Ephx2 deletion alleviates pathology in familial Alzheimer's disease (5xFAD) mice. Inhibiting sEH or increasing 14,15-epoxyeicosatrienoic acid (EET) enhanced lysosomal biogenesis and amyloid-beta (Abeta) clearance in cultured adult astrocytes. Moreover, the infusion of 14,15-EET into the hippocampus of 5xFAD mice not only prevented the aggregation of Abeta, but also reversed the deposition of Abeta. Thus, 14,15-EET plays a key role in the pathophysiology of AD and therapeutic strategies that target this pathway may be an effective treatment.
ESTHER : Chen_2020_J.Neurosci_40_8188
PubMedSearch : Chen_2020_J.Neurosci_40_8188
PubMedID: 32973044

Title : Characterization of a novel halotolerant esterase from Chromohalobacter canadensis isolated from salt well mine - Wang_2020_3.Biotech_10_430
Author(s) : Wang M , Ai L , Zhang M , Wang F , Wang C
Ref : 3 Biotech , 10 :430 , 2020
Abstract : A esterase gene was characterized from a halophilic bacterium Chromohalobacter canadensis which was originally isolated from a salt well mine. Sequence analysis showed that the esterase, named as EstSHJ2, contained active site serine encompassed by a conserved pentapeptide motif (GSSMG). The EstSHJ2 was classified into a new lipase/esterase family by phylogenetic association analysis. Molecular weight of EstSHJ2 was 26 kDa and the preferred substrate was p-NP butyrate. The EstSHJ2 exhibited a maximum activity at 2.5 M NaCl concentration. Intriguingly, the optimum temperature, pH and stability of EstSHJ2 were related to NaCl concentration. At 2.5 M NaCl concentration, the optimum temperature and pH of EstSHJ2 were 65 C and pH 9.0, and enzyme remained 81% active after 80 C treatment for 2 h. Additionally, the EstSHJ2 showed strong tolerance to metal ions and organic solvents. Among these, 10 mM K(+), Ca(2+) , Mg(2+) and 30% hexane, benzene, toluene has significantly improved activity of EstSHJ2. The EstSHJ2 was the first reported esterase from Chromohalobacter canadensis, and may carry considerable potential for industrial applications under extreme conditions.
ESTHER : Wang_2020_3.Biotech_10_430
PubMedSearch : Wang_2020_3.Biotech_10_430
PubMedID: 32983823
Gene_locus related to this paper: 9gamm-EstSHJ2

Title : Inhibition of acetylcholinesterase activity and beta-amyloid oligomer formation by 6-bromotryptamine A, a multi-target anti-Alzheimer's molecule - Jin_2020_Oncol.Lett_19_1593
Author(s) : Jin X , Wang M , Shentu J , Huang C , Bai Y , Pan H , Zhang D , Yuan Z , Zhang H , Xiao X , Wu X , Ding L , Wang Q , He S , Cui W
Ref : Oncol Lett , 19 :1593 , 2020
Abstract : Alzheimer's disease (AD) is a neurodegenerative disorder characterized by learning and memory impairments. Recent studies have suggested that AD can be induced by multiple factors, such as cholinergic system dysfunction and beta-amyloid (Abeta) neurotoxicity. It was reported that 6-bromo-N-propionyltryptamine could treat neurological diseases, including AD. In the present study, 6-bromotryptamine A, a derivative of 6-bromo-N-propionyltryptamine, was synthesized by the condensation of 2-(6-bromo-1H-indol-3-yl)ethan-1-amine and 2-(4-bromophenyl)acetic acid, and was used as a potential anti-AD molecule. Furthermore, scopolamine can induce impairments of learning and memory, and was widely used to establish AD animal models. The results demonstrated that 6-bromotryptamine A significantly prevented scopolamine-induced short-term cognitive impairments, as revealed by various behavioral tests in mice. Furthermore, an acetylcholinesterase (AChE) activity assay revealed that 6-bromotryptamine A directly inhibited AChE activity. Notably, it was observed that 6-bromotryptamine A blocked the formation of Abeta oligomer, as evaluated by the dot blot assay. All these results suggested that 6-bromotryptamine A may be used to prevent impairments in short-term learning and memory ability possibly via the inhibition of AChE and the blockade of Abeta oligomer formation.
ESTHER : Jin_2020_Oncol.Lett_19_1593
PubMedSearch : Jin_2020_Oncol.Lett_19_1593
PubMedID: 31966085

Title : Cerebrospinal fluid cholinergic biomarkers are associated with postoperative delirium in elderly patients undergoing Total hip\/knee replacement: a prospective cohort study - Lin_2020_BMC.Anesthesiol_20_246
Author(s) : Lin X , Tang J , Liu C , Li X , Cao X , Wang B , Dong R , Xu W , Yu X , Wang M , Bi Y
Ref : BMC Anesthesiol , 20 :246 , 2020
Abstract : BACKGROUND: Postoperative delirium (POD) is a frequent complication after surgery and its occurrence is associated with poor outcomes. The neuropathology of this complication is unclear, but it is important to evaluate relevant biomarkers for postoperative status. The purpose of this study is to explore the relationship between expression levels of cholinergic biomarkers in cerebrospinal fluid (CSF) and the occurrence and development of POD in elderly patients. METHODS: Four hundred and ninety-two elderly patients aged 65 years old or older with elective total hip/knee replacement received combined spinal-epidural anesthesia. Preoperative baseline cognitive function was assessed using the Mini-Mental State Examination (MMSE) before surgery. Each patient was interviewed in post-anesthesia care unit (PACU) and on the first, second, third and seventh (or before discharge) postoperative days. POD was diagnosed using the Confusion Assessment Method (CAM), and POD severity was measured using the Memorial Delirium Assessment Scale (MDAS). Preoperative CSF and plasma choline acetyltransferase (ChAT), acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) levels were determined by ELISA. The levels of ChAT, AChE and BuChE activities were determined by spectrophotometry. RESULTS: POD was detected in 11.4% (51/447) of the patients. AChE, BuChE, ChAT, TNF-alpha and IL-6 concentrations in CSF and plasma have higher consistency. In preoperative CSF and preoperative and postoperative plasma, down-regulation of the concentration and activity of AChE and BuChE as well as up-regulation of the concentration and activity of ChAT and the concentrations of IL-6 and TNF-alpha were observed in patients who developed POD, and the decrease in BuChE was the most obvious. Logistic analysis showed the activities of ChAT, AChE and BuChE in CSF were still related to POD after adjusting for related factors such as sex, age, years of education, height, weight, body mass index (BMI), and American Society of Anesthesiologists (ASA) class. Receiver Operating Characteristic (ROC) curve analysis was conducted to determine the Area Under Curve (AUC) of AChE, BuChE and ChAT activity in CSF was 0.679 (P < 0.01), 0.940 (P < 0.01) and 0.819 (P < 0.01) respectively and found that BuChE activity had the most accurate diagnostic value. CONCLUSION: The changes in preoperative activity of AChE, BuChE and ChAT in CSF were associated with the development of POD in elderly patients, and BuChE activity had the greatest diagnostic value, which may be related to central cholinergic degradation. These cholinergic biomarkers might participate in the neuropathology of POD, pending further investigations. TRIAL REGISTRATION: This study was registered at Chictr.org.cn (NO. ChiCTR1900023729 ) June 9th, 2019. (Retrospectively registered).
ESTHER : Lin_2020_BMC.Anesthesiol_20_246
PubMedSearch : Lin_2020_BMC.Anesthesiol_20_246
PubMedID: 32988381

Title : GDSL esterase\/lipases OsGELP34 and OsGELP110\/OsGELP115 are essential for rice pollen development - Zhang_2020_J.Integr.Plant.Biol__
Author(s) : Zhang H , Wang M , Li Y , Yan W , Chang Z , Ni H , Chen Z , Wu J , Xu C , Deng XW , Tang X
Ref : J Integr Plant Biol , : , 2020
Abstract : Pollen exine contains complex biopolymers of aliphatic lipids and phenolics. Abnormal development of pollen exine often leads to plant sterility. Molecular mechanisms regulating exine formation have been studied extensively but remain ambiguous. Here we report the analyses of three GDSL esterase/lipase protein genes, OsGELP34, OsGELP110, and OsGELP115, for rice exine formation. OsGELP34 was identified by cloning of a male sterile mutant gene. OsGELP34 encodes an endoplasmic reticulum protein and was mainly expressed in anthers during pollen exine formation. osgelp34 mutant displayed abnormal exine and altered expression of a number of key genes required for pollen development. OsGELP110 was previously identified as a gene differentially expressed in meiotic anthers. OsGELP110 was most homologous to OsGELP115, and the two genes showed similar gene expression patterns. Both OsGELP110 and OsGELP115 proteins were localized in peroxisomes. Individual knockout of OsGELP110 and OsGELP115 did not affect the plant fertility, but double knockout of both genes altered the exine structure and rendered the plant male sterile. OsGELP34 is distant from OsGELP110 and OsGELP115 in sequence, and osgelp34 and osgelp110/osgelp115 mutants were different in anther morphology despite both were male sterile. These results suggested that OsGELP34 and OsGELP110/OsGELP115 catalyze different compounds for pollen exine development. This article is protected by copyright. All rights reserved.
ESTHER : Zhang_2020_J.Integr.Plant.Biol__
PubMedSearch : Zhang_2020_J.Integr.Plant.Biol__
PubMedID: 32068333

Title : A Review of the Pharmacological Properties of Psoralen - Ren_2020_Front.Pharmacol_11_571535
Author(s) : Ren Y , Song X , Tan L , Guo C , Wang M , Liu H , Cao Z , Li Y , Peng C
Ref : Front Pharmacol , 11 :571535 , 2020
Abstract : Psoralen is the principal bioactive component in the dried fruits of Cullen corylifolium (L.) Medik (syn. Psoralea corylifolia L), termed "Buguzhi" in traditional Chinese medicine (TCM). Recent studies have demonstrated that psoralen displays multiple bioactive properties, beneficial for the treatment of osteoporosis, tumors, viruses, bacteria, and inflammation. The present review focuses on the research evidence relating to the properties of psoralen gathered over recent years. Firstly, multiple studies have demonstrated that psoralen exerts strong anti-osteoporotic effects via regulation of osteoblast/osteoclast/chondrocyte differentiation or activation due to the participation in multiple molecular mechanisms of the wnt/beta-catenin, bone morphogenetic protein (BMP), inositol-requiring enzyme 1 (IRE1)/apoptosis signaling kinase 1 (ASK1)/c-jun N-terminal kinase (JNK) and the Protein Kinase B(AKT)/activator protein-1 (AP-1) axis, and the expression of miR-488, peroxisome proliferators-activated receptor-gamma (PPARgamma), and matrix metalloproteinases (MMPs). In addition, the antitumor properties of psoralen are associated with the induction of ER stress-related cell death via enhancement of PERK: Pancreatic Endoplasmic Reticulum Kinase (PERK)/activating transcription factor (ATF), 78kD glucose-regulated protein (GRP78)/C/EBP homologous protein (CHOP), and 94kD glucose-regulated protein (GRP94)/CHOP signaling, and inhibition of P-glycoprotein (P-gp) or ATPase that overcomes multidrug resistance. Furthermore, multiple articles have shown that the antibacterial, anti-inflammatory and neuroprotective effects of psoralen are a result of its interaction with viral polymerase (Pol), destroying the formation of biofilm, and regulating the activation of tumor necrosis factor alpha (TNF-alpha), transforming growth factor beta (TGF-beta), interleukin 4/5/6/8/12/13 (IL-4/5/6/8/12/13), GATA-3, acetylcholinesterase (AChE), and the hypothalamic-pituitary-adrenal (HPA) axis. Finally, the toxic effects and mechanisms of action of psoralen have also been reviewed.
ESTHER : Ren_2020_Front.Pharmacol_11_571535
PubMedSearch : Ren_2020_Front.Pharmacol_11_571535
PubMedID: 33013413

Title : Increased cross-linking micelle retention in the brain of Alzheimer's disease mice by elevated asparagine endopeptidase protease responsive aggregation - Ren_2020_Biomater.Sci_8_6533
Author(s) : Ren J , Jiang F , Wang M , Hu H , Zhang B , Chen L , Dai F
Ref : Biomater Sci , 8 :6533 , 2020
Abstract : Current forms of medication for Alzheimer's disease (AD) provide a symptomatic benefit limited to those with early onset, but there is no single drug available for later stage patients. Given the recent failures of AD drugs in clinical trials, an intensive treatment strategy based on drug combination that is approved is attractive. At present, the greatest difficulty lies in the low accumulation of drugs in the brain. All hydrophilic drugs are limited by the physical and biochemical barriers within the blood-brain barrier and lipophilic drugs are often transported back into the blood by efflux pumps located in the blood-brain barrier. Here, we select elevated asparagine endopeptidase (AEP) as a target to trigger in situ cross-linking of small sized particles to form large sized drug clusters to block the efflux of the brain. Subsequently, responsive cross-linking micelles (RCMs) loaded with the acetylcholinesterase inhibitor, donepezil (DON), the microtubule therapeutic agent, Paclitaxel (PTX), and the glucose metabolism disorder regulator, insulin (INS) are investigated, with a focus on high levels of drug accumulation in the brain in AD. These smart multi-drug delivery RCMs provide a powerful system for AD treatment and can be adapted for other central nervous system (CNS) disorders.
ESTHER : Ren_2020_Biomater.Sci_8_6533
PubMedSearch : Ren_2020_Biomater.Sci_8_6533
PubMedID: 33111725

Title : Hyperbaric oxygen therapy may be effective to improve hypoxemia in patients with severe COVID-2019 pneumonia: two case reports - Guo_2020_Undersea.Hyperb.Med_47_181
Author(s) : Guo D , Pan S , Wang M , Guo Y
Ref : Undersea Hyperb Med , 47 :181 , 2020
Abstract : Objectives: To determine whether hyperbaric oxygen (HBO2) therapy be effective to improve hypoxemia for severe COVID-19 pneumonia patients. Methods: Two male patients ages 57 and 64 years old were treated. Each met at least one of the following criteria: shortness of breath; respiratory rate (RR) >/=30 breaths/minute; finger pulse oxygen saturation (SpO2)
ESTHER : Guo_2020_Undersea.Hyperb.Med_47_181
PubMedSearch : Guo_2020_Undersea.Hyperb.Med_47_181
PubMedID: 32574433

Title : Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro -
Author(s) : Wang M , Cao R , Zhang L , Yang X , Liu J , Xu M , Shi Z , Hu Z , Zhong W , Xiao G
Ref : Cell Res , 30 :269 , 2020
PubMedID: 32020029

Title : Identifying genes for resistant starch, slowly digestible starch, and rapidly digestible starch in rice using genome-wide association studies - Zhang_2020_Genes.Genomics_42_1227
Author(s) : Zhang N , Wang M , Fu J , Shen Y , Ding Y , Wu D , Shu X , Song W
Ref : Genes Genomics , 42 :1227 , 2020
Abstract : BACKGROUND: The digestibility of starch is important for the nutritive value of staple food. Although several genes are responsible for resistant starch (RS) and slowly digestible starch (SDS), gaps persist concerning the molecular basis of RS and SDS formation due to the complex genetic mechanisms of starch digestibility. OBJECTIVES: The objective of this study was to identify new genes for starch digestibility in rice and interprete the genetic mechanisms of RS and SDS by GWAS. METHODS: Genome-wide association studies were conducted by associating the RS and SDS phenotypes of 104 re-sequenced rice lines to an SNP dataset of 2,288,867 sites using a compressed mixed linear model. Candidate genes were identified according to the position of the SNPs based on data from the MSU Rice Genome Annotation Project. RESULTS: Seven quantitative trait loci (QTLs) were detected to be associated with the RS content, among which the SNP 6 m1765761 was located on Waxy. Starch branching enzymes IIa (BEIIa) close to QTL qRS-I4 was detected and further identified as a specific candidate gene for RS in INDICA. Two QTLs were associated with SDS, and the LOC_Os09g09360 encoding lipase was identified as a causal gene for SDS. CONCLUSIONS: GWAS is a valid strategy to genetically dissect the formation of starch digestion properties in rice. RS formation in grains is dependent on the rice type; lipid might also contribute to starch digestibility and should be an alternative factor to improve rice starch digestibility.
ESTHER : Zhang_2020_Genes.Genomics_42_1227
PubMedSearch : Zhang_2020_Genes.Genomics_42_1227
PubMedID: 32901332

Title : The Anti-inflammatory Effect of Soluble Epoxide Hydrolase Inhibitor and 14, 15-EET in Kawasaki Disease Through PPARgamma\/STAT1 Signaling Pathway - Dai_2020_Front.Pediatr_8_451
Author(s) : Dai N , Yang C , Fan Q , Wang M , Liu X , Zhao H , Zhao C
Ref : Front Pediatr , 8 :451 , 2020
Abstract : Soluble epoxide hydrolase (sEH) is responsible for rapid degradation of 14, 15-EET, which is one of the isomers of EETs and plays an important role in cardiovascular diseases. In this study, we investigated the mechanism by which sEH inhibitor AUDA played an anti-inflammatory effect in HCAECs. Our results indicated that AUDA treatment promoted PPARgamma expression, while knockdown of PPARgamma blocked the cell growth and STAT1 expression inhibition induced by 100 mumol/L AUDA in HCAECs. AUDA also inhibited the overexpression of TNF-alpha, IL-1 beta, and MMP-9 induced by KD sera in HCAECs. Moreover, 30 blood samples from children with Kawasaki disease (KD) were collected with 30 healthy children as the control group. QPCR and ELISA assays were used to detect the level of 14, 15-EET, TNF-alpha, IL-1beta, and MMP-9. We found that the level of 14, 15-EET was higher in peripheral blood of children with KD compared with healthy controls (P < 0.05). In comparison to KD children with non-coronary artery lesion (nCAL), the level of 14, 15-EET was higher in peripheral blood of KD children with coronary artery lesion (CAL) (P < 0.05). Compared with healthy control group, the expression levels of TNF-alpha, IL-1beta, and MMP-9 in patients with KD were significantly up-regulated. Compared with nCAL KD children, the expression levels of TNF-alpha, IL-1beta, and MMP-9 in CAL children were abnormally high (P < 0.05). Our study indicated that AUDA played an anti-inflammatory effect in HCAECs through PPARgamma/STAT1 signaling pathway, and 14, 15-EET is up-regulated in children with KD, suggesting that 14, 15-EET involved in the progression of KD.
ESTHER : Dai_2020_Front.Pediatr_8_451
PubMedSearch : Dai_2020_Front.Pediatr_8_451
PubMedID: 32903307

Title : Biological evaluation of 7-O-amide hesperetin derivatives as multitarget-directed ligands for the treatment of Alzheimer's disease - Wu_2020_Chem.Biol.Interact_334_109350
Author(s) : Wu M , Zhu X , Zhang Y , Wang M , Liu T , Han J , Li J , Li Z
Ref : Chemico-Biological Interactions , 334 :109350 , 2020
Abstract : A series of 7-O-amide hesperetin derivatives were subjected to multi-target biological evaluation of anti-Alzheimer's disease. Most of the compounds showed good in vitro inhibitory activity against cholinesterase, of which compound 7c (7-O-(4-(morpholinoethyl)-acetamide) hesperetin) was the most effective anti-eqBuChE derivative (IC(50) = 0.28 +/- 0.05 M) and exerted neuroprotective effects. Further biological evaluation found that compounds 4d, 4e and 7c showed strong antioxidant, anti-Abeta self-aggregation and anti-neuroinflammatory activities. Compound 7c could inhibit the expression of iNOS and COX-2 proteins and prevent LPS-induced inflammatory response in BV2 cells. In addition, compound 7c could chelate biometal ions such as Cu(2+) and Zn(2+). In the vivo study, the MWM test confirmed that compound 7c could improve the cognitive impairment caused by scopolamine. In summary, the above studies have shown that the optimized compound 7c has great development potential as MTDL for the treatment of AD.
ESTHER : Wu_2020_Chem.Biol.Interact_334_109350
PubMedSearch : Wu_2020_Chem.Biol.Interact_334_109350
PubMedID: 33307048

Title : A potential biomarker of isofenphos-methyl in humans: A chiral view - Gao_2019_Environ.Int_127_694
Author(s) : Gao B , Zhao S , Zhang Z , Li L , Hu K , Kaziem AE , He Z , Hua X , Shi H , Wang M
Ref : Environ Int , 127 :694 , 2019
Abstract : Isofenphos-methyl (IFP) is a very active and persistent chiral insecticide. However, IFP has lower activity against acetylcholinesterases (AChEs). Previously, it was confirmed that phosphorothioate organophosphorus pesticides with N-alkyl (POPN) require activation by oxidative desulfuration and N-dealkylation. In this work, we demonstrated that IFP could be metabolized in human liver microsomes to isofenphos-methyl oxon (IFPO, 52.7%), isocarbophos (ICP, 14.2%) and isocarbophos oxon (ICPO, 11.2%). It was found that (R)-IFP was preferentially degraded compared to the (S)-enantiomer, and the enantiomeric fraction (EF) value reached 0.61 at 60min. However, (S)-enantiomers of the three metabolites, were degraded preferentially, and the EF values ranged from 0.34 to 0.45. Cytochrome P450 (CYP) isoforms CYP3A4, CYP2E1, and CYP1A2 and carboxylesterase enzyme have an essential role in the enantioselective metabolism of IFP; but, the enzymes that participate in the degradation of IFP metabolites are different. The AChE inhibition bioassay indicated that ICPO is the only effective inhibitor of AChE. The covalent molecular docking has proposed that the metabolites of IFP and its analogs after N-dealkylation and oxidative desulfuration will possess the highest inhibitory activity against AChE. This study is the first to demonstrate that ICPO can be regarded as a potential biomarker for the biomonitoring of IFP and ICP exposure in humans.
ESTHER : Gao_2019_Environ.Int_127_694
PubMedSearch : Gao_2019_Environ.Int_127_694
PubMedID: 30991225

Title : Single and joint oxidative stress-related toxicity of sediment-associated cadmium and lead on Bellamya aeruginosa - Liu_2019_Environ.Sci.Pollut.Res.Int_26_24695
Author(s) : Liu X , Chen Q , Ali N , Zhang J , Wang M , Wang Z
Ref : Environ Sci Pollut Res Int , 26 :24695 , 2019
Abstract : The biotoxicity of heavy metals in sediments toward benthic organisms has evoked great concern for the health of freshwater ecosystems. This study applied a sediment toxicity testing protocol to investigate the single and joint toxicity of cadmium (Cd) and lead (Pb) on Bellamya aeruginosa. B. aeruginosa were exposed to different concentrations of Cd (5, 25, and 100 mg/kg), Pb (20, 100, and 400 mg/kg), and their different concentration combinations. A suite of biomarkers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), metallothionein (MT), malondialdehyde (MDA), and acetylcholinesterase (AChE), were measured after 7, 14, 21, and 28 days of exposure to evaluate their oxidative stress status. Cell apoptosis of soft tissue was also determined after exposure. Results revealed that these endpoints represented sensitive biomarkers for the characterization of the oxidative stress response induced by these metals. Specifically, a decrease of SOD and GPx and an increase of MDA were indicative of the potential failure of the antioxidant defense system in neutralizing the reactive oxygen species (ROS) generated in the exposure of the Pb-treated group. The integrated biomarker response (IBR) index revealed the most significant sub-lethal toxicity for Pb-spiked sediments, leading to the highest rate of cell apoptosis (70.8%). Exposure to Cd resulted in a time- and dose-dependent effect on MT levels, which suggested active detoxification of this metal. Exposure to the mixture resulted in amelioration of Pb toxicity, likely due to the competitive binding of Cd to active enzyme, with the result of an observed antagonistic interaction. This study indicated that B. aeruginosa represents a good biomonitor for assessing Cd and Pb contamination of sediments, and laid the foundation for their potential risk assessments in freshwater ecosystems.
ESTHER : Liu_2019_Environ.Sci.Pollut.Res.Int_26_24695
PubMedSearch : Liu_2019_Environ.Sci.Pollut.Res.Int_26_24695
PubMedID: 31240645

Title : Design, synthesis, and biological evaluation of rutacecarpine derivatives as multitarget-directed ligands for the treatment of Alzheimer's disease - Wu_2019_Eur.J.Med.Chem_177_198
Author(s) : Wu M , Ma J , Ji L , Wang M , Han J , Li Z
Ref : Eur Journal of Medicinal Chemistry , 177 :198 , 2019
Abstract : A series of 3-amino-substituted rutacecarpine derivatives were synthesized to identify novel multitarget-directed ligands (MTDLs) for the treatment of Alzheimer's disease (AD). Biological evaluation showed that most of the synthesized compounds inhibited butyrylcholinesterase (BuChE) and exerted antioxidant effects. Among the synthesized compounds, 6n was subjected to further biological evaluation. Lineweaver-Burk plotting and molecular modeling illustrated that 6n bound simultaneously to the peripheral anionic site (PAS) and catalytic sites (CAS) of BuChE. Furthermore, 6n modulated Abeta aggregation; chelated biometals; presented good absorption, distribution, metabolism, excretion, and toxicity properties; and showed remarkable neuroprotective activity. Previous research has shown that the optimized compound 6n has considerable potential for development as an MTDL for the treatment of AD.
ESTHER : Wu_2019_Eur.J.Med.Chem_177_198
PubMedSearch : Wu_2019_Eur.J.Med.Chem_177_198
PubMedID: 31136894

Title : Rapid colorimetric determination of the pesticides carbofuran and dichlorvos by exploiting their inhibitory effect on the aggregation of peroxidase-mimicking platinum nanoparticles - Cao_2019_Mikrochim.Acta_186_390
Author(s) : Cao J , Wang M , She Y , El-Aty AMA , Hacimuftuoglu A , Wang J , Yan M , Hong S , Lao S , Wang Y
Ref : Mikrochim Acta , 186 :390 , 2019
Abstract : A novel and highly sensitive enzyme inhibition assay was developed for the rapid detection of the organophosphate pesticide dichlorvos and the carbamate pesticide carbofuran. It achieves signal amplification by the secondary catalysis of platinum nanoparticles. Acetylcholinesterase (AChE) is capable of catalyzing the hydrolysis of acetylthiocholine to form thiocholine. Thiocholine causes the aggregation of citrate-capped platinum nanoparticles which then lose their peroxidase-mimicking properties. After addition of pesticides, the activity of AChE is inhibited, less thiocholine is produced, less aggregation occurs, and the peroxidase-mimetic properties are increasingly retained. In the presence of tetramethylbenzidine and H2O2, a deep blue coloration with an absorption maximum at 650 nm will be formed. The assay was applied to the determination of dichlorvos and carbofuran, and detection limits of 2.3 mug.L(-1) and 1.4 mug.L(-1) were obtained, respectively. Recovery experiments with spiked tap water and pears gave satisfactory relative standard deviations. Graphical abstract The blue product formed by platinum nanoparticle-catalyzed oxidation of 3,3'5,5'-tetramethylbenzidine (TMB) by H2O2 is reduced if acetylthiocholine (ATCh) is hydrolyzed by acetylcholinesterase (AChE) to form thiocholine. However, if AChE is inhibited by pesticides, color formation will recover.
ESTHER : Cao_2019_Mikrochim.Acta_186_390
PubMedSearch : Cao_2019_Mikrochim.Acta_186_390
PubMedID: 31152243

Title : Spectroscopic and molecular modeling investigation on inhibition effect of nitroaromatic compounds on acetylcholinesterase activity - Chen_2019_Chemosphere_236_124365
Author(s) : Chen Y , Wang M , Fu H , Qu X , Zhang Z , Kang F , Zhu D
Ref : Chemosphere , 236 :124365 , 2019
Abstract : Nitroaromatic compounds (NACs) are widely distributed in the environment and are considered toxic or carcinogenic. However, little attention has been paid to the binding interactions between NACs and biomacromolecules (e.g., proteins). Here we investigated the effects of three model NACs, nitrobenzene (NB), 1,3-dinitrobenzene (DNB), and 1,3,5-trinitrobenzene (TNB), on the activity of acetylcholinesterase (AChE). The presence of NACs (up to 0.5mM) effectively suppressed the AChE-catalyzed hydrolysis of acetylthiocholine iodide, with the suppression effect increasing with the nitro-group substitution (TNB>DNB>NB). Consistently, the UV absorption of AChE at 206nm arising from the skeleton structure decreased by the addition NACs, and the decrease exhibited the same compound sequence, reflecting the perturbing interactions with the skeleton enzyme structure. However, no changes were made on the secondary structure of AChE, as evidenced by the circular dichroism analysis. The fluorescence quenching analysis of AChE demonstrated that NB and DNB interacted with both tryptophan (Trp) and tyrosine (Tyr) residues, whereas TNB interacted only with Trp. The UV absorption and fluorescence quenching analyses both reflected that the interactions with the non-skeleton aromatic amino acids were weak. (1)H NMR analysis confirmed the strong pi-pi coupling interactions between TNB and model Trp. Molecular simulation indicated that the DNB or TNB molecule was sandwiched between Trp84 and Phe330 at the catalytic site via pi-pi coupling interactions. The findings highlight the importance of specific interactions of NACs with proteins to cause them to malfunction.
ESTHER : Chen_2019_Chemosphere_236_124365
PubMedSearch : Chen_2019_Chemosphere_236_124365
PubMedID: 31325829

Title : Insights into the improvement of the enzymatic hydrolysis of bovine bone protein using lipase pretreatment - Yao_2019_Food.Chem_302_125199
Author(s) : Yao Y , Wang M , Liu Y , Han L , Liu X
Ref : Food Chem , 302 :125199 , 2019
Abstract : Animal bones are a high-quality source of protein and comprehensive nutrients and improper handling can cause resource wasting and environmental issues. Pretreatment before enzymatic hydrolysis of bone could significantly improve the enzymolytic efficiency, which is an essential step to achieve high value-added utilization of bones. This study investigated the effect of lipase pretreatment on the enzymatic hydrolysis of bones. The degree of hydrolysis after lipase pretreatment was 12.58%, which was 8.19% higher than that without pretreatment. Lipase pretreatment was optimal at 9% substrate concentration and initial pH 7.5, with 0.08% lipase, followed by 4h incubation at 40 degrees C. Mechanism analysis indicated that lipase pretreatment improved the enzymolytic efficiency by significantly decreasing the lipid content, and changing the surface structure and surface element content of C, N, and O, promoting the attachment of alkaline protease onto the sample. Overall, lipase pretreatment was an effective method to reduce the costs of production.
ESTHER : Yao_2019_Food.Chem_302_125199
PubMedSearch : Yao_2019_Food.Chem_302_125199
PubMedID: 31400699

Title : Dental malocclusion stimulates neuromuscular circuits associated with temporomandibular disorders - Liu_2018_Eur.J.Oral.Sci_126_466
Author(s) : Liu X , Zhang C , Liu Q , Zhou K , Yin N , Zhang H , Shi M , Wang M
Ref : Eur J Oral Sci , 126 :466 , 2018
Abstract : Unilateral anterior crossbite (UAC) has been demonstrated to cause masseter hyperactivity via the periodontal trigeminal mesencephalic nucleus (Vme)-trigeminal motor nucleus circuit. Here, we studied activation of motor neurons of the facial nucleus (VII), hypoglossal nucleus (XII), nucleus ambiguus (Amb), and spinal nucleus of the accessory nerve (SNA) in rats with UAC via their similar connections with Vme. An anterograde tracer, biotinylated dextran amine (BDA), was injected into the Vme to identify the central axon terminals around the motor neurons of VII, XII, Amb, and SNA. The expression of vesicular glutamate transporter 1 (VGLUT1) in neurons of VII, XII, Amb, and SNA, and the expression of acetylcholinesterase (AChE) were measured in the stapedius, lingualis, palatopharyngeal, and sternocleidomastoid muscles. In BDA-treated rats, many BDA-labeled cell bodies in the Vme and terminals in VII, XII, Amb, and SNA were identified. Compared with control rats, rats with UAC showed higher expression of VGLUT1 in these nuclei, and statistically significantly higher expression of AChE in the stapedius, lingualis, and sternocleidomastoid muscles, but not in the palatopharyngeal muscle. These findings suggest that UAC activates orofacial, head, and cervical multimotor behaviors via connections between the Vme and the corresponding motor nuclei.
ESTHER : Liu_2018_Eur.J.Oral.Sci_126_466
PubMedSearch : Liu_2018_Eur.J.Oral.Sci_126_466
PubMedID: 30341927

Title : Synthesis and biological evaluation of new tetramethylpyrazine-based chalcone derivatives as potential anti-Alzheimer agents - Wang_2018_Chem.Biol.Drug.Des_92_1859
Author(s) : Wang M , Qin HL , Leng J , Ameeduzzafar , Amjad MW , Raja MAG , Hussain MA , Bukhari SNA
Ref : Chemical Biology Drug Des , 92 :1859 , 2018
Abstract : In the current study, a series of new ligustrazine-based chalcones was synthesized. For insertion of tetramethylpyrazine (TMP, also designated as ligustrazine) in chemical backbone of chalcone, a new ligustrazine-based aldehyde was prepared. New ketones were synthesized for inclusion of quinazolin-4-yl amino and pyrazin-2-yl amino moieties. The newly synthesized compounds were screened for acetylcholinesterase, butyrylcholinesterase, and monoamine oxidases (MAO) inhibitory activities and also for in vitro cytotoxicity on PC12 cells. The effect of these compounds against amyloid beta-induced cytotoxicity and aggregation was also investigated. The synthesized compounds effectively inhibited the related enzymes and also exhibited neuroprotective effects. Most of the compounds displayed better inhibitory potencies against Abeta aggregation than reference compounds. Some compounds such as 11e and 16b showed very potent effects on multiple targets exhibiting behavior as multifunctional anti-Alzheimer agents.
ESTHER : Wang_2018_Chem.Biol.Drug.Des_92_1859
PubMedSearch : Wang_2018_Chem.Biol.Drug.Des_92_1859
PubMedID: 29923315

Title : Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists - Martino_2018_New.Phytol_217_1213
Author(s) : Martino E , Morin E , Grelet GA , Kuo A , Kohler A , Daghino S , Barry KW , Cichocki N , Clum A , Dockter RB , Hainaut M , Kuo RC , LaButti K , Lindahl BD , Lindquist EA , Lipzen A , Khouja HR , Magnuson J , Murat C , Ohm RA , Singer SW , Spatafora JW , Wang M , Veneault-Fourrey C , Henrissat B , Grigoriev IV , Martin FM , Perotto S
Ref : New Phytol , 217 :1213 , 2018
Abstract : Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes.
ESTHER : Martino_2018_New.Phytol_217_1213
PubMedSearch : Martino_2018_New.Phytol_217_1213
PubMedID: 29315638
Gene_locus related to this paper: amore-a0a2t3axk4 , amore-a0a2t3avs4 , amore-a0a2t3ay04 , amore-a0a2t3aph0

Title : Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle - Murat_2018_Nat.Ecol.Evol_2_1956
Author(s) : Murat C , Payen T , Noel B , Kuo A , Morin E , Chen J , Kohler A , Krizsan K , Balestrini R , Da Silva C , Montanini B , Hainaut M , Levati E , Barry KW , Belfiori B , Cichocki N , Clum A , Dockter RB , Fauchery L , Guy J , Iotti M , Le Tacon F , Lindquist EA , Lipzen A , Malagnac F , Mello A , Molinier V , Miyauchi S , Poulain J , Riccioni C , Rubini A , Sitrit Y , Splivallo R , Traeger S , Wang M , Zifcakova L , Wipf D , Zambonelli A , Paolocci F , Nowrousian M , Ottonello S , Baldrian P , Spatafora JW , Henrissat B , Nagy LG , Aury JM , Wincker P , Grigoriev IV , Bonfante P , Martin FM
Ref : Nat Ecol Evol , 2 :1956 , 2018
Abstract : Tuberaceae is one of the most diverse lineages of symbiotic truffle-forming fungi. To understand the molecular underpinning of the ectomycorrhizal truffle lifestyle, we compared the genomes of Piedmont white truffle (Tuber magnatum), Perigord black truffle (Tuber melanosporum), Burgundy truffle (Tuber aestivum), pig truffle (Choiromyces venosus) and desert truffle (Terfezia boudieri) to saprotrophic Pezizomycetes. Reconstructed gene duplication/loss histories along a time-calibrated phylogeny of Ascomycetes revealed that Tuberaceae-specific traits may be related to a higher gene diversification rate. Genomic features in Tuber species appear to be very similar, with high transposon content, few genes coding lignocellulose-degrading enzymes, a substantial set of lineage-specific fruiting-body-upregulated genes and high expression of genes involved in volatile organic compound metabolism. Developmental and metabolic pathways expressed in ectomycorrhizae and fruiting bodies of T. magnatum and T. melanosporum are unexpectedly very similar, owing to the fact that they diverged ~100 Ma. Volatile organic compounds from pungent truffle odours are not the products of Tuber-specific gene innovations, but rely on the differential expression of an existing gene repertoire. These genomic resources will help to address fundamental questions in the evolution of the truffle lifestyle and the ecology of fungi that have been praised as food delicacies for centuries.
ESTHER : Murat_2018_Nat.Ecol.Evol_2_1956
PubMedSearch : Murat_2018_Nat.Ecol.Evol_2_1956
PubMedID: 30420746
Gene_locus related to this paper: 9pezi-a0a3n4l4q5 , 9pezi-a0a3n4lpg7

Title : Epidemiology of Dementia in Elderly Chronic Obstructive Pulmonary Disease Patients Living in China's Northwestern High-Elevation Area - Mei_2018_Med.Sci.Monit_24_7742
Author(s) : Mei L , Wu S , Wang D , Li H , Zhang H , Wang M
Ref : Med Sci Monit , 24 :7742 , 2018
Abstract : BACKGROUND The aim of this study was to investigate the effects of oxygen and cholinesterase inhibitor (donepezil) therapy on dementia in patients with age-exacerbated chronic obstructive pulmonary disease (COPD) in China's northwestern high-altitude area. MATERIAL AND METHODS A total of 145 patients with acute exacerbation of COPD admitted to the Gerontology Department of the First People's Hospital of Xining City were initially retrospectively screened. From among these 145 patients, we selected 33 cases with dementia and 33 patients without dementia through use of the Mini-Mental State Examination (MMSE), the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), and Activities of Daily Living (ADL) Scale evaluated before, 7 days after, and at the end of the treatment after 3 months. Both patient groups received oxygen therapy for 7 days, but patients with dementia in the intervention group were medicated additionally with donepezil (5 mg/day for 1 week, followed by 10 mg/day for another 12 weeks). RESULTS Mild dementia was found in 35 of the 145 COPD patients. ADL, MMSE, and ADAS-Cog scores were all significantly lower in the intervention group before treatment, improved after the first 7 days, and continued to improve significantly until week 12 in the intervention group, but were still significantly lower than in the control group. CONCLUSIONS Dementia in elderly COPD patients was mainly manifested as decreased executive function, attention, language, and delayed recall, while oxygen and donepezil therapy had beneficial effects on the symptoms.
ESTHER : Mei_2018_Med.Sci.Monit_24_7742
PubMedSearch : Mei_2018_Med.Sci.Monit_24_7742
PubMedID: 30372705

Title : Transfection of neurotrophin-3 into neural stem cells using ultrasound with microbubbles to treat denervated muscle atrophy - Gong_2018_Exp.Ther.Med_15_620
Author(s) : Gong L , Jiang C , Liu L , Wan S , Tan W , Ma S , Jia X , Wang M , Hu A , Shi Y , Zhang Y , Shen Y , Wang F , Chen Y
Ref : Exp Ther Med , 15 :620 , 2018
Abstract : Neurotrophin-3 (NT-3) has potential as a therapeutic agent for the treatment of patients with denervated muscle atrophy. However, the endogenous secretion of NT-3 is low and exogenous NT-3 lacks sufficient time to accumulate due to its short half-life. The transfection of NT-3 has been demonstrated to have a beneficial effect on denervated muscle and motor endplates. Neural stem cells (NSCs) differentiate into neurons and form motor endplate nerve-muscle connections. It has been previously demonstrated that local and noninvasive transfection can be performed using ultrasound with microbubbles (MBs). In the current study, hematoxylin and eosin, acetylcholinesterase and gold chloride staining, as well as transmission electron microscopy, were performed to verify the effects of this treatment strategy. The results demonstrated that using ultrasound with MBs for the transfection of NT-3 into NSCs, and their subsequent transplantation in vivo, attenuated the atrophy of denervated muscle and reduced motor endplate degeneration. This noninvasive, efficient and targeted treatment strategy may therefore be a potential treatment for patients with denervated muscle atrophy.
ESTHER : Gong_2018_Exp.Ther.Med_15_620
PubMedSearch : Gong_2018_Exp.Ther.Med_15_620
PubMedID: 29403547

Title : Expression, functional analysis and mutation of a novel neutral zearalenone-degrading enzyme - Wang_2018_Int.J.Biol.Macromol_118_1284
Author(s) : Wang M , Yin L , Hu H , Selvaraj JN , Zhou Y , Zhang G
Ref : Int J Biol Macromol , 118 :1284 , 2018
Abstract : The crops and grains were often contaminated by high level of mycotoxin zearalenone (ZEN). In order to remove ZEN and keep food safe, ZEN-degrading or detoxifying enzymes are urgently needed. Here, a newly identified lactonohydrolase responsible for the detoxification of ZEN, annotated as Zhd518, was expressed and characterized. Zhd518 showed 65% amino acid identity with Zhd101, which was widely studied for its ZEN-degrading ability. A detailed activity measurement method of ZEN-degrading enzyme was provided. Biochemical analysis indicated that the purified recombinant Zhd518 from E. coli exhibited a high activity against ZEN (207.0 U/mg), with the optimal temperature and pH of 40 degreeC and 8.0, respectively. The Zhd518 can degrade ZEN derivatives, and the specific activities against alpha-Zearalenol, beta-Zearalenol, alpha-Zearalanol and beta-Zearalanol were 23.0 U/mg, 64.7 U/mg, 119.8 U/mg and 66.5 U/mg, respectively. The active sites of Zhd518 were predicted by structure modeling and determined by mutation analysis. A point mutant N156H exhibited 3.3-fold activity against alpha-Zearalenol comparing to Zhd518. Zhd518 is the first reported neutral and the second characterized ZEN-degrading enzyme, which provides a new and more excellent candidate for ZEN detoxifying in food and feed industry.
ESTHER : Wang_2018_Int.J.Biol.Macromol_118_1284
PubMedSearch : Wang_2018_Int.J.Biol.Macromol_118_1284
PubMedID: 29949749
Gene_locus related to this paper: 9euro-a0a0d2ilk1

Title : Developmental neurotoxicity of triphenyl phosphate in zebrafish larvae - Shi_2018_Aquat.Toxicol_203_80
Author(s) : Shi Q , Wang M , Shi F , Yang L , Guo Y , Feng C , Liu J , Zhou B
Ref : Aquat Toxicol , 203 :80 , 2018
Abstract : Triphenyl phosphate (TPhP), a typical organophosphate ester, is frequently detected in the environment and biota samples. It has been implicated as a neurotoxin as its structure is similar to neurotoxic organophosphate pesticides. The purpose of the present study was to investigate its potential developmental neurotoxicity in fish by using zebrafish larvae as a model. Zebrafish (Danio rerio) embryos were exposed to 0.8, 4, 20 and 100 mug/L of TPhP from 2 until 144 h post-fertilization. TPhP was found to have high bioconcentrations in zebrafish larvae after exposure. Further, it significantly reduced locomotor activity as well as the heart rate at the 100 mug/L concentration. TPhP exposure significantly altered the content of the neurotransmitters gamma-aminobutyric and histamine. Downregulation of the genes related to central nervous system development (e.g., alpha1-tubulin, mbp, syn2a, shha, and elavl3) as well as the corresponding proteins (e.g., alpha1-tubulin, mbp, and syn2a) was observed, but the gap-43 protein was found to upregulated. Finally, marked inhibition of total acetylcholinesterase activity, which is considered as a biomarker of neurotoxicant exposure, was also observed in the larvae. Our results indicate that exposure to environmentally relevant concentrations of TPhP can affect different parameters related to center nervous system development, and thus contribute to developmental neurotoxicity in early developing zebrafish larvae.
ESTHER : Shi_2018_Aquat.Toxicol_203_80
PubMedSearch : Shi_2018_Aquat.Toxicol_203_80
PubMedID: 30096480

Title : Design, Synthesis, and Biological Evaluation of Orally Available First-Generation Dual-Target Selective Inhibitors of Acetylcholinesterase (AChE) and Phosphodiesterase 5 (PDE5) for the Treatment of Alzheimer's Disease - Mao_2018_ACS.Chem.Neurosci_9_328
Author(s) : Mao F , Wang H , Ni W , Zheng X , Wang M , Bao K , Ling D , Li X , Xu Y , Zhang H , Li J
Ref : ACS Chem Neurosci , 9 :328 , 2018
Abstract : Through drug discovery strategies of repurposing and redeveloping existing drugs, a series of novel tadalafil derivatives were rationally designed, synthesized, and evaluated to seek dual-target AChE/PDE5 inhibitors as good candidate drugs for Alzheimer's disease (AD). Among these derivatives, 1p and 1w exhibited excellent selective dual-target AChE/PDE5 inhibitory activities and improved blood-brain barrier (BBB) penetrability. Importantly, 1w.Cit (citrate of 1w) could reverse the cognitive dysfunction of scopolamine-induced AD mice and exhibited an excellent effect on enhancing cAMP response element-binding protein (CREB) phosphorylation in vivo, a crucial factor in memory formation and synaptic plasticity. Moreover, the molecular docking simulations of 1w with hAChE and hPDE5A confirmed that our design strategy was rational. In summary, our research provides a potential selective dual-target AChE/PDE5 inhibitor as a good candidate drug for the treatment of AD, and it could also be regarded as a small molecule probe to validate the novel AD therapeutic approach in vivo.
ESTHER : Mao_2018_ACS.Chem.Neurosci_9_328
PubMedSearch : Mao_2018_ACS.Chem.Neurosci_9_328
PubMedID: 29068218

Title : Novel Tadalafil Derivatives Ameliorates Scopolamine-Induced Cognitive Impairment in Mice via Inhibition of Acetylcholinesterase (AChE) and Phosphodiesterase 5 (PDE5) - Ni_2018_ACS.Chem.Neurosci_9_1625
Author(s) : Ni W , Wang H , Li X , Zheng X , Wang M , Zhang J , Gong Q , Ling D , Mao F , Zhang H , Li J
Ref : ACS Chem Neurosci , 9 :1625 , 2018
Abstract : On the basis of the drug-repositioning and redeveloping strategy, first-generation dual-target inhibitors of acetylcholinesterase (AChE) and phosphodiesterase 5 (PDE5) have been recently reported as a potentially novel therapeutic method for the treatment of Alzheimer's disease (AD), and the lead compound 2 has proven this method was feasible in AD mouse models. In this study, our work focused on exploring alternative novel tadalafil derivatives (3a-s). Among the 19 analogues, compound 3c exhibited good selective dual-target AChE/PDE5 inhibition and good blood-brain barrier (BBB) permeability. Moreover, its citrate (3c.Cit) possessed improved water solubility and good effects against scopolamine-induced cognitive impairment with inhibition of cortical AChE activities and enhancement of cAMP response element-binding protein (CREB) phosphorylation ex vivo.
ESTHER : Ni_2018_ACS.Chem.Neurosci_9_1625
PubMedSearch : Ni_2018_ACS.Chem.Neurosci_9_1625
PubMedID: 29616790

Title : Integrative visual omics of the white-rot fungus Polyporus brumalis exposes the biotechnological potential of its oxidative enzymes for delignifying raw plant biomass - Miyauchi_2018_Biotechnol.Biofuels_11_201
Author(s) : Miyauchi S , Rancon A , Drula E , Hage H , Chaduli D , Favel A , Grisel S , Henrissat B , Herpoel-Gimbert I , Ruiz-Duenas FJ , Chevret D , Hainaut M , Lin J , Wang M , Pangilinan J , Lipzen A , Lesage-Meessen L , Navarro D , Riley R , Grigoriev IV , Zhou S , Raouche S , Rosso MN
Ref : Biotechnol Biofuels , 11 :201 , 2018
Abstract : Background: Plant biomass conversion for green chemistry and bio-energy is a current challenge for a modern sustainable bioeconomy. The complex polyaromatic lignin polymers in raw biomass feedstocks (i.e., agriculture and forestry by-products) are major obstacles for biomass conversions. White-rot fungi are wood decayers able to degrade all polymers from lignocellulosic biomass including cellulose, hemicelluloses, and lignin. The white-rot fungus Polyporus brumalis efficiently breaks down lignin and is regarded as having a high potential for the initial treatment of plant biomass in its conversion to bio-energy. Here, we describe the extraordinary ability of P. brumalis for lignin degradation using its enzymatic arsenal to break down wheat straw, a lignocellulosic substrate that is considered as a biomass feedstock worldwide. Results: We performed integrative multi-omics analyses by combining data from the fungal genome, transcriptomes, and secretomes. We found that the fungus possessed an unexpectedly large set of genes coding for Class II peroxidases involved in lignin degradation (19 genes) and GMC oxidoreductases/dehydrogenases involved in generating the hydrogen peroxide required for lignin peroxidase activity and promoting redox cycling of the fungal enzymes involved in oxidative cleavage of lignocellulose polymers (36 genes). The examination of interrelated multi-omics patterns revealed that eleven Class II Peroxidases were secreted by the fungus during fermentation and eight of them where tightly co-regulated with redox cycling enzymatic partners. Conclusion: As a peculiar feature of P. brumalis, we observed gene family extension, up-regulation and secretion of an abundant set of versatile peroxidases and manganese peroxidases, compared with other Polyporales species. The orchestrated secretion of an abundant set of these delignifying enzymes and redox cycling enzymatic partners could contribute to the delignification capabilities of the fungus. Our findings highlight the diversity of wood decay mechanisms present in Polyporales and the potentiality of further exploring this taxonomic order for enzymatic functions of biotechnological interest.
ESTHER : Miyauchi_2018_Biotechnol.Biofuels_11_201
PubMedSearch : Miyauchi_2018_Biotechnol.Biofuels_11_201
PubMedID: 30061923
Gene_locus related to this paper: 9aphy-a0a371d1b5 , 9aphy-a0a371dju9

Title : A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants - Pilkington_2018_BMC.Genomics_19_257
Author(s) : Pilkington SM , Crowhurst R , Hilario E , Nardozza S , Fraser L , Peng Y , Gunaseelan K , Simpson R , Tahir J , Deroles SC , Templeton K , Luo Z , Davy M , Cheng C , McNeilage M , Scaglione D , Liu Y , Zhang Q , Datson P , De Silva N , Gardiner SE , Bassett H , Chagne D , McCallum J , Dzierzon H , Deng C , Wang YY , Barron L , Manako K , Bowen J , Foster TM , Erridge ZA , Tiffin H , Waite CN , Davies KM , Grierson EP , Laing WA , Kirk R , Chen X , Wood M , Montefiori M , Brummell DA , Schwinn KE , Catanach A , Fullerton C , Li D , Meiyalaghan S , Nieuwenhuizen N , Read N , Prakash R , Hunter D , Zhang H , McKenzie M , Knabel M , Harris A , Allan AC , Gleave A , Chen A , Janssen BJ , Plunkett B , Ampomah-Dwamena C , Voogd C , Leif D , Lafferty D , Souleyre EJF , Varkonyi-Gasic E , Gambi F , Hanley J , Yao JL , Cheung J , David KM , Warren B , Marsh K , Snowden KC , Lin-Wang K , Brian L , Martinez-Sanchez M , Wang M , Ileperuma N , Macnee N , Campin R , McAtee P , Drummond RSM , Espley RV , Ireland HS , Wu R , Atkinson RG , Karunairetnam S , Bulley S , Chunkath S , Hanley Z , Storey R , Thrimawithana AH , Thomson S , David C , Testolin R , Huang H , Hellens RP , Schaffer RJ
Ref : BMC Genomics , 19 :257 , 2018
Abstract : BACKGROUND: Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. RESULTS: A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. CONCLUSIONS: Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.
ESTHER : Pilkington_2018_BMC.Genomics_19_257
PubMedSearch : Pilkington_2018_BMC.Genomics_19_257
PubMedID: 29661190
Gene_locus related to this paper: actde-CXE3 , actde-CXE5 , actch-a0a2r6p9v4 , actch-a0a2r6phk8 , actch-a0a2r6pty2 , actch-q0zpu6 , actcc-a0a2r6q553 , actcc-a0a2r6quq2 , actcc-a0a2r6q2m9 , actcc-a0a2r6q2n7 , actcc-a0a2r6ru97 , actcc-a0a2r6r3e8 , actcc-a0a2r6qy24 , actcc-a0a2r6pzy5 , actcc-a0a2r6p5n3 , actcc-a0a2r6qdp0 , actcc-a0a2r6qgs9

Title : Csn5 Is Required for the Conidiogenesis and Pathogenesis of the Alternaria alternata Tangerine Pathotype - Wang_2018_Front.Microbiol_9_508
Author(s) : Wang M , Yang X , Ruan R , Fu H , Li H
Ref : Front Microbiol , 9 :508 , 2018
Abstract : The COP9 signalosome (CSN) is a highly conserved protein complex involved in the ubiquitin-proteasome system. Its metalloisopeptidase activity resides in subunit 5 (CSN5). Functions of csn5 in phytopathogenic fungi are poorly understood. Here, we knocked out the csn5 ortholog (Aacsn5) in the tangerine pathotype of Alternaria alternata. The deltaAacsn5 mutant showed a moderately reduced growth rate compared to the wildtype strain and was unable to produce conidia. The growth of deltaAacsn5 mutant was not affected in response to oxidative and osmotic stresses. Virulence assays revealed that deltaAacsn5 induced no or significantly reduced necrotic lesions on detached citrus leaves. The defects in hyphal growth, conidial sporulation, and pathogenicity of deltaAacsn5 were restored by genetic complementation of the mutant with wildtype Aacsn5. To explore the molecular mechanisms of conidiation and pathogenesis underlying Aacsn5 regulation, we systematically examined the transcriptomes of both deltaAacsn5 and the wildtype. Generally, 881 genes were overexpressed and 777 were underexpressed in the deltaAacsn5 mutant during conidiation while 694 overexpressed and 993 underexpressed during infection. During asexual development, genes related to the transport processes and nitrogen metabolism were significantly downregulated; the expression of csn1-4 and csn7 in deltaAacsn5 was significantly elevated; secondary metabolism gene clusters were broadly affected; especially, the transcript level of the whole of cluster 28 and 30 was strongly induced. During infection, the expression of the host-specific ACT toxin gene cluster which controls the biosynthesis of the citrus specific toxin was significantly repressed; many other SM clusters with unknown products were also regulated; 86 out of 373 carbohydrate-active enzymes responsible for breaking down the plant dead tissues showed uniquely decreased expression. Taken together, our results expand our understanding of the roles of csn5 on conidiation and pathogenicity in plant pathogenic fungi and provide a foundation for future investigations.
ESTHER : Wang_2018_Front.Microbiol_9_508
PubMedSearch : Wang_2018_Front.Microbiol_9_508
PubMedID: 29616013
Gene_locus related to this paper: altal-actt2

Title : Muscarinic cholinergic signaling and overactive bladder-like symptoms associated with invasive bladder cancer - Wei_2018_Oncol.Lett_16_775
Author(s) : Wei W , Wang M , Li Y , Meng Q , Tang Y , Lu H , Yu W , Cheng Q , Xu L , Jian S , Wu Y , Yi X , Xie K
Ref : Oncol Lett , 16 :775 , 2018
Abstract : The objective of the present study was to explore the association between muscarinic cholinergic signaling and urothelial bladder tumors. Possible associations among overactive bladder (OAB) symptoms and bladder tumors were retrospectively investigated using a multicenter Chinese database with prospectively collected data since 2010. Firstly, it was demonstrated that OAB symptoms, such as urgency, were more severe in patients with invasive bladder cancer and were associated with a reduced prognosis. Following this, muscarinic cholinergic receptor 3 (M3R) expression in urothelium was determined to be lower in invasive cancer tissue than in adjacent non-cancerous tissue, yet M3R upregulation was associated with a reduced progression free survival (PFS) time. Additionally, it was also demonstrated that muscarinic cholinergic receptor 2 (M2R) was upregulated in the sub-urothelium, and this was also associated with a reduced PFS time. Furthermore, it was determined that cholinesterase and acetylcholinesterase were lower in invasive cancer than in non-invasive cancer. In conclusion, the results indicated that M3R expression was downregulated in invasive bladder cancer, which may have a role as a protective anti-oncogene, in contrast to its oncogenic role in numerous other cancer types. Therefore, muscarinic cholinergic signaling may be a novel therapeutic target for treating bladder cancer.
ESTHER : Wei_2018_Oncol.Lett_16_775
PubMedSearch : Wei_2018_Oncol.Lett_16_775
PubMedID: 29963145

Title : The Apostasia genome and the evolution of orchids - Zhang_2017_Nature_549_379
Author(s) : Zhang GQ , Liu KW , Li Z , Lohaus R , Hsiao YY , Niu SC , Wang JY , Lin YC , Xu Q , Chen LJ , Yoshida K , Fujiwara S , Wang ZW , Zhang YQ , Mitsuda N , Wang M , Liu GH , Pecoraro L , Huang HX , Xiao XJ , Lin M , Wu XY , Wu WL , Chen YY , Chang SB , Sakamoto S , Ohme-Takagi M , Yagi M , Zeng SJ , Shen CY , Yeh CM , Luo YB , Tsai WC , Van de Peer Y , Liu ZJ
Ref : Nature , 549 :379 , 2017
Abstract : Constituting approximately 10% of flowering plant species, orchids (Orchidaceae) display unique flower morphologies, possess an extraordinary diversity in lifestyle, and have successfully colonized almost every habitat on Earth. Here we report the draft genome sequence of Apostasia shenzhenica, a representative of one of two genera that form a sister lineage to the rest of the Orchidaceae, providing a reference for inferring the genome content and structure of the most recent common ancestor of all extant orchids and improving our understanding of their origins and evolution. In addition, we present transcriptome data for representatives of Vanilloideae, Cypripedioideae and Orchidoideae, and novel third-generation genome data for two species of Epidendroideae, covering all five orchid subfamilies. A. shenzhenica shows clear evidence of a whole-genome duplication, which is shared by all orchids and occurred shortly before their divergence. Comparisons between A. shenzhenica and other orchids and angiosperms also permitted the reconstruction of an ancestral orchid gene toolkit. We identify new gene families, gene family expansions and contractions, and changes within MADS-box gene classes, which control a diverse suite of developmental processes, during orchid evolution. This study sheds new light on the genetic mechanisms underpinning key orchid innovations, including the development of the labellum and gynostemium, pollinia, and seeds without endosperm, as well as the evolution of epiphytism; reveals relationships between the Orchidaceae subfamilies; and helps clarify the evolutionary history of orchids within the angiosperms.
ESTHER : Zhang_2017_Nature_549_379
PubMedSearch : Zhang_2017_Nature_549_379
PubMedID: 28902843
Gene_locus related to this paper: 9aspa-a0a2i0b2l6 , 9aspa-a0a2i0w093 , 9aspa-a0a2i0asr1 , 9aspa-a0a2i0vyy1 , 9aspa-a0a2i0a218 , 9aspa-a0a2i0x5j6 , 9aspa-a0a2i0aji0 , 9aspa-a0a2i0a3k8 , 9aspa-a0a2i0win6 , 9aspa-a0a2i0vg82 , 9aspa-a0a2h9zyy3

Title : Compound Schisandra-Ginseng-Notoginseng-Lycium Extract Ameliorates Scopolamine-Induced Learning and Memory Disorders in Mice - Li_2017_Evid.Based.Complement.Alternat.Med_2017_8632016
Author(s) : Li N , Liu C , Jing S , Wang M , Wang H , Sun J , Wang C , Chen J , Li H
Ref : Evid Based Complement Alternat Med , 2017 :8632016 , 2017
Abstract : Schisandra, Ginseng, Notoginseng, and Lycium barbarum are traditional Chinese medicinal plants sharing cognitive-enhancing properties. To design a functional food to improve memory, we prepared a compound Schisandra-Ginseng-Notoginseng-Lycium (CSGNL) extract and investigated its effect on scopolamine-induced learning and memory loss in mice. To optimize the dose ratios of the four herbal extracts in CSGNL, orthogonal experiments were performed. Mice were administered CSGNL by gavage once a day for 30 days and then mouse learning and memory were evaluated by Morris water maze and step-through tests. The mechanisms of CSGNL improving learning and memory were investigated by assaying acetylcholine (ACh) levels and choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities in the brain tissues of treated mice. The results showed that CSGNL significantly ameliorated scopolamine-induced learning and memory impairment, at least in part, by modulating ACh levels and ChAT and AChE activities in the mouse brain. Our data support the use of CSGNL as a functional food for learning and memory enhancement.
ESTHER : Li_2017_Evid.Based.Complement.Alternat.Med_2017_8632016
PubMedSearch : Li_2017_Evid.Based.Complement.Alternat.Med_2017_8632016
PubMedID: 28814961

Title : Production of new human milk fat substitutes by enzymatic acidolysis of microalgae oils from Nannochloropsis oculata and Isochrysis galbana - He_2017_Bioresour.Technol_238_129
Author(s) : He Y , Qiu C , Guo Z , Huang J , Wang M , Chen B
Ref : Bioresour Technol , 238 :129 , 2017
Abstract : Human milk fat substitutes (HMFs) with four kinds of n-3 fatty acid for infant formula were firstly synthesized using triacylglycerols (TAGs) from Nannochloropsis oculata rich in PA at the sn-2 position and free fatty acids (FFAs) from Isochrysis galbana rich in n-3 polyunsaturated fatty acids (n-3 PUFAs-ALA/SDA/DHA) via solvent-free acidolysis with Novozym 435, Lipozyme 435, TL-IM and RM-IM as biocatalysts. The results show that the resulting HMFs contain total n-3 PUFA of 13.92-17.12% and PA of 59.38-68.13% at the sn-2 position under the optimal conditions (mole ratio FFAs/TAG 3:1, 60 degC (Novozym 435 and Lipozyme TL-IM) and 50 degC (Lipozyme 435 and RM-IM), lipase loading 10%, reaction time 24h). Moreover, among the tested enzymes, Lipozyme 435, TL-IM, and RM-IM display the fatty acid selectivity towards SDA, LA and ALA, and OA, respectively. Overall, the examined lipases are promising biocatalysts for producing high-value microalgal HMFs in a cost-effective manner.
ESTHER : He_2017_Bioresour.Technol_238_129
PubMedSearch : He_2017_Bioresour.Technol_238_129
PubMedID: 28433900

Title : Evaluation and application of constitutive promoters for cutinase production by Saccharomyces cerevisiae - Zhang_2017_J.Microbiol_55_538
Author(s) : Zhang J , Cai Y , Du G , Chen J , Wang M , Kang Z
Ref : J Microbiol , 55 :538 , 2017
Abstract : Cutinase as a promising biocatalyst has been intensively studied and applied in processes targeted for industrial scale. In this work, the cutinase gene tfu from Thermobifida fusca was artificially synthesized according to codon usage bias of Saccharomyces cerevisiae and investigated in Saccharomyces cerevisiae. Using the alpha-factor signal peptide, the T. fusca cutinase was successfully overexpressed and secreted with the GAL1 expression system. To increase the cutinase level and overcome some of the drawbacks of induction, four different strong promoters (ADH1, HXT1, TEF1, and TDH3) were comparatively evaluated for cutinase production. By comparison, promoter TEF1 exhibited an outstanding property and significantly increased the expression level. By fed-batch fermentation with a constant feeding approach, the activity of cutinase was increased to 29.7 U/ml. The result will contribute to apply constitutive promoter TEF1 as a tool for targeted cutinase production in S. cerevisiae cell factory.
ESTHER : Zhang_2017_J.Microbiol_55_538
PubMedSearch : Zhang_2017_J.Microbiol_55_538
PubMedID: 28664516

Title : Proprioceptive mechanisms in occlusion-stimulated masseter hypercontraction - Liu_2017_Eur.J.Oral.Sci_125_127
Author(s) : Liu X , Zhang C , Wang D , Zhang H , Li J , Wang M
Ref : Eur J Oral Sci , 125 :127 , 2017
Abstract : Neurons in the trigeminal mesencephalic nucleus (Vme) have an axon that branches peripherally to innervate the orofacial region and projects centrally to the trigeminal motor nucleus (Vmo). They function as the primary neurons conveying proprioceptive messages. The present study aimed to demonstrate the presence of a periodontal-Vme-Vmo circuit and to provide evidence for its involvement in an experimental unilateral anterior crossbite (UAC) model, which can induce osteoarthritis in the temporomandibular joint. Cholera toxin B subunit (CTb) was injected into the inferior alveolar nerve of rats to help identify the central axon terminals of Vme neurons in the Vmo. The levels of vesicular glutamate transporter 1 (VGLUT1) expressed in the periodontal region, Vme, Vmo, and masseter, and the level of acetylcholinesterase (AChE) expressed in the masseter, were assessed in UAC rats and controls. In CTb-treated rats, many CTb-labeled cell bodies and endings were identified in the Vme and in the Vmo, respectively. In UAC rats, VGLUT1 was expressed at a statistically significantly higher level in the periodontal ligament, Vme, Vmo, and masseter than it was in control rats. The level of AChE protein was 1.97 times higher in UAC rat masseter compared with control rat masseter. These findings reveal a trigeminal mechanism underlying masseter hyperactivity induced by an altered occlusion.
ESTHER : Liu_2017_Eur.J.Oral.Sci_125_127
PubMedSearch : Liu_2017_Eur.J.Oral.Sci_125_127
PubMedID: 28145597

Title : Ameliorating effect of Alpinia oxyphylla-Schisandra chinensis herb pair on cognitive impairment in a mouse model of Alzheimer's disease - Wang_2017_Biomed.Pharmacother_97_128
Author(s) : Wang M , Bi W , Fan K , Li T , Yan T , Xiao F , He B , Bi K , Jia Y
Ref : Biomed Pharmacother , 97 :128 , 2017
Abstract : Alzheimer's disease (AD) is the most common cause of dementia. In our previous study, we found both Alpinia oxyphylla and Schisandra chinensis can improve the cognitive function of AD. To investigate whether the Alpinia oxyphylla - Schisandra chinensis herb pair (ASHP) has ameliorating effect on cognitive impairment, we used scopolamine to induce learning and memory impairments, as a mouse model of AD. Subsequently, we carried out Y-maze test and Morris water maze test to observe the behavior of mice. Finally, the level of Acetylcholine (Ach) and muscarinic receptor (M1) receptors, the activity of choline acetyltransferase (ChAT) and acetyl cholinesterase (AChE) were measured by commercial assay kits and ELISA kit. And we used hematoxylin-eosin (HE) staining to check the changes in cortex and the CA1 region of hippocampus. ASHP significantly protected against learning and memory impairments induced by scopolamine in Y-maze test and Morris water maze test. Besides, ASHP was able to increase the level of ACh and M1 receptors, and decrease the activity of AChE, but did not significantly affect the activity of ChAT. In addition, from the results of histopathological examination, we speculated ASHP may have neuroprotective effects. This study provided an experimental basis for further study of Alpinia oxyphylla - Schisandra chinensis herb pair in AD therapy.
ESTHER : Wang_2017_Biomed.Pharmacother_97_128
PubMedSearch : Wang_2017_Biomed.Pharmacother_97_128
PubMedID: 29080453

Title : The metastatic suppressor NDRG1 inhibits EMT, migration and invasion through interaction and promotion of caveolin-1 ubiquitylation in human colorectal cancer cells - Mi_2017_Oncogene_36_4323
Author(s) : Mi L , Zhu F , Yang X , Lu J , Zheng Y , Zhao Q , Wen X , Lu A , Wang M , Zheng M , Ji J , Sun J
Ref : Oncogene , 36 :4323 , 2017
Abstract : N-myc downstream-regulated gene 1 (NDRG1) has been reported to act as a key regulatory molecule in tumor progression-related signaling pathways, especially in tumor metastasis. However, the related mechanism has not been fully discovered yet. Herein we demonstrated that the novel molecule of cell migration and invasion, caveolin-1, has direct interaction with NDRG1 in human colorectal cancer (CRC) cells. Moreover, we discovered that NDRG1 reduces caveolin-1 protein expression through promoting its ubiquitylation and subsequent degradation via the proteasome in CRC cells. In addition, caveolin-1 mediates the suppressive function of NDRG1 in epithelial-mesenchymal transition, migration and invasion in vitro and metastasis in vivo. These results help to fulfill the potential mechanisms of NDRG1 in anti-metastatic treatment for human colorectal cancer.
ESTHER : Mi_2017_Oncogene_36_4323
PubMedSearch : Mi_2017_Oncogene_36_4323
PubMedID: 28346422
Gene_locus related to this paper: human-NDRG1

Title : Soluble epoxide hydrolase inhibitors might prevent ischemic arrhythmias via microRNA-1 repression in primary neonatal mouse ventricular myocytes - Liu_2017_Mol.Biosyst_13_556
Author(s) : Liu Q , Zhao X , Peng R , Wang M , Zhao W , Gui YJ , Liao CX , Xu DY
Ref : Mol Biosyst , 13 :556 , 2017
Abstract : Ischemic arrhythmias are the main causes of sudden cardiac death. It has been reported that soluble epoxide hydrolase inhibitors (sEHis) could prevent arrhythmias; however, the underlying molecular mechanisms remain unclear. In recent years, the proarrhythmic role of microRNA-1 (miR-1) has been investigated. This study aimed to elucidate whether sEHis prevented ischemic arrhythmias by suppressing miR-1. The primary neonatal mouse ventricular myocyte model of miR-1 overexpression was established by incubating with agonist microONTM mmu-miR-1a-3p agomir (DAEDstainTM Dye) (agomiR-1). The sEHi, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), was administered following miR-1 overexpression. Quantitative real-time PCR (qPCR) and western blotting were used to test alterations in the expression of miR-1 and its target mRNAs GJA1 and KCNJ2 and their respective encoded proteins connexin 43 (Cx43) and the K+ channel subunit (Kir2.1). The whole-cell patch-clamp technique was used to record the alterations of the inward rectifying K+ current (IK1). Compared with the control group, miR-1 levels were significantly increased in the agomiR-1 group (p < 0.05), which suggested the successful construction of the miR-1 overexpression model. Compared with the control group, the levels of GJA1 and KCNJ2 mRNAs and Cx43 and Kir2.1 proteins in the agomiR-1 group were significantly decreased, and IK1 was significantly impaired (all p < 0.05). The miR-1 levels were dose-dependently decreased by t-AUCB, whereas t-AUCB dose-dependently increased the levels of GJA1 and KCNJ2 mRNAs and Cx43 and Kir2.1 proteins. Furthermore, t-AUCB restored the impaired IK1 (all p < 0.05). In conclusion, the sEHi t-AUCB has the ability to down-regulate proarrhythmic miR-1 and up-regulate its target genes and proteins, eventually restoring IK1.
ESTHER : Liu_2017_Mol.Biosyst_13_556
PubMedSearch : Liu_2017_Mol.Biosyst_13_556
PubMedID: 28112313

Title : ChAT-positive neurons participate in subventricular zone neurogenesis after middle cerebral artery occlusion in mice - Wang_2017_Behav.Brain.Res_316_145
Author(s) : Wang J , Fu X , Zhang D , Yu L , Li N , Lu Z , Gao Y , Wang M , Liu X , Zhou C , Han W , Yan B
Ref : Behavioural Brain Research , 316 :145 , 2017
Abstract : The mechanisms of post-stroke neurogenesis in the subventricular zone (SVZ) are unclear. However, neural stem cell-intrinsic and neurogenic niche mechanisms, as well as neurotransmitters, have been shown to play important roles in SVZ neurogenesis. Recently, a previously unknown population of choline acetyltransferase (ChAT)+ neurons residing in rodent SVZ were identified to have direct control over neural stem cell proliferation by indirectly activating fibroblast growth factor receptor (FGFR). This finding revealed possible neuronal control over SVZ neurogenesis. In this study, we assessed whether these ChAT+ neurons also participate in stroke-induced neurogenesis. We used a permanent middle cerebral artery occlusion (MCAO) model produced by transcranial electrocoagulation in mice, atropine (muscarinic cholinergic receptor [mAchR] antagonist), and donepezil (acetylcholinesterase inhibitor) to investigate the role of ChAT+ neurons in stroke-induced neurogenesis. We found that mAchRs, phosphorylated protein kinase C (p-PKC), and p-38 levels in the SVZ were upregulated in mice on day 7 after MCAO. MCAO also significantly increased the number of BrdU/doublecortin-positive cells and protein levels of phosphorylated-neural cell adhesion molecule and mammalian achaete scute homolog-1. FGFR was activated in the SVZ, and doublecortin-positive cells increased in the peri-infarction region. These post-stroke neurogenic effects were enhanced by donepezil and partially decreased by atropine. Neither atropine nor donepezil affected peri-infarct microglial activation or serum concentrations of TNF-alpha, IFN-gamma, or TGF-beta on day 7 after MCAO. We conclude that ChAT+ neurons in the SVZ may participate in stroke-induced neurogenesis, suggesting a new mechanism for neurogenesis after stroke.
ESTHER : Wang_2017_Behav.Brain.Res_316_145
PubMedSearch : Wang_2017_Behav.Brain.Res_316_145
PubMedID: 27609645

Title : The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution - Zhang_2016_Sci.Rep_6_19029
Author(s) : Zhang GQ , Xu Q , Bian C , Tsai WC , Yeh CM , Liu KW , Yoshida K , Zhang LS , Chang SB , Chen F , Shi Y , Su YY , Zhang YQ , Chen LJ , Yin Y , Lin M , Huang H , Deng H , Wang ZW , Zhu SL , Zhao X , Deng C , Niu SC , Huang J , Wang M , Liu GH , Yang HJ , Xiao XJ , Hsiao YY , Wu WL , Chen YY , Mitsuda N , Ohme-Takagi M , Luo YB , Van de Peer Y , Liu ZJ
Ref : Sci Rep , 6 :19029 , 2016
Abstract : Orchids make up about 10% of all seed plant species, have great economical value, and are of specific scientific interest because of their renowned flowers and ecological adaptations. Here, we report the first draft genome sequence of a lithophytic orchid, Dendrobium catenatum. We predict 28,910 protein-coding genes, and find evidence of a whole genome duplication shared with Phalaenopsis. We observed the expansion of many resistance-related genes, suggesting a powerful immune system responsible for adaptation to a wide range of ecological niches. We also discovered extensive duplication of genes involved in glucomannan synthase activities, likely related to the synthesis of medicinal polysaccharides. Expansion of MADS-box gene clades ANR1, StMADS11, and MIKC(*), involved in the regulation of development and growth, suggests that these expansions are associated with the astonishing diversity of plant architecture in the genus Dendrobium. On the contrary, members of the type I MADS box gene family are missing, which might explain the loss of the endospermous seed. The findings reported here will be important for future studies into polysaccharide synthesis, adaptations to diverse environments and flower architecture of Orchidaceae.
ESTHER : Zhang_2016_Sci.Rep_6_19029
PubMedSearch : Zhang_2016_Sci.Rep_6_19029
PubMedID: 26754549
Gene_locus related to this paper: 9aspa-a0a2i0w093 , 9aspa-a0a2i0vyy1 , 9aspa-a0a2i0x5j6 , 9aspa-a0a2i0win6 , 9aspa-a0a2i0vg82

Title : Effects and mechanism of cerebroprotein hydrolysate on learning and memory ability in mice - An_2016_Genet.Mol.Res_15_
Author(s) : An L , Han X , Li H , Ma Y , Shi L , Xu G , Yuan G , Sun J , Zhao N , Sheng Y , Wang M , Du P
Ref : Genet Mol Res , 15 : , 2016
Abstract : Cerebroprotein hydrolysate is an extract from porcine brain tissue that acts on the central nervous system in various ways to protect neurons and improve memory, attention, and vigilance. This study examined the effect and mechanism of cerebroprotein hydrolysate on learning and memory in mice with scopolamine-induced impairment. Mice were given an intraperitoneal injection of scopolamine hydrobromide to establish a murine model of learning and memory impairment. After 35 successive days of cerebroprotein hydrolysate treatment, their behaviors were observed in the Morris water maze and step-down test. Superoxide dismutase (SOD), Na+-K+-ATPase, and acetylcholinesterase (AChE) activity, and malondialdehyde (MDA), gamma-aminobutyric acid (GABA), and glutamic acid (Glu) levels in the brain tissue of the mice were determined, and pathological changes in the hippocampus were examined. The results of the water-maze test showed that cerebroprotein hydrolysate shortened the escape latency and increased the number of platform crossings. In the step-down test, cerebroprotein hydrolysate treatment prolonged the step-down latency and reduced the number of errors; cerebroprotein hydrolysate increased the activity of SOD, Na+-K+-ATPase, and AChE, reduced the levels of MDA, decreased the Glu/GABA ratio in brain tissue, and reduced pathological changes in the hippocampus. The results indicate that cerebroprotein hydrolysate can improve learning and memory in mice with scopolamine-induced impairment. This effect may be associated with its ability to reduce injury caused by free radicals, improve acetylcholine function, and modulate the Glu/GABA learning and memory regulation system, reducing excitotoxicity caused by Glu.
ESTHER : An_2016_Genet.Mol.Res_15_
PubMedSearch : An_2016_Genet.Mol.Res_15_
PubMedID: 27525868

Title : A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system - Hou_2016_Food.Chem_202_81
Author(s) : Hou J , Dong G , Tian Z , Lu J , Wang Q , Ai S , Wang M
Ref : Food Chem , 202 :81 , 2016
Abstract : In this paper, a simple and sensitive fluorescent sensor for dichlorvos was first constructed based on carbon dots-Cu(II) system. These carbon dots were obtained by simple hydrothermal reaction of feather. The fluorescence of these carbon dots can be selectively quenched by Cu(2+) ion. When acetylcholinesterase and acetylthiocholine were introduced into the system, thiocholine came into being, which can react with Cu(2+) ion and restore the fluorescence of the system. The reaction mechanism between Cu(2+) ion and thiocholine was confirmed by X-ray photoelectron spectroscopy. As one kind of acetylcholinesterase inhibitor, organophosphorus pesticides can be detected based on this sensing system. As an example of organophosphorus pesticides, dichlorvos was detected with a linear range of 6.0x10(-9)-6.0x10(-8)M. This sensing system has been successfully used for the analysis of cabbage and fruit juice samples.
ESTHER : Hou_2016_Food.Chem_202_81
PubMedSearch : Hou_2016_Food.Chem_202_81
PubMedID: 26920268

Title : Molecular cloning and expression analysis on LPL of Coilia nasus - Wang_2016_Gene_583_147
Author(s) : Wang M , Xu D , Liu K , Yang J , Xu P
Ref : Gene , 583 :147 , 2016
Abstract : Coilia nasus is one important commercial anadromous species which mainly distributed in the Yangtze River in China. At present, it has been on the "National Key Protective Species List" because of its severe resource damage. Lipid metabolism is very important during its long-distance migration. To make further research on lipid metabolism of C.nasus, we cloned lipoprotein lipase gene with homologous cloning method. A full-length cDNA of LPL of C.nasus was cloned from liver which covered 3537bp with a 1519bp open reading frame encoding 505 deduced amino acids whose molecular mass was 57.5kDa and theoretical isoelectric point was 7.58. The deduced amino acids had high similarity with the reported LPL sequence of other species. It had typical conserved domain of LPL protein containing catalytic triad, N-linked glycosylation sites and conserved heparin-binding site, etc. We adopted quantitative real-time RT-PCR method to detect the mRNA expression of LPL of C.nasus in ten tissues including mesenteric adipose, liver, muscle, stomach, spleen, heart, head kidney, trunk kidney, gill and brain with beta-actin as internal reference. LPL expressed in all the detected tissues. The highest expression was in mesenteric adipose, and followed by liver, muscle, stomach. Lipid expressed lowly in spleen, heart, head kidney, trunk kidney, gill and brain. The research on the cloning and differential expression of LPL of C.nasus will lay foundation for further research on lipid metabolism of C.nasus.
ESTHER : Wang_2016_Gene_583_147
PubMedSearch : Wang_2016_Gene_583_147
PubMedID: 26877109
Gene_locus related to this paper: 9tele-a0a140b115

Title : Prevalence of myasthenia gravis and associated autoantibodies in paraneoplastic pemphigus and their correlations with symptoms and prognosis - Wang_2015_Br.J.Dermatol_172_968
Author(s) : Wang R , Li J , Wang M , Hao H , Chen X , Li R , Zhu X
Ref : Br J Dermatol , 172 :968 , 2015
Abstract : BACKGROUND: Paraneoplastic pemphigus (PNP) involves multiple organs, but little is known about its neurological involvement. OBJECTIVES: To investigate the symptoms, prognosis and profiles of associated autoantibodies in myasthenia gravis (MG), and their correlations in patients with PNP.
METHODS: Fifty-eight patients with PNP were assessed for myasthenic symptoms and laboratory evidence. Serum autoantibodies against acetylcholine receptor (AChR), acetylcholinesterase (AChE), titin, ryanodine receptor (RyR) and muscle-specific kinase (MuSK) were measured by enzyme-linked immunosorbent assay. Patients with pemphigus vulgaris (PV), pemphigus foliaceus (PF), connective tissue disease (CTD) and non-PNP MG (NP-MG), and healthy donors, served as controls. These autoantibodies in PNP were also compared in the presence or absence of dyspnoea or muscle weakness. Cox regression and log-rank tests were used for survival analysis.
RESULTS: Overall 39% of patients with PNP experienced muscle weakness, and 35% were diagnosed with MG. Moreover, 35% had positive anti-AChR and 28% had anti-AChE antibodies, similarly to NP-MG (33% and 17%, respectively, P > 0.05). However, both were negative in all patients with PV, PF and CTD and healthy donors (P < 0.005). No other antibodies showed significant differences among groups. Anti-AChR and anti-AChE antibody levels were significantly increased in patients with PNP with dyspnoea, while anti-AChR, anti-titin and anti-RyR were significantly increased in patients with PNP with muscle weakness (P < 0.05). Nevertheless, levels and positive rates of these autoantibodies showed no significant differences between PNP with Castleman disease and thymoma. Although anti-AChE levels impacted survival duration (P = 0.027, odds ratio 3.14), MG complications did not affect the overall survival percentage in PNP.
CONCLUSIONS: MG is a complication of PNP. Anti-AChR and anti-AChE antibodies are prominent in patients with PNP, especially those with dyspnoea.
ESTHER : Wang_2015_Br.J.Dermatol_172_968
PubMedSearch : Wang_2015_Br.J.Dermatol_172_968
PubMedID: 25388377

Title : Muscle-specific deletion of comparative gene identification-58 (CGI-58) causes muscle steatosis but improves insulin sensitivity in male mice - Xie_2015_Endocrinology_156_1648
Author(s) : Xie P , Kadegowda AK , Ma Y , Guo F , Han X , Wang M , Groban L , Xue B , Shi H , Li H , Yu L
Ref : Endocrinology , 156 :1648 , 2015
Abstract : Intramyocellular accumulation of lipids is often associated with insulin resistance. Deficiency of comparative gene identification-58 (CGI-58) causes cytosolic deposition of triglyceride (TG)-rich lipid droplets in most cell types, including muscle due to defective TG hydrolysis. It was unclear, however, whether CGI-58 deficiency-induced lipid accumulation in muscle influences insulin sensitivity. Here we show that muscle-specific CGI-58 knockout mice relative to their controls have increased glucose tolerance and insulin sensitivity on a Western-type high-fat diet, despite TG accumulation in both heart and oxidative skeletal muscle and cholesterol deposition in heart. Although the intracardiomyocellular lipid deposition results in cardiac ventricular fibrosis and systolic dysfunction, muscle-specific CGI-58 knockout mice show increased glucose uptake in heart and soleus muscle, improved insulin signaling in insulin-sensitive tissues, and reduced plasma concentrations of glucose, insulin, and cholesterol. Hepatic contents of TG and cholesterol are also decreased in these animals. Cardiac steatosis is attributable, at least in part, to decreases in cardiac TG hydrolase activity and peroxisome proliferator-activated receptor-alpha/peroxisome proliferator-activated receptor-gamma coactivator-1-dependent mitochondrial fatty acid oxidation. In conclusion, muscle CGI-58 deficiency causes cardiac dysfunction and fat deposition in oxidative muscles but induces a series of favorable metabolic changes in mice fed a high-fat diet.
ESTHER : Xie_2015_Endocrinology_156_1648
PubMedSearch : Xie_2015_Endocrinology_156_1648
PubMedID: 25751639

Title : Effects of supplementation of rumen-protected choline on growth performance, meat quality and gene expression in longissimus dorsi muscle of lambs - Li_2015_Arch.Anim.Nutr_69_340
Author(s) : Li H , Wang H , Yu L , Wang M , Liu S , Sun L , Chen Q
Ref : Arch Anim Nutr , 69 :340 , 2015
Abstract : This study determined the effects of rumen-protected choline (RPC) on growth performance, blood lipids, meat quality and expression of genes involved in fatty-acid metabolism in young lambs. A total of 24 Dorper x Hu lambs (about 20 kg body weight) were kept in individual pens and fed diets with 0%, 0.25%, 0.50% and 0.75% RPC for 60 d. Supplementation of 0.25% RPC increased average daily gain of lambs, whereas treatments had no significant effect on feed intake. The pH values of meat were increased at 0.25% RPC and both, dripping loss and shear force of meat, were significantly decreased in RPC-supplemented lambs. No significant changes were observed for dressing percentage and intramuscular fat. RPC supplementations had no significant effect on the concentrations of triglycerides and cholesterols in serum, but the concentration of high-density lipoprotein was decreased at 0.50% RPC and that of low-density lipoprotein was increased at 0.75% RPC. In m. longissimus dorsi, the expressions of cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC) and fatty-acid synthase (FASN) genes were increased at 0.25% RPC. Supplementation of 0.75% RPC increased the expressions of lipoprotein lipase (LPL) and FASN genes, decreased the expression of ACC gene and had no effect on CD36 gene. The results of this study showed that supplementation of 0.25% RPC could promote growth performance of lambs and improve meat quality. This may be mediated by effects on blood lipid profiles and the metabolism of fatty acids in skeleton muscles. However, the beneficial effects of 0.25% RPC supplementation need to be validated with a larger number of animals. Higher doses, particularly 0.75% RPC, showed adverse effects on live weight gain and ACC expression.
ESTHER : Li_2015_Arch.Anim.Nutr_69_340
PubMedSearch : Li_2015_Arch.Anim.Nutr_69_340
PubMedID: 26305383

Title : Huperzine A Alleviates Mechanical Allodynia but Not Spontaneous Pain via Muscarinic Acetylcholine Receptors in Mice - Zuo_2015_Neural.Plast_2015_453170
Author(s) : Zuo ZX , Wang YJ , Liu L , Wang Y , Mei SH , Feng ZH , Wang M , Li XY
Ref : Neural Plast , 2015 :453170 , 2015
Abstract : Chronic pain is a major health issue and most patients suffer from spontaneous pain. Previous studies suggest that Huperzine A (Hup A), an alkaloid isolated from the Chinese herb Huperzia serrata, is a potent analgesic with few side effects. However, whether it alleviates spontaneous pain is unclear. We evaluated the effects of Hup A on spontaneous pain in mice using the conditioned place preference (CPP) behavioral assay and found that application of Hup A attenuated the mechanical allodynia induced by peripheral nerve injury or inflammation. This effect was blocked by atropine. However, clonidine but not Hup A induced preference for the drug-paired chamber in CPP. The same effects occurred when Hup A was infused into the anterior cingulate cortex. Furthermore, ambenonium chloride, a competitive inhibitor of acetylcholinesterase, also increased the paw-withdrawal threshold but failed to induce place preference in CPP. Therefore, our data suggest that acetylcholinesterase in both the peripheral and central nervous systems is involved in the regulation of mechanical allodynia but not the spontaneous pain.
ESTHER : Zuo_2015_Neural.Plast_2015_453170
PubMedSearch : Zuo_2015_Neural.Plast_2015_453170
PubMedID: 26697233

Title : Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication - Yang_2015_Proc.Natl.Acad.Sci.U.S.A_112_13213
Author(s) : Yang K , Tian Z , Chen C , Luo L , Zhao B , Wang Z , Yu L , Li Y , Sun Y , Li W , Chen Y , Zhang Y , Ai D , Zhao J , Shang C , Ma Y , Wu B , Wang M , Gao L , Sun D , Zhang P , Guo F , Wang W , Wang J , Varshney RK , Ling HQ , Wan P
Ref : Proc Natl Acad Sci U S A , 112 :13213 , 2015
Abstract : Adzuki bean (Vigna angularis), an important legume crop, is grown in more than 30 countries of the world. The seed of adzuki bean, as an important source of starch, digestible protein, mineral elements, and vitamins, is widely used foods for at least a billion people. Here, we generated a high-quality draft genome sequence of adzuki bean by whole-genome shotgun sequencing. The assembled contig sequences reached to 450 Mb (83% of the genome) with an N50 of 38 kb, and the total scaffold sequences were 466.7 Mb with an N50 of 1.29 Mb. Of them, 372.9 Mb of scaffold sequences were assigned to the 11 chromosomes of adzuki bean by using a single nucleotide polymorphism genetic map. A total of 34,183 protein-coding genes were predicted. Functional analysis revealed that significant differences in starch and fat content between adzuki bean and soybean were likely due to transcriptional abundance, rather than copy number variations, of the genes related to starch and oil synthesis. We detected strong selection signals in domestication by the population analysis of 50 accessions including 11 wild, 11 semiwild, 17 landraces, and 11 improved varieties. In addition, the semiwild accessions were illuminated to have a closer relationship to the cultigen accessions than the wild type, suggesting that the semiwild adzuki bean might be a preliminary landrace and play some roles in the adzuki bean domestication. The genome sequence of adzuki bean will facilitate the identification of agronomically important genes and accelerate the improvement of adzuki bean.
ESTHER : Yang_2015_Proc.Natl.Acad.Sci.U.S.A_112_13213
PubMedSearch : Yang_2015_Proc.Natl.Acad.Sci.U.S.A_112_13213
PubMedID: 26460024
Gene_locus related to this paper: phaan-a0a0l9ttq5 , phaan-a0a0l9vh69 , phaan-a0a0l9vh89 , phaan-a0a0s3tc53 , vigrr-a0a1s3v914 , phaan-a0a0s3s998 , phaan-a0a0s3siv8 , phaan-a0a0l9uys5 , phaan-a0a0s3rp07 , phaan-a0a0s3rbq0 , vigrr-a0a1s3tul4 , phaan-a0a0s3smk7 , phaan-a0a0s3slm9 , phaan-a0a0l9ujf5 , phaan-a0a0l9til9 , phaan-a0a0l9uqr2 , phaan-a0a0l9v1m8 , phaan-a0a0l9uc60 , phaan-a0a0l9ucr8

Title : Avertoxins A-D, Prenyl Asteltoxin Derivatives from Aspergillus versicolor Y10, an Endophytic Fungus of Huperzia serrata - Wang_2015_J.Nat.Prod_78_3067
Author(s) : Wang M , Sun M , Hao H , Lu C
Ref : Journal of Natural Products , 78 :3067 , 2015
Abstract : Aspergillus versicolor Y10 is an endophytic fungus isolated from Huperzia serrata, which showed inhibitory activity against acetylcholinesterase. An investigation of the chemical constituents of Y10 led to the isolation of four new prenylated asteltoxin derivatives, named avertoxins A-D (2-5), together with the known mycotoxin asteltoxin (1). In the present study, we report structure elucidation for 2-5 and the revised NMR assignments for asteltoxin and demonstrated that avertoxin B (3) is an active inhibitor against human acetylcholinesterase with the IC50 value of 14.9 muM (huperzine A as the positive control had an IC50 of 0.6 muM). In addition, the cytotoxicity of asteltoxin (1) and avertoxins A-D (2-5) against MDA-MB-231, HCT116, and HeLa cell lines was evaluated.
ESTHER : Wang_2015_J.Nat.Prod_78_3067
PubMedSearch : Wang_2015_J.Nat.Prod_78_3067
PubMedID: 26618211

Title : TMPyP4, a Stabilizer of Nucleic Acid Secondary Structure, Is a Novel Acetylcholinesterase Inhibitor - Fujiwara_2015_PLoS.One_10_e0139167
Author(s) : Fujiwara N , Mazzola M , Cai E , Wang M , Cave JW
Ref : PLoS ONE , 10 :e0139167 , 2015
Abstract : The porphyrin compound, TMPyP4 (5,10,15,20-Tetrakis-(N-methyl-4-pyridyl)porphine), is widely used as a photosensitizer and a modulator of nucleic acid secondary structure stability. Our group recently showed in cultured cells and forebrain slice cultures that this compound can also down regulate expression of Tyrosine hydroxylase (Th), which encodes the rate-limiting enzyme in catecholamine biosynthesis, by stabilizing DNA secondary structures in the Th proximal promoter. The current study sought to establish whether treatment with TMPyP4 could modify mouse Th expression levels in vivo. Intraperitoneal administration of low TMPyP4 doses (10mg/kg), similar to those used for photosensitization, did not significantly reduce Th transcript levels in several catecholaminergic regions. Administration of a high dose (40 mg/kg), similar to those used for tumor xenograph reduction, unexpectedly induced flaccid paralysis in an age and sex-dependent manner. In vitro analyses revealed that TMPyP4, but not putative metabolites, inhibited Acetylcholinesterase activity and pre-treatment of TMPyP4 with Hemeoxygenase-2 (HO-2) rescued Acetylcholinesterase function. Age-dependent differences in HO-2 expression levels may account for some of the variable in vivo effects of high TMPyP4 doses. Together, these studies indicate that only low doses of TMPyP4, such as those typically used for photosensitization, are well tolerated in vivo. Thus, despite its widespread use in vitro, TMPyP4 is not ideal for modifying neuronal gene expression in vivo by manipulating nucleic acid secondary structure stability, which highlights the need to identify more clinically suitable compounds that can modulate nucleic acid secondary structure and gene expression.
ESTHER : Fujiwara_2015_PLoS.One_10_e0139167
PubMedSearch : Fujiwara_2015_PLoS.One_10_e0139167
PubMedID: 26402367

Title : Structure of Drosophila Oskar reveals a novel RNA binding protein - Yang_2015_Proc.Natl.Acad.Sci.U.S.A_112_11541
Author(s) : Yang N , Yu Z , Hu M , Wang M , Lehmann R , Xu RM
Ref : Proc Natl Acad Sci U S A , 112 :11541 , 2015
Abstract : Oskar (Osk) protein plays critical roles during Drosophila germ cell development, yet its functions in germ-line formation and body patterning remain poorly understood. This situation contrasts sharply with the vast knowledge about the function and mechanism of osk mRNA localization. Osk is predicted to have an N-terminal LOTUS domain (Osk-N), which has been suggested to bind RNA, and a C-terminal hydrolase-like domain (Osk-C) of unknown function. Here, we report the crystal structures of Osk-N and Osk-C. Osk-N shows a homodimer of winged-helix-fold modules, but without detectable RNA-binding activity. Osk-C has a lipase-fold structure but lacks critical catalytic residues at the putative active site. Surprisingly, we found that Osk-C binds the 3'UTRs of osk and nanos mRNA in vitro. Mutational studies identified a region of Osk-C important for mRNA binding. These results suggest possible functions of Osk in the regulation of stability, regulation of translation, and localization of relevant mRNAs through direct interaction with their 3'UTRs, and provide structural insights into a novel protein-RNA interaction motif involving a hydrolase-related domain.
ESTHER : Yang_2015_Proc.Natl.Acad.Sci.U.S.A_112_11541
PubMedSearch : Yang_2015_Proc.Natl.Acad.Sci.U.S.A_112_11541
PubMedID: 26324911

Title : Synthesis and characterization of 1H-phenanthro[9,10-d]imidazole derivatives as multifunctional agents for treatment of Alzheimer's disease - Liu_2014_Biochim.Biophys.Acta_1840_2886
Author(s) : Liu J , Qiu J , Wang M , Wang L , Su L , Gao J , Gu Q , Xu J , Huang SL , Gu LQ , Huang ZS , Li D
Ref : Biochimica & Biophysica Acta , 1840 :2886 , 2014
Abstract : BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder that is characterized by dementia, cognitive impairment, and memory loss. Diverse factors are related to the development of AD, such as increased level of beta-amyloid (Abeta), acetylcholine, metal ion deregulation, hyperphosphorylated tau protein, and oxidative stress.
METHODS: The following methods were used: organic syntheses of 1H-phenanthro[9,10-d]imidazole derivatives, inhibition of self-mediated and metal-induced Abeta1-42 aggregation, inhibition studies for acetylcholinesterase and butyrylcholinesterase, anti-oxidation activity studies, CD, MTT assay, transmission electron microscopy, dot plot assay, gel electrophoresis, Western blot, and molecular docking studies.
RESULTS: We synthesized and characterized a new type of 1H-phenanthro[9,10-d]imidazole derivatives as multifunctional agents for AD treatment. Our results showed that most of these derivatives exhibited strong Abeta aggregation inhibitory activity. Compound 9g had 74% Abeta1-42 aggregation inhibitory effect at 10muM concentration with its IC50 value of 6.5muM for self-induced Abeta1-42 aggregation. This compound also showed good inhibition of metal-mediated (Cu2+ and Fe2+) and acetylcholinesterase-induced Abeta1-42 aggregation, as indicated by using thioflavin T assay, transmission electron microscopy, gel electrophoresis, and Western blot. Besides, compound 9g exhibited cholinesterase inhibitory activity, with its IC50 values of 0.86muM and 0.51muM for acetylcholinesterase and butyrylcholinesterase, respectively. In addition, compound 9g showed good anti-oxidation effect with oxygen radical absorbance capacity (ORAC) value of 2.29.
CONCLUSIONS: Compound 9g was found to be a potent multi-target-directed agent for Alzheimer's disease. GENERAL SIGNIFICANCE: Compound 9g could become a lead compound for further development as a multi-target-directed agent for AD treatment.
ESTHER : Liu_2014_Biochim.Biophys.Acta_1840_2886
PubMedSearch : Liu_2014_Biochim.Biophys.Acta_1840_2886
PubMedID: 24821011

Title : Association between esophageal cancer risk and EPHX1 polymorphisms: a meta-analysis - Li_2014_World.J.Gastroenterol_20_5124
Author(s) : Li QT , Kang W , Wang M , Yang J , Zuo Y , Zhang W , Su DK
Ref : World J Gastroenterol , 20 :5124 , 2014
Abstract : AIM: To summarize the relationship between p.Tyr113His and p.His139Arg polymorphisms in microsomal epoxide hydrolase (EPHX1) and risk for esophageal cancer (EC).
METHODS: The MEDLINE/PubMed and EMBASE databases were searched for studies of the association between EPHX1 polymorphisms and EC risk that were published from the database inception date to April 2013. A total of seven case-control studies, including seven on p.Tyr113His (cases, n = 1118; controls, n = 1823) and six on p.His139Arg (cases, n = 861; controls, n = 1571), were included in the meta-analysis. After data extraction by two investigators working independently, the meta-analyses were carried out with STATA 11.0 software. Pooled odds ratios and 95%CI were calculated using a fixed-effects model or a random-effects model, as appropriate.
RESULTS: The pooled EPHX1 p.Tyr113His polymorphism data showed no significant association with EC in any of the genetic models (OR = 1.00, 95%CI: 0.70-1.48 for Tyr/His vs Tyr/Tyr; OR = 1.10, 95%CI: 0.77-1.57 for His/His vs Tyr/Tyr; OR = 1.06, 95%CI: 0.75-1.49 for a dominant model; OR = 1.09, 95%CI: 0.89-1.34 for a recessive model). Similar results were obtained from the p.His139Arg polymorphism analysis (Arg/His vs His/His: OR = 1.02, 95%CI: 0.84-1.23; Arg/Arg vs His/His: OR = 0.96, 95%CI: 0.60-1.54; OR = 1.03, 95%CI: 0.78-1.37 for the dominant model; OR = 0.97, 95%CI: 0.61-1.56 for the recessive model). Subgroup analyses for ethnicity, subtype of EC, and source of controls (population-based or hospital-based) showed trends that were consistent with the pooled analysis (reported above), with no significant associations found. CONCLUSION: This meta-analysis suggests that the p.Tyr113His and p.His139Arg polymorphisms in EPHX1 may not be associated with EC development.
ESTHER : Li_2014_World.J.Gastroenterol_20_5124
PubMedSearch : Li_2014_World.J.Gastroenterol_20_5124
PubMedID: 24803829

Title : DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching - Zhao_2014_Plant.Cell.Physiol_55_1096
Author(s) : Zhao J , Wang T , Wang M , Liu Y , Yuan S , Gao Y , Yin L , Sun W , Peng L , Zhang W , Wan J , Li X
Ref : Plant Cell Physiol , 55 :1096 , 2014
Abstract : Strigolactones (SLs) are a novel class of plant hormones that inhibit shoot branching. Currently, two proteins in rice are thought to play crucial roles in SL signal transduction. DWARF14 (D14), an alpha/beta hydrolase, is responsible for SL perception, while DWARF3 (D3), an F-box protein with leucine-rich repeats, is essential for SL signal transduction. However, how these two proteins transmit SL signals to downstream factors remains unclear. Here, we characterized a high-tillering dwarf rice mutant, gsor300097, which is insensitive to GR24, a synthetic analog of SL. Mapping and sequencing analysis showed that gsor300097 is a novel allelic mutant of D3, in which a nonsense mutation truncates the protein from 720 to 527 amino acids. The D3 gene was strongly expressed in root, leaf, shoot base and panicle. Nuclear-localized F-box protein D3 played a role in the SCF complex by interacting with OSK1, OSK5 or OSK20 and OsCullin1. In addition, D3 associated with D14 in a GR24-dependent manner in vivo. Taken together, our findings suggested that D3 assembled into an SCF(D3) complex and associated with D14 to suppress rice shoot branching.
ESTHER : Zhao_2014_Plant.Cell.Physiol_55_1096
PubMedSearch : Zhao_2014_Plant.Cell.Physiol_55_1096
PubMedID: 24616269

Title : A novel acetylcholinesterase biosensor based on carboxylic graphene coated with silver nanoparticles for pesticide detection - Liu_2014_Mater.Sci.Eng.C.Mater.Biol.Appl_35_253
Author(s) : Liu Y , Wang G , Li C , Zhou Q , Wang M , Yang L
Ref : Mater Sci Eng C Mater Biol Appl , 35 :253 , 2014
Abstract : A novel acetylcholinesterase (AChE) biosensor based on Ag NPs, carboxylic graphene (CGR) and Nafion (NF) hybrid modified glass carbon electrode (GCE) has been successfully developed. Ag NPs-CGR-NF possessed predominant conductivity, catalysis and biocompatibility and provided a hydrophilic surface for AChE adhesion. Chitosan (CS) was used to immobilize AChE on the surface of Ag NPs-CGR-NF/GCE to keep the AChE activities. The AChE biosensor showed favorable affinity to acetylthiocholine chloride (ATCl) and could catalyze the hydrolysis of ATCl with an apparent Michaelis-Menten constant value of 133muM, which was then oxidized to produce a detectable and fast response. Under optimum conditions, the biosensor detected chlorpyrifos and carbaryl at concentrations ranging from 1.0x10(-13) to 1x10(-8)M and from 1.0x10(-12) to 1x10(-8)M. The detection limits for chlorpyrifos and carbaryl were 5.3x10(-14)M and 5.45x10(-13)M, respectively. The developed biosensor exhibited good sensitivity, stability, reproducibility and low cost, thus providing a promising tool for analysis of enzyme inhibitors. This study could provide a simple and effective immobilization platform for meeting the demand of the effective immobilization enzyme on the electrode surface.
ESTHER : Liu_2014_Mater.Sci.Eng.C.Mater.Biol.Appl_35_253
PubMedSearch : Liu_2014_Mater.Sci.Eng.C.Mater.Biol.Appl_35_253
PubMedID: 24411376

Title : Changes in monoclonal HLA-DR antigen expression in acute organophosphorus pesticide-poisoned patients - Xia_2014_Exp.Ther.Med_7_137
Author(s) : Xia C , Wang M , Liang Q , Yun L , Kang H , Fan L , Wang D , Zhang G
Ref : Exp Ther Med , 7 :137 , 2014
Abstract : The aim of this study was to investigate changes in human leukocyte antigen (HLA)-DR expression of peripheral blood mononuclear cells (MNCs) in patients with acute organophosphorus pesticide poisoning (AOPP). HLA-DR antigen expression of peripheral blood MNCs was examined in 75 patients with AOPP, including 36 patients without multiple organ dysfunction syndrome (non-MODS) and 39 patients with multiple organ dysfunction syndrome (MODS), as well as in 30 healthy individuals using flow cytometry assay. The associations between HLA-DR antigen expression and certain parameters were analyzed, including acute physiology and chronic health evaluation II (APACHE II) score, serum cholinesterase (ChE) activity, cardiac troponin I (cTnI), cardiac enzymes, and liver and kidney function. The mean fluorescence intensity (MCF) of HLA-DR expression in the AOPP group (21.59+/-5.36) was significantly lower than that in the control group (27.85+/-4.86) (P<0.001). The MCF in the MODS group (18.17+/-4.23) was lower than that in the non-MODS group (25.15+/-6.15). In addition, the MCF of the deceased patients (15.29+/-3.97) was lower than that of the surviving patients (22.34+/-2.76) (P<0.001). The MCF of patients with AOPP and MODS was positively correlated with serum ChE (P<0.01) and negatively correlated with the APACHE II score, creatine kinase isoenzyme, cTnI, lactate dehydrogenase, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen and serum creatinine (P<0.05). In conclusion, HLA-DR expression in patients with AOPP was significantly decreased compared with that in healthy individuals; HLA-DR expression may therefore be a good indicator for evaluating AOPP, MODS disease severity, immune function, efficacy of prognosis and prognosis. Examination of HLA-DR antigen expression may be of crucial clinical value.
ESTHER : Xia_2014_Exp.Ther.Med_7_137
PubMedSearch : Xia_2014_Exp.Ther.Med_7_137
PubMedID: 24348778

Title : Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota) - Wang_2014_BMC.Genomics_15_34
Author(s) : Wang YY , Liu B , Zhang XY , Zhou QM , Zhang T , Li H , Yu YF , Zhang XL , Hao XY , Wang M , Wang L , Wei JC
Ref : BMC Genomics , 15 :34 , 2014
Abstract : BACKGROUND: Lichen is a classic mutualistic organism and the lichenization is one of the fungal symbioses. The lichen-forming fungus Endocarpon pusillum is living in symbiosis with the green alga Diplosphaera chodatii Bialsuknia as a lichen in the arid regions.
RESULTS: 454 and Illumina technologies were used to sequence the genome of E. pusillum. A total of 9,285 genes were annotated in the 37.5 Mb genome of E. pusillum. Analyses of the genes provided direct molecular evidence for certain natural characteristics, such as homothallic reproduction and drought-tolerance. Comparative genomics analysis indicated that the expansion and contraction of some protein families in the E. pusillum genome reflect the specific relationship with its photosynthetic partner (D. chodatii). Co-culture experiments using the lichen-forming fungus E. pusillum and its algal partner allowed the functional identification of genes involved in the nitrogen and carbon transfer between both symbionts, and three lectins without signal peptide domains were found to be essential for the symbiotic recognition in the lichen; interestingly, the ratio of the biomass of both lichen-forming fungus and its photosynthetic partner and their contact time were found to be important for the interaction between these two symbionts.
CONCLUSIONS: The present study lays a genomic analysis of the lichen-forming fungus E. pusillum for demonstrating its general biological features and the traits of the interaction between this fungus and its photosynthetic partner D. chodatii, and will provide research basis for investigating the nature of its drought resistance and symbiosis.
ESTHER : Wang_2014_BMC.Genomics_15_34
PubMedSearch : Wang_2014_BMC.Genomics_15_34
PubMedID: 24438332
Gene_locus related to this paper: endpu-u1ggx3 , endpu-u1hiw6 , endpu-u1gx33 , endpu-u1hli9 , endpu-u1hmu1 , endpu-u1htc7 , endpu-u1gu60

Title : Separation and purification of bioactive botrallin and TMC-264 by a combination of HSCCC and semi-preparative HPLC from endophytic fungus Hyalodendriella sp. Ponipodef12 - Mao_2014_World.J.Microbiol.Biotechnol_30_2533
Author(s) : Mao Z , Luo R , Luo H , Tian J , Liu H , Yue Y , Wang M , Peng Y , Zhou L
Ref : World J Microbiol Biotechnol , 30 :2533 , 2014
Abstract : Two dibenzo-alpha-pyrones, botrallin (1) and TMC-264 (2) were preparatively separated from crude ethyl acetate extract of the endophytic fungus Hyalodendriella sp. Ponipodef12, which was isolated from the hybrid 'Neva' of Populus deltoides Marsh x P. nigra L. using a combination of high-speed counter-current chromatography (HSCCC) and semi-preparative HPLC. Botrallin (1) with 74.73 % of purity and TMC-264 (2) with 82.29 % of purity were obtained through HSCCC by employing a solvent system containing n-hexane-ethyl acetate-methanol-water at a volume ratio of 1.2:1.0:0.9:1.0. It was the first time for TMC-264 (2) to be isolated from this fungus. TMC-264 (2) showed strong antimicrobial and antinematodal activity, and botrallin (1) exhibited moderate inhibitory activity on acetylcholinesterase.
ESTHER : Mao_2014_World.J.Microbiol.Biotechnol_30_2533
PubMedSearch : Mao_2014_World.J.Microbiol.Biotechnol_30_2533
PubMedID: 24898177

Title : Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats - Wang_2014_Toxicol.Appl.Pharmacol_280_169
Author(s) : Wang T , Zhao L , Liu M , Xie F , Ma X , Zhao P , Liu Y , Li J , Wang M , Yang Z , Zhang Y
Ref : Toxicol Appl Pharmacol , 280 :169 , 2014
Abstract : Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75mg/kg body weight (1/20 LD50) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity.
ESTHER : Wang_2014_Toxicol.Appl.Pharmacol_280_169
PubMedSearch : Wang_2014_Toxicol.Appl.Pharmacol_280_169
PubMedID: 24967689

Title : Aryl-aldehyde formation in fungal polyketides: discovery and characterization of a distinct biosynthetic mechanism - Wang_2014_Chem.Biol_21_257
Author(s) : Wang M , Beissner M , Zhao H
Ref : Chemical Biology , 21 :257 , 2014
Abstract : Aryl-aldehydes are a common feature in fungal polyketides, which are considered to be exclusively generated by the R domain of nonreducing polyketide synthases (NR-PKSs). However, by cloning and heterologous expression of both cryptic NR-PKS and nonribosomal peptide synthase (NRPS)-like genes from Aspergillus terreus in Saccharomyces cerevisiae, we identified a distinct mechanism for aryl-aldehyde formation in which a NRPS-like protein activates and reduces an aryl-acid produced by the accompanying NR-PKS to an aryl-aldehyde. Bioinformatics study indicates that such a mechanism may be widely used throughout the fungi kingdom.
ESTHER : Wang_2014_Chem.Biol_21_257
PubMedSearch : Wang_2014_Chem.Biol_21_257
PubMedID: 24412543
Gene_locus related to this paper: asptn-5moas , asptn-azpb5

Title : A reference genome for common bean and genome-wide analysis of dual domestications - Schmutz_2014_Nat.Genet_46_707
Author(s) : Schmutz J , McClean PE , Mamidi S , Wu GA , Cannon SB , Grimwood J , Jenkins J , Shu S , Song Q , Chavarro C , Torres-Torres M , Geffroy V , Moghaddam SM , Gao D , Abernathy B , Barry K , Blair M , Brick MA , Chovatia M , Gepts P , Goodstein DM , Gonzales M , Hellsten U , Hyten DL , Jia G , Kelly JD , Kudrna D , Lee R , Richard MM , Miklas PN , Osorno JM , Rodrigues J , Thareau V , Urrea CA , Wang M , Yu Y , Zhang M , Wing RA , Cregan PB , Rokhsar DS , Jackson SA
Ref : Nat Genet , 46 :707 , 2014
Abstract : Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.
ESTHER : Schmutz_2014_Nat.Genet_46_707
PubMedSearch : Schmutz_2014_Nat.Genet_46_707
PubMedID: 24908249
Gene_locus related to this paper: phavu-v7azs2 , phavu-v7awu7 , phavu-v7bpt6 , phavu-v7b6k3 , phavu-v7cry4

Title : Macrophage CGI-58 deficiency activates ROS-inflammasome pathway to promote insulin resistance in mice - Miao_2014_Cell.Rep_7_223
Author(s) : Miao H , Ou J , Ma Y , Guo F , Yang Z , Wiggins M , Liu C , Song W , Han X , Wang M , Cao Q , Chung BH , Yang D , Liang H , Xue B , Shi H , Gan L , Yu L
Ref : Cell Rep , 7 :223 , 2014
Abstract : Overnutrition activates a proinflammatory program in macrophages to induce insulin resistance (IR), but its molecular mechanisms remain incompletely understood. Here, we show that saturated fatty acid and lipopolysaccharide, two factors implicated in high-fat diet (HFD)-induced IR, suppress macrophage CGI-58 expression. Macrophage-specific CGI-58 knockout (MaKO) in mice aggravates HFD-induced glucose intolerance and IR, which is associated with augmented systemic/tissue inflammation and proinflammatory activation of adipose tissue macrophages. CGI-58-deficient macrophages exhibit mitochondrial dysfunction due to defective peroxisome proliferator-activated receptor (PPAR)gamma signaling. Consequently, they overproduce reactive oxygen species (ROS) to potentiate secretion of proinflammatory cytokines by activating NLRP3 inflammasome. Anti-ROS treatment or NLRP3 silencing prevents CGI-58-deficient macrophages from oversecreting proinflammatory cytokines and from inducing proinflammatory signaling and IR in the cocultured fat slices. Anti-ROS treatment also prevents exacerbation of inflammation and IR in HFD-fed MaKO mice. Our data thus establish CGI-58 as a suppressor of overnutrition-induced NLRP3 inflammasome activation in macrophages.
ESTHER : Miao_2014_Cell.Rep_7_223
PubMedSearch : Miao_2014_Cell.Rep_7_223
PubMedID: 24703845

Title : Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization - Qin_2014_Proc.Natl.Acad.Sci.U.S.A_111_5135
Author(s) : Qin C , Yu C , Shen Y , Fang X , Chen L , Min J , Cheng J , Zhao S , Xu M , Luo Y , Yang Y , Wu Z , Mao L , Wu H , Ling-Hu C , Zhou H , Lin H , Gonzalez-Morales S , Trejo-Saavedra DL , Tian H , Tang X , Zhao M , Huang Z , Zhou A , Yao X , Cui J , Li W , Chen Z , Feng Y , Niu Y , Bi S , Yang X , Cai H , Luo X , Montes-Hernandez S , Leyva-Gonzalez MA , Xiong Z , He X , Bai L , Tan S , Liu D , Liu J , Zhang S , Chen M , Zhang L , Zhang Y , Liao W , Wang M , Lv X , Wen B , Liu H , Luan H , Yang S , Wang X , Xu J , Li X , Li S , Wang J , Palloix A , Bosland PW , Li Y , Krogh A , Rivera-Bustamante RF , Herrera-Estrella L , Yin Y , Yu J , Hu K , Zhang Z
Ref : Proc Natl Acad Sci U S A , 111 :5135 , 2014
Abstract : As an economic crop, pepper satisfies people's spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded approximately 0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of approximately 81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs.
ESTHER : Qin_2014_Proc.Natl.Acad.Sci.U.S.A_111_5135
PubMedSearch : Qin_2014_Proc.Natl.Acad.Sci.U.S.A_111_5135
PubMedID: 24591624
Gene_locus related to this paper: capch-q75qh4 , capan-a0a1u8fuf5 , capan-a0a1u8gmz3 , capan-a0a1u8f879 , capan-a0a1u8ftr2 , capan-a0a1u8g8s6

Title : Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides - Yang_2013_Talanta_113_135
Author(s) : Yang L , Wang G , Liu Y , Wang M
Ref : Talanta , 113 :135 , 2013
Abstract : A sensitive amperometric acetylcholinesterase (AChE) biosensor based on NiO nanoparticles (NiO NPs), carboxylic graphene (CGR) and nafion (NF) modified glassy carbon electrode (GCE) has been developed. NiO NPs-CGR-NF nanocomposites with excellent conductivity, catalysis and biocompatibility offered an extremely hydrophilic surface for AChE adhesion. The AChE biosensor showed favorable affinity to acetylthiocholine chloride (ATCl) and could catalyze the hydrolysis of ATCl with an apparent Michaelis-Menten constant value of 135muM. Under optimum conditions, the biosensor detected methyl parathion and chlorpyrifos in the linear range from 1.0x10(-13) to 1x10(-10)M and from 1.0x10(-10) to 1x10(-8)M with the detection limits 5x10(-14)M. The biosensor detected carbofuran in the linear range from 1.0x10(-12) to 1x10(-10)M and from 1.0x10(-10) to 1x10(-8)M with the detection limit of 5x10(-13)M. The developed biosensor exhibited good sensitivity, stability and reproducibility, thus providing a promising tool for analysis of enzyme inhibitors.
ESTHER : Yang_2013_Talanta_113_135
PubMedSearch : Yang_2013_Talanta_113_135
PubMedID: 23708635

Title : Development of a stable biosensor based on a SiO2 nanosheet-Nafion-modified glassy carbon electrode for sensitive detection of pesticides - Yang_2013_Anal.Bioanal.Chem_405_2545
Author(s) : Yang L , Wang GC , Liu YJ , An JJ , Wang M
Ref : Anal Bioanal Chem , 405 :2545 , 2013
Abstract : SiO(2) nanosheets (SNS) have been prepared by a chemical method using montmorillonite as raw material and were characterized by scanning electron microscopy and X-ray diffraction. SiO(2) nanosheet-Nafion nanocomposites with excellent conductivity, catalytic activity, and biocompatibility provided an extremely hydrophilic surface for biomolecule adhesion. Chitosan was used as a cross-linker to immobilize acetylcholinesterase (AChE), and Nafion was used as a protective membrane to efficiently improve the stability of the AChE biosensor. The AChE biosensor showed favorable affinity for acetylthiocholine chloride and catalyzed the hydrolysis of acetylthiocholine chloride with an apparent Michaelis-Menten constant of 134 muM to form thiocholine, which was then oxidized to produce a detectable and fast response. Based on the inhibition by pesticides of the enzymatic activity of AChE, detection of the amperometric response from thiocholine on the biosensor is a simple and effective way to biomonitor exposure to pesticides. Under optimum conditions, the biosensor detected methyl parathion, chlorpyrifos, and carbofuran at concentrations ranging from 1.0 x 10(-12) to 1 x 10(-10) M and from 1.0 x 10(-10) to 1 x 10(-8) M. The detection limits for methyl parathion, chlorpyrifos, and carbofuran were 5 x 10(-13) M. The biosensor developed exhibited good sensitivity, stability, reproducibility, and low cost, thus providing a new promising tool for analysis of enzyme inhibitors.
ESTHER : Yang_2013_Anal.Bioanal.Chem_405_2545
PubMedSearch : Yang_2013_Anal.Bioanal.Chem_405_2545
PubMedID: 23354570

Title : Genome Sequencing of Ralstonia solanacearum FQY_4, Isolated from a Bacterial Wilt Nursery Used for Breeding Crop Resistance - Cao_2013_Genome.Announc_1_e00125
Author(s) : Cao Y , Tian B , Liu Y , Cai L , Wang H , Lu N , Wang M , Shang S , Luo Z , Shi J
Ref : Genome Announc , 1 : , 2013
Abstract : Ralstonia solanacearum strain FQY_4 was isolated from a bacterial wilt nursery, which is used for breeding crops for Ralstonia resistance in China. Here, we report the complete genome sequence of FQY_4 and its comparison with other published R. solanacearum genomes, especially with the strains GMI1000 and Y45 in the same group.
ESTHER : Cao_2013_Genome.Announc_1_e00125
PubMedSearch : Cao_2013_Genome.Announc_1_e00125
PubMedID: 23661471
Gene_locus related to this paper: ralso-PCAD

Title : Nicotinic alpha7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex - Yang_2013_Proc.Natl.Acad.Sci.U.S.A_110_12078
Author(s) : Yang Y , Paspalas CD , Jin LE , Picciotto MR , Arnsten AF , Wang M
Ref : Proc Natl Acad Sci U S A , 110 :12078 , 2013
Abstract : The cognitive function of the highly evolved dorsolateral prefrontal cortex (dlPFC) is greatly influenced by arousal state, and is gravely afflicted in disorders such as schizophrenia, where there are genetic insults in alpha7 nicotinic acetylcholine receptors (alpha7-nAChRs). A recent behavioral study indicates that ACh depletion from dlPFC markedly impairs working memory [Croxson PL, Kyriazis DA, Baxter MG (2011) Nat Neurosci 14(12):1510-1512]; however, little is known about how alpha7-nAChRs influence dlPFC cognitive circuits. Goldman-Rakic [Goldman-Rakic (1995) Neuron 14(3):477-485] discovered the circuit basis for working memory, whereby dlPFC pyramidal cells excite each other through glutamatergic NMDA receptor synapses to generate persistent network firing in the absence of sensory stimulation. Here we explore alpha7-nAChR localization and actions in primate dlPFC and find that they are enriched in glutamate network synapses, where they are essential for dlPFC persistent firing, with permissive effects on NMDA receptor actions. Blockade of alpha7-nAChRs markedly reduced, whereas low-dose stimulation selectively enhanced, neuronal representations of visual space. These findings in dlPFC contrast with the primary visual cortex, where nAChR blockade had no effect on neuronal firing [Herrero JL, et al. (2008) Nature 454(7208):1110-1114]. We additionally show that alpha7-nAChR stimulation is needed for NMDA actions, suggesting that it is key for the engagement of dlPFC circuits. As ACh is released in cortex during waking but not during deep sleep, these findings may explain how ACh shapes differing mental states during wakefulness vs. sleep. The results also explain why genetic insults to alpha7-nAChR would profoundly disrupt cognitive experience in patients with schizophrenia.
ESTHER : Yang_2013_Proc.Natl.Acad.Sci.U.S.A_110_12078
PubMedSearch : Yang_2013_Proc.Natl.Acad.Sci.U.S.A_110_12078
PubMedID: 23818597

Title : Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution - Chen_2013_Nat.Commun_4_1595
Author(s) : Chen J , Huang Q , Gao D , Wang J , Lang Y , Liu T , Li B , Bai Z , Luis Goicoechea J , Liang C , Chen C , Zhang W , Sun S , Liao Y , Zhang X , Yang L , Song C , Wang M , Shi J , Liu G , Liu J , Zhou H , Zhou W , Yu Q , An N , Chen Y , Cai Q , Wang B , Liu B , Min J , Huang Y , Wu H , Li Z , Zhang Y , Yin Y , Song W , Jiang J , Jackson SA , Wing RA , Chen M
Ref : Nat Commun , 4 :1595 , 2013
Abstract : The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza.
ESTHER : Chen_2013_Nat.Commun_4_1595
PubMedSearch : Chen_2013_Nat.Commun_4_1595
PubMedID: 23481403
Gene_locus related to this paper: orysa-Q6ZDG3 , orysa-q6h415 , orysj-q6yse8 , orysa-q33aq0 , orybr-j3l7k2 , orybr-j3m138 , orybr-j3l6m8 , orybr-j3m3b3 , orybr-j3l8d1 , orybr-j3kza5 , orybr-j3mnb5 , orybr-j3n4p4 , orybr-j3lg73 , orybr-j3l342 , orybr-j3msi2 , orybr-j3nb83 , orybr-j3mpc5

Title : 6-Deoxyerythronolide B synthase thioesterase-catalyzed macrocyclization is highly stereoselective - Pinto_2012_Org.Lett_14_2278
Author(s) : Pinto A , Wang M , Horsman M , Boddy CN
Ref : Org Lett , 14 :2278 , 2012
Abstract : Macrocyclic polyketide natural products are an indispensable source of therapeutic agents. The final stage of their biosynthesis, macrocyclization, is catalyzed regio- and stereoselectively by a thioesterase. A panel of substrates were synthesized to test their specificity for macrocyclization by the erythromycin polyketide synthase TE (DEBS TE) in vitro. It was shown that DEBS TE is highly stereospecific, successfully macrocyclizing a 14-member ring substrate with an R configured O-nucleophile, and highly regioselective, generating exclusively the 14-member lactone over the 12-member lactone.
ESTHER : Pinto_2012_Org.Lett_14_2278
PubMedSearch : Pinto_2012_Org.Lett_14_2278
PubMedID: 22519860

Title : Complete genome sequence of Riemerella anatipestifer reference strain - Wang_2012_J.Bacteriol_194_3270
Author(s) : Wang X , Zhu D , Wang M , Cheng A , Jia R , Zhou Y , Chen Z , Luo Q , Liu F , Wang Y , Chen XY
Ref : Journal of Bacteriology , 194 :3270 , 2012
Abstract : Riemerella anatipestifer is an infectious pathogen causing serositis in ducks. We had the genome of the R. anatipestifer reference strain ATCC 11845 sequenced. The completed draft genome consists of one circular chromosome with 2,164,087 bp. There are 2,101 genes in the draft, and its GC content is 35.01%.
ESTHER : Wang_2012_J.Bacteriol_194_3270
PubMedSearch : Wang_2012_J.Bacteriol_194_3270
PubMedID: 22628503

Title : The immunomodulation of acetylcholinesterase in zhikong scallop Chlamys farreri - Shi_2012_PLoS.One_7_e30828
Author(s) : Shi X , Zhou Z , Wang L , Yue F , Wang M , Yang C , Song L
Ref : PLoS ONE , 7 :e30828 , 2012
Abstract : BACKGROUND: Acetycholinesterase (AChE; EC 3.1.1.7) is an essential hydrolytic enzyme in the cholinergic nervous system, which plays an important role during immunomodulation in vertebrates. Though AChEs have been identified in most invertebrates, the knowledge about immunomodulation function of AChE is still quite meagre in invertebrates. METHODOLOGY: A scallop AChE gene was identified from Chlamys farreri (designed as CfAChE), and its open reading frame encoded a polypeptide of 522 amino acids. A signal peptide, an active site triad, the choline binding site and the peripheral anionic sites (PAS) were identified in CfAChE. The recombinant mature polypeptide of CfAChE (rCfAChE) was expressed in Pichia pastoris GS115, and its activity was 71.3+/-1.3 U mg(-1) to catalyze the hydrolysis of acetylthiocholine iodide. The mRNA transcripts of CfAChE were detected in haemocytes, hepatopancreas, adductor muscle, mantle, gill, kidney and gonad, with the highest expression level in hepatopancreas. The relative expression level of CfAChE mRNA in haemocytes was both up-regulated after LPS (0.5 mg mL(-1)) and human TNF-alpha (50 ng mL(-1)) stimulations, and it reached the highest level at 12 h (10.4-fold, P<0.05) and 1 h (3.2-fold, P<0.05), respectively. After Dichlorvos (DDVP) (50 mg L(-1)) stimulation, the CfAChE activity in the supernatant of haemolymph decreased significantly from 0.16 U mg(-1) at 0 h to 0.03 U mg(-1) at 3 h, while the expression level of lysozyme in the haemocytes was up-regulated and reached the highest level at 6 h, which was 3.0-fold (P<0.05) of that in the blank group. CONCLUSIONS: The results collectively indicated that CfAChE had the acetylcholine-hydrolyzing activity, which was in line with the potential roles of AChE in the neuroimmune system of vertebrates which may help to re-balance the immune system after immune response.
ESTHER : Shi_2012_PLoS.One_7_e30828
PubMedSearch : Shi_2012_PLoS.One_7_e30828
PubMedID: 22292052
Gene_locus related to this paper: 9biva-h6u1i3

Title : [Effect of sailuotong capsule on intervening cognitive dysfunction of multi-infarct dementia in rats] - Xu_2012_Zhongguo.Zhong.Yao.Za.Zhi_37_2943
Author(s) : Xu L , Lin CR , Liu JX , Ren JX , Li JM , Wang M , Li HH , Song WT , Yao MJ , Wang GR
Ref : Zhongguo Zhong Yao Za Zhi , 37 :2943 , 2012
Abstract : OBJECTIVE: To study the effect of Sailuotong capsule (Sailuotong) on learning and memory functions of multi-infarct dementia (MID) rats and its mechanism. METHOD: All SD rats were divided into five groups, namely the sham operation group, the model group, the positive group, the low dosage Sailuotong-treated group and the high dosage Sailuotong-treated group. The multi-infarct dementia model was established by injecting the micro-sphere vascular occlusive agent. On the 10th day after the successful operation, the rats were administered intragastrically with distilled water, memantine hydrochloride (20 mg x kg(-1)) and Sailuotong (16.5 mg x kg(-1) and 33.0 mg x kg(-1)) once a day for 60 days respectively, in order to detect the effect of Sailuotong in different doses on the latent period and route length in Morris water maze and the activities of choline acetyltransferase (ChAT) and acetylcholinesterase (AchE) in brain tissues. RESULT: Compared with the sham operation rats, it had been observed that the latent period and route length of MID rats in Morris water maze were significantly increased (P < 0.05 or P < 0.01), and the activity of ChAT in brain tissues was significantly decreased (P < 0.05). After the intervention with Sailuotong for sixty days, the latent period and route length of MID rats in Morris water maze significantly shrank (P < 0.05 or P < 0.01). Additionally, Sailuotong decreased AchE activity, while increasing ChAT activity in brain tissues of MID rats (P < 0.05 or P < 0.01). CONCLUSION: Sailuotong capsule can improve cognitive dysfunction of MID rats to some extent. Its mechanism may be related to its different regulation of activities of ChAT and AchE in brain tissues.
ESTHER : Xu_2012_Zhongguo.Zhong.Yao.Za.Zhi_37_2943
PubMedSearch : Xu_2012_Zhongguo.Zhong.Yao.Za.Zhi_37_2943
PubMedID: 23270238

Title : Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology - English_2012_PLoS.One_7_e47768
Author(s) : English AC , Richards S , Han Y , Wang M , Vee V , Qu J , Qin X , Muzny DM , Reid JG , Worley KC , Gibbs RA
Ref : PLoS ONE , 7 :e47768 , 2012
Abstract : Many genomes have been sequenced to high-quality draft status using Sanger capillary electrophoresis and/or newer short-read sequence data and whole genome assembly techniques. However, even the best draft genomes contain gaps and other imperfections due to limitations in the input data and the techniques used to build draft assemblies. Sequencing biases, repetitive genomic features, genomic polymorphism, and other complicating factors all come together to make some regions difficult or impossible to assemble. Traditionally, draft genomes were upgraded to "phase 3 finished" status using time-consuming and expensive Sanger-based manual finishing processes. For more facile assembly and automated finishing of draft genomes, we present here an automated approach to finishing using long-reads from the Pacific Biosciences RS (PacBio) platform. Our algorithm and associated software tool, PBJelly, (publicly available at https://sourceforge.net/projects/pb-jelly/) automates the finishing process using long sequence reads in a reference-guided assembly process. PBJelly also provides "lift-over" co-ordinate tables to easily port existing annotations to the upgraded assembly. Using PBJelly and long PacBio reads, we upgraded the draft genome sequences of a simulated Drosophila melanogaster, the version 2 draft Drosophila pseudoobscura, an assembly of the Assemblathon 2.0 budgerigar dataset, and a preliminary assembly of the Sooty mangabey. With 24x mapped coverage of PacBio long-reads, we addressed 99% of gaps and were able to close 69% and improve 12% of all gaps in D. pseudoobscura. With 4x mapped coverage of PacBio long-reads we saw reads address 63% of gaps in our budgerigar assembly, of which 32% were closed and 63% improved. With 6.8x mapped coverage of mangabey PacBio long-reads we addressed 97% of gaps and closed 66% of addressed gaps and improved 19%. The accuracy of gap closure was validated by comparison to Sanger sequencing on gaps from the original D. pseudoobscura draft assembly and shown to be dependent on initial reference quality.
ESTHER : English_2012_PLoS.One_7_e47768
PubMedSearch : English_2012_PLoS.One_7_e47768
PubMedID: 23185243
Gene_locus related to this paper: drome-GH02439

Title : Draft genome sequence of CBS 2479, the standard type strain of Trichosporon asahii - Yang_2012_Eukaryot.Cell_11_1415
Author(s) : Yang RY , Li HT , Zhu H , Zhou GP , Wang M , Wang L
Ref : Eukaryot Cell , 11 :1415 , 2012
Abstract : Trichosporon asahii is one of the important opportunistic pathogenic fungi. Here, we first report the draft nuclear chromosome genome sequence and mitochondrial genome sequence of T. asahii CBS 2479, which is a standard strain of T. asahii that was isolated from a progressive psoriatic lesion. COG analysis predicted that 3,131 genes were assigned to 23 functional categories and that 628 genes were predicted to have a general function.
ESTHER : Yang_2012_Eukaryot.Cell_11_1415
PubMedSearch : Yang_2012_Eukaryot.Cell_11_1415
PubMedID: 23104369

Title : Genome sequence of the Trichosporon asahii environmental strain CBS 8904 - Yang_2012_Eukaryot.Cell_11_1586
Author(s) : Yang RY , Li HT , Zhu H , Zhou GP , Wang M , Wang L
Ref : Eukaryot Cell , 11 :1586 , 2012
Abstract : This is the first report of the genome sequence of Trichosporon asahii environmental strain CBS 8904, which was isolated from maize cobs. Comparison of the genome sequence with that of clinical strain CBS 2479 revealed that they have >99% chromosomal and mitochondrial sequence identity, yet CBS 8904 has 368 specific genes. Analysis of clusters of orthologous groups predicted that 3,307 genes belong to 23 functional categories and 703 genes were predicted to have a general function.
ESTHER : Yang_2012_Eukaryot.Cell_11_1586
PubMedSearch : Yang_2012_Eukaryot.Cell_11_1586
PubMedID: 23193141

Title : Benzopyranones from the endophytic fungus Hyalodendriella sp. Ponipodef12 and their bioactivities - Meng_2012_Molecules_17_11303
Author(s) : Meng X , Mao Z , Lou J , Xu L , Zhong L , Peng Y , Zhou L , Wang M
Ref : Molecules , 17 :11303 , 2012
Abstract : The endophytic fungus Hyalodendriella sp. Ponipodef12 was isolated from the hybrid 'Neva' of Populus deltoides Marsh x P. nigra L. In this study, four benzopyranones were isolated from the ethyl acetate extract of Hyalodendriella sp. Ponipodef12, and identified as palmariol B (1), 4-hydroxymellein (2), alternariol 9-methyl ether (3), and botrallin (4) by means of physicochemical and spectroscopic analysis. All the compounds were evaluated for their antibacterial, antifungal, antinematodal and acetylcholinesterase inhibitory activities. 4-Hydroxymellein (2) exhibited stronger antibacterial activity than the other compounds. Palmariol B (1) showed stronger antimicrobial, antinematodal and acetylcholinesterase inhibitory activities than alternariol 9-methyl ether (3) which indicated that the chlorine substitution at position 2 may contribute to its bioactivity. The results indicate the potential of this endophytic fungus as a source of bioactive benzopyranones.
ESTHER : Meng_2012_Molecules_17_11303
PubMedSearch : Meng_2012_Molecules_17_11303
PubMedID: 23011274

Title : Synthesis of carbon-11-labeled bivalent beta-carbolines as new PET agents for imaging of cholinesterase in Alzheimer's disease - Wang_2011_Appl.Radiat.Isot_69_678
Author(s) : Wang M , Zheng DX , Gao M , Hutchins GD , Zheng QH
Ref : Appl Radiat Isot , 69 :678 , 2011
Abstract : Carbon-11-labeled bivalent beta-carbolines, 9,9'-(pentane-1,5-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2a), 9,9'-(nonane-1,9-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2b), 9,9'-(dodecane-1,12-diyl)bis(2-[(11)C]methyl-9H-pyrido[3,4-b]indol-2-ium)iodide ([(11)C]2c) and 1,9-bis(2-[(11)C]methyl-3,4-dihydro-1H-pyrido[3,4-b]indol-9(2H)-yl)nonane ([(11)C]3), were prepared by N-[(11)C]methylation of their corresponding amine precursors using [(11)C]CH(3)I and isolated by either a simplified solid-phase extraction (SPE) method or HPLC in 40-60% radiochemical yields based on [(11)C]CO(2) and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 20-30min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185-370 GBq/umol.
ESTHER : Wang_2011_Appl.Radiat.Isot_69_678
PubMedSearch : Wang_2011_Appl.Radiat.Isot_69_678
PubMedID: 21256758

Title : Endocannabinoids generated by Ca2+ or by metabotropic glutamate receptors appear to arise from different pools of diacylglycerol lipase - Zhang_2011_PLoS.One_6_e16305
Author(s) : Zhang L , Wang M , Bisogno T , Di Marzo V , Alger BE
Ref : PLoS ONE , 6 :e16305 , 2011
Abstract : The identity and subcellular sources of endocannabinoids (eCBs) will shape their ability to affect synaptic transmission and, ultimately, behavior. Recent discoveries support the conclusion that 2-arachidonoyl glycerol, 2-AG, is the major signaling eCB, however, some important issues remain open. 2-AG can be synthesized by a mechanism that is strictly Ca(2+)-dependent, and another that is initiated by G-protein coupled receptors (GPCRs) and facilitated by Ca(2+). An important question is whether or not the 2-AG in these cases is synthesized by the same pool of diacylglycerol lipase alpha (DAGLalpha). Using whole-cell voltage-clamp techniques in CA1 pyramidal cells in acute in vitro rat hippocampal slices, we investigated two mechanistically distinct eCB-mediated responses to address this issue. We now report that pharmacological inhibitors of DGLalpha have quantitatively different effects on eCB-mediated responses triggered by different stimuli, suggesting that functional, and perhaps physical, distinctions among pools of DAGLalpha exist.
ESTHER : Zhang_2011_PLoS.One_6_e16305
PubMedSearch : Zhang_2011_PLoS.One_6_e16305
PubMedID: 21305054

Title : The HindIII polymorphism in the lipoprotein lipase gene predicts type 2 diabetes risk among Chinese adults - Qi_2011_Clin.Chim.Acta_412_1229
Author(s) : Qi Y , Liu J , Wang W , Wang M , Sun JY , Li Y , Wu ZS , Zhao D
Ref : Clinica Chimica Acta , 412 :1229 , 2011
Abstract : OBJECTIVE: We aimed to investigate the polymorphism HindIII of the lipoprotein lipase (LPL) gene to explore whether it had a potential role in susceptibility to type 2 diabetes mellitus (T2DM) among Han Chinese, and whether this effect was influenced by regulating LPL or other risk factors. METHODS: Overall, 654 Han Chinese adults were selected from a community-based cross-sectional study using a stratified cluster random sampling. Genotyping was performed using the PCR-RFLP technique, and the metabolic variables were measured using standard methods. RESULTS: Individuals with the HindIII H-/H- genotype tended to have higher pre-heparin LPL (PrLPL) and lower triglyceride levels but an unexpected higher prevalence of T2DM compared with the H+/H+ genotype carriers. The association between the H-/H- genotype and T2DM risk remained unchanged across all subgroups of lipids/glucose-related RF. In a recessive model, the H-/H- genotype conferred a 2.12-fold increased risk [odds ratio (OR): 3.12; 95% confidence interval (CI): 1.18-8.27] for T2DM after controlling for age and sex, and increased further after additionally adjusting for traditional RFs, and PrLPL (OR=4.45; 95% CI=1.51-13.07). CONCLUSIONS: This study indicated that Chinese adults with the LPL gene HindIII H-/H- genotype had a significantly increased risk of T2DM, even if they had favorable lipid profiles.
ESTHER : Qi_2011_Clin.Chim.Acta_412_1229
PubMedSearch : Qi_2011_Clin.Chim.Acta_412_1229
PubMedID: 21419757

Title : Over-expression of human lipoprotein lipase in mouse mammary glands leads to reduction of milk triglyceride and delayed growth of suckling pups - Wang_2011_PLoS.One_6_e20895
Author(s) : Wang Y , Tong J , Li S , Zhang R , Chen L , Zheng M , Wang M , Liu G , Dai Y , Zhao Y , Li N
Ref : PLoS ONE , 6 :e20895 , 2011
Abstract : BACKGROUND: The mammary gland is a conserved site of lipoprotein lipase expression across species and lipoprotein lipase attachment to the luminal surface of mammary gland vascular endothelial cells has been implicated in the direction of circulating triglycerides into milk synthesis during lactation. PRINCIPAL FINDINGS: Here we report generation of transgenic mice harboring a human lipoprotein lipase gene driven by a mammary gland-specific promoter. Lipoprotein lipase levels in transgenic milk was raised to 0.16 mg/ml, corresponding to an activity of 8772.95 mU/ml. High lipoprotein lipase activity led to a significant reduction of triglyceride concentration in milk, but other components were largely unchanged. Normal pups fed with transgenic milk showed inferior growth performances compared to those fed with normal milk. CONCLUSION: Our study suggests a possibility to reduce the triglyceride content of cow milk using transgenic technology.
ESTHER : Wang_2011_PLoS.One_6_e20895
PubMedSearch : Wang_2011_PLoS.One_6_e20895
PubMedID: 21698114

Title : The Medicago genome provides insight into the evolution of rhizobial symbioses - Young_2011_Nature_480_520
Author(s) : Young ND , Debelle F , Oldroyd GE , Geurts R , Cannon SB , Udvardi MK , Benedito VA , Mayer KF , Gouzy J , Schoof H , Van de Peer Y , Proost S , Cook DR , Meyers BC , Spannagl M , Cheung F , De Mita S , Krishnakumar V , Gundlach H , Zhou S , Mudge J , Bharti AK , Murray JD , Naoumkina MA , Rosen B , Silverstein KA , Tang H , Rombauts S , Zhao PX , Zhou P , Barbe V , Bardou P , Bechner M , Bellec A , Berger A , Berges H , Bidwell S , Bisseling T , Choisne N , Couloux A , Denny R , Deshpande S , Dai X , Doyle JJ , Dudez AM , Farmer AD , Fouteau S , Franken C , Gibelin C , Gish J , Goldstein S , Gonzalez AJ , Green PJ , Hallab A , Hartog M , Hua A , Humphray SJ , Jeong DH , Jing Y , Jocker A , Kenton SM , Kim DJ , Klee K , Lai H , Lang C , Lin S , Macmil SL , Magdelenat G , Matthews L , McCorrison J , Monaghan EL , Mun JH , Najar FZ , Nicholson C , Noirot C , O'Bleness M , Paule CR , Poulain J , Prion F , Qin B , Qu C , Retzel EF , Riddle C , Sallet E , Samain S , Samson N , Sanders I , Saurat O , Scarpelli C , Schiex T , Segurens B , Severin AJ , Sherrier DJ , Shi R , Sims S , Singer SR , Sinharoy S , Sterck L , Viollet A , Wang BB , Wang K , Wang M , Wang X , Warfsmann J , Weissenbach J , White DD , White JD , Wiley GB , Wincker P , Xing Y , Yang L , Yao Z , Ying F , Zhai J , Zhou L , Zuber A , Denarie J , Dixon RA , May GD , Schwartz DC , Rogers J , Quetier F , Town CD , Roe BA
Ref : Nature , 480 :520 , 2011
Abstract : Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing approximately 94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.
ESTHER : Young_2011_Nature_480_520
PubMedSearch : Young_2011_Nature_480_520
PubMedID: 22089132
Gene_locus related to this paper: medtr-b7fki4 , medtr-b7fmi1 , medtr-g7itl1 , medtr-g7iu67 , medtr-g7izm0 , medtr-g7j641 , medtr-g7jtf8 , medtr-g7jtg2 , medtr-g7jtg4 , medtr-g7kem3 , medtr-g7kml3 , medtr-g7ksx5 , medtr-g7leb3 , medtr-q1s5d8 , medtr-q1s9m3 , medtr-q1t171 , medtr-g7k9e1 , medtr-g7k9e3 , medtr-g7k9e5 , medtr-g7k9e8 , medtr-g7k9e9 , medtr-g7lbp2 , medtr-g7lch3 , medtr-g7ib94 , medtr-g7ljk8 , medtr-g7i6w5 , medtr-g7kvg4 , medtr-g7iam1 , medtr-g7iam3 , medtr-g7l754 , medtr-g7jr41 , medtr-g7l4f5 , medtr-g7l755 , medtr-a0a072vyl4 , medtr-g7jwk8 , medtr-a0a072vhg0 , medtr-a0a072vrv9 , medtr-g7kmk5 , medtr-a0a072uuf6 , medtr-a0a072urp3 , medtr-g7zzc3 , medtr-g7ie19 , medtr-g7kst7 , medtr-a0a072u5k5 , medtr-a0a072v056 , medtr-scp1 , medtr-g7kyn0 , medtr-g7inw6 , medtr-g7j3q3

Title : The ecoresponsive genome of Daphnia pulex - Colbourne_2011_Science_331_555
Author(s) : Colbourne JK , Pfrender ME , Gilbert D , Thomas WK , Tucker A , Oakley TH , Tokishita S , Aerts A , Arnold GJ , Basu MK , Bauer DJ , Caceres CE , Carmel L , Casola C , Choi JH , Detter JC , Dong Q , Dusheyko S , Eads BD , Frohlich T , Geiler-Samerotte KA , Gerlach D , Hatcher P , Jogdeo S , Krijgsveld J , Kriventseva EV , Kultz D , Laforsch C , Lindquist E , Lopez J , Manak JR , Muller J , Pangilinan J , Patwardhan RP , Pitluck S , Pritham EJ , Rechtsteiner A , Rho M , Rogozin IB , Sakarya O , Salamov A , Schaack S , Shapiro H , Shiga Y , Skalitzky C , Smith Z , Souvorov A , Sung W , Tang Z , Tsuchiya D , Tu H , Vos H , Wang M , Wolf YI , Yamagata H , Yamada T , Ye Y , Shaw JR , Andrews J , Crease TJ , Tang H , Lucas SM , Robertson HM , Bork P , Koonin EV , Zdobnov EM , Grigoriev IV , Lynch M , Boore JL
Ref : Science , 331 :555 , 2011
Abstract : We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.
ESTHER : Colbourne_2011_Science_331_555
PubMedSearch : Colbourne_2011_Science_331_555
PubMedID: 21292972
Gene_locus related to this paper: dappu-e9fut0 , dappu-e9fut9 , dappu-e9fvw6 , dappu-e9fxt4 , dappu-e9fyr6 , dappu-e9fzg6 , dappu-e9g1e2 , dappu-e9g1e6 , dappu-e9g1e7 , dappu-e9g1e8 , dappu-e9g1v3 , dappu-e9g1z2 , dappu-e9gb99 , dappu-e9gba0 , dappu-e9gcb4 , dappu-e9gdv5 , dappu-e9gdv7 , dappu-e9gi24 , dappu-e9gj77 , dappu-e9gja7 , dappu-e9gmp5 , dappu-e9gmr0 , dappu-e9gn32 , dappu-e9gp76 , dappu-e9gp82 , dappu-e9gp98 , dappu-e9gp99 , dappu-e9gvl2 , dappu-e9gzn7 , dappu-e9h1p4 , dappu-e9h2c8 , dappu-e9h2c9 , dappu-e9h6x9 , dappu-e9h6y4 , dappu-e9h7w9 , dappu-e9h8r4 , dappu-e9hd06 , dappu-e9hh56 , dappu-e9hh57 , dappu-e9hh59 , dappu-e9hmp4 , dappu-e9hp64 , dappu-e9hp65 , dappu-e9hpy8 , dappu-e9htg8 , dapul-ACHE1 , dapul-ACHE2 , dappu-e9gnj1 , dappu-e9gu36 , dappu-e9hpc4 , dappu-e9gb07 , dappu-e9glp6 , dappu-e9glp5 , dappu-e9gjv2 , dappu-e9h0c7 , dappu-e9g4g2 , dappu-e9gw69 , dappu-e9h3h9 , dappu-e9g545 , dappu-e9gw71 , dappu-e9gw68 , dappu-e9h3e7 , dappu-e9gfg9 , dappu-e9fvy6 , dappu-e9hgt2

Title : Metabolomic analysis of the toxic effects of chronic exposure to low-level dichlorvos on rats using ultra-performance liquid chromatography-mass spectrometry - Yang_2011_Toxicol.Lett_206_306
Author(s) : Yang J , Sun X , Feng Z , Hao D , Wang M , Zhao X , Sun C
Ref : Toxicol Lett , 206 :306 , 2011
Abstract : The purpose of the current study was to assess the effects of long-term exposure to low levels of DDVP on the biochemical parameters and metabolic profiles of rats. Three different doses (2.4, 7.2, and 21.6 mg/kg body weight/day) of DDVP were administered to rats through their drinking water over 24 weeks. Significant changes in blood cholinesterase, creatinine, urea nitrogen, aspartate aminotransferase, alanine aminotransferase, and albumin concentrations were observed in the middle and high dose groups. Changes in the concentration of some urine metabolites were detected via ultra performance liquid chromatography-mass spectrometry (UPLC-MS). Dimethyl phosphate (DMP), which was exclusively detected in the treated groups, can be an early, sensitive biomarker for DDVP exposure. Moreover, DDVP treatment resulted in an increase in the lactobionic acid, estrone sulfate, and indoxyl sulfic concentrations, and a decrease in citric acid, suberic acid, gulonic acid, urea, creatinine, and uric acid. These results suggest that chronic exposure to low-level DDVP can cause a disturbance in carbohydrate and fatty acid metabolism, the antioxidant system, etc. Therefore, an analysis of the metabolic profiles can contribute to the understanding of the adverse effects of long-term exposure to low doses of DDVP.
ESTHER : Yang_2011_Toxicol.Lett_206_306
PubMedSearch : Yang_2011_Toxicol.Lett_206_306
PubMedID: 21889581

Title : Oxidative damage effects in the copepod Tigriopus japonicus Mori experimentally exposed to nickel - Wang_2010_Ecotoxicology_19_273
Author(s) : Wang M , Wang G
Ref : Ecotoxicology , 19 :273 , 2010
Abstract : Tigriopus japonicus Mori has been recognized as a good model for toxicological testing of marine pollutants. Recently, a large number of genes have been identified from this copepod, and their mRNA expression has been studied independently against exposure to marine pollutants; however, biochemical-response information is relatively scarce. The response of T. japonicus to nickel (Ni) additions was examined under laboratory-controlled conditions in 12 days exposure. Superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), acetylcholinesterase (AchE), reduced glutathione (GSH), the ratio of reduced to oxidized glutathione (GSH/GSSG) and metallothionein (MT) were analyzed for Ni treatments (0, 0.125, 0.25, 0.75 and 3.0 mg/L) after 1, 4, 7 and 12 days. The thiobarbituric reactive species assay was used to evaluate lipid peroxidation (LPO) level in copepods after exposure. The results showed that Ni remarkably affected the biochemical parameters (SOD, GPx, GST, GSH, and GSH/GSSG) after certain exposure durations. However, the copepod's LPO level was significantly decreased under metal treatments after exposure, hinting that the factors involved in LPO might not significantly depend on the operations and functions in the antioxidant system. Ni exhibited the neurotoxicity to copepods, because its use obviously elevated AchE activity. During exposure, Ni initially displayed an inhibition effect but induced MT synthesis in T. japonicus by day 12, probably being responsible for metal detoxification. Thus, Ni had intervened in the detoxification process and antioxidant system of this copepod, and it could be used as a suitable bioindicator of Ni exposure via measuring SOD, GPx, GST, and MT as biomarkers.
ESTHER : Wang_2010_Ecotoxicology_19_273
PubMedSearch : Wang_2010_Ecotoxicology_19_273
PubMedID: 19821026

Title : Studies on protective effects of human paraoxonases 1 and 3 on atherosclerosis in apolipoprotein E knockout mice - Zhang_2010_Gene.Ther_17_626
Author(s) : Zhang C , Peng W , Wang M , Zhu J , Zang Y , Shi W , Zhang J , Qin J
Ref : Gene Therapy , 17 :626 , 2010
Abstract : Paraoxonase (PON) possesses antiatherogenic potentials, but the distinct functions of PON members in alleviating atherosclerosis are not yet clear. This study aimed to evaluate the protective effects of hPON1 and hPON3 against atherosclerosis, and thereby exploring their synergistic mechanism in atherosclerosis development. We generated the recombinant adenovirus AdPON1 and AdPON3, which were capable of expressing hPON1 and hPON3. After AdPON1 and AdPON3 were injected intravenously into 5-week-old apolipoprotein E knockout mice, abundant hPON1 and hPON3 mRNA expression levels were detected. However, increase in serum lactonase activity was detected only in AdPON1-treated mice. Serum antioxidation and anti-inflammation capabilities in AdPON1-treated mice, reflected by malondialdehyde, total antioxidant capability and tumor necrosis factor-alpha levels, were greatly enhanced, whereas those in AdPON3-treated mice were not significantly affected. Nevertheless, histological analysis revealed that adenovirus-mediated expression of hPON1, hPON3 or both of them reduced atherosclerotic plaque area to a similar extent. Although no synergistic mechanism was detected in reducing arterial lesion size, hPON1 and hPON3 showed synergistic effects on promoting macrophage cholesterol efflux. In conclusion, hPON1 and hPON3 exhibited similar potentials in reducing arterial lesion size, but they exerted antiatherogenic effects in distinct ways.
ESTHER : Zhang_2010_Gene.Ther_17_626
PubMedSearch : Zhang_2010_Gene.Ther_17_626
PubMedID: 20182519

Title : Genome sequencing and analysis of the model grass Brachypodium distachyon. -
Author(s) : Vogel JP , Garvin DF , Mockler TC , Schmutz J , Rokhsar D , Bevan MW , Barry K , Lucas S , Harmon-Smith M , Lail K , Tice H , Grimwood J , McKenzie N , Huo N , Gu YQ , Lazo GR , Anderson OD , You FM , Luo MC , Dvorak J , Wright J , Febrer M , Idziak D , Hasterok R , Lindquist E , Wang M , Fox SE , Priest HD , Filichkin SA , Givan SA , Bryant DW , Chang JH , Wu H , Wu W , Hsia AP , Schnable PS , Kalyanaraman A , Barbazuk B , Michael TP , Hazen SP , Bragg JN , Laudencia-Chingcuanco D , Weng Y , Haberer G , Spannagl M , Mayer K , Rattei T , Mitros T , Lee SJ , Rose JK , Mueller LA , York TL , Wicker T , Buchmann JP , Tanskanen J , Schulman AH , Gundlach H , Bevan M , de Oliveira AC , Maia Lda C , Belknap W , Jiang N , Lai J , Zhu L , Ma J , Sun C , Pritham E , Salse J , Murat F , Abrouk M , Bruggmann R , Messing J , Fahlgren N , Sullivan CM , Carrington JC , Chapman EJ , May GD , Zhai J , Ganssmann M , Gurazada SG , German M , Meyers BC , Green PJ , Tyler L , Wu J , Thomson J , Chen S , Scheller HV , Harholt J , Ulvskov P , Kimbrel JA , Bartley LE , Cao P , Jung KH , Sharma MK , Vega-Sanchez M , Ronald P , Dardick CD , De Bodt S , Verelst W , Inz D , Heese M , Schnittger A , Yang X , Kalluri UC , Tuskan GA , Hua Z , Vierstra RD , Cui Y , Ouyang S , Sun Q , Liu Z , Yilmaz A , Grotewold E , Sibout R , Hematy K , Mouille G , Hofte H , Michael T , Pelloux J , O'Connor D , Schnable J , Rowe S , Harmon F , Cass CL , Sedbrook JC , Byrne ME , Walsh S , Higgins J , Li P , Brutnell T , Unver T , Budak H , Belcram H , Charles M , Chalhoub B , Baxter I
Ref : Nature , 463 :763 , 2010
PubMedID: 20148030
Gene_locus related to this paper: bradi-i1grm0 , bradi-i1gx82 , bradi-i1hb80 , bradi-i1hkv6 , bradi-i1hpu6 , bradi-i1i3e4 , bradi-i1i9i0 , bradi-i1i435 , bradi-i1ix93 , bradi-i1gsk6 , bradi-i1hk44 , bradi-i1hk45 , bradi-i1hnk7 , bradi-i1hsd5 , bradi-i1huy4 , bradi-i1huy9 , bradi-i1huz0 , bradi-i1gxx9 , bradi-i1hl25 , bradi-i1hcw7 , bradi-i1hyv6 , bradi-i1hyb5 , bradi-i1hvr8 , bradi-i1hmu2 , bradi-i1hf05 , bradi-i1gry7 , bradi-i1hf06 , bradi-i1i5z8 , bradi-i1icy3 , bradi-i1j1h3 , bradi-i1h1e3 , bradi-i1hvr9 , bradi-a0a0q3r7i7 , bradi-i1i377 , bradi-i1hjg5 , bradi-i1h3i9 , bradi-i1gsg5 , bradi-a0a0q3mph9 , bradi-i1h682 , bradi-a0a0q3lc91 , bradi-i1gx49 , bradi-i1i839 , bradi-a0a2k2dsp5 , bradi-i1gsb5

Title : The sequence and de novo assembly of the giant panda genome - Li_2010_Nature_463_311
Author(s) : Li R , Fan W , Tian G , Zhu H , He L , Cai J , Huang Q , Cai Q , Li B , Bai Y , Zhang Z , Zhang Y , Wang W , Li J , Wei F , Li H , Jian M , Nielsen R , Li D , Gu W , Yang Z , Xuan Z , Ryder OA , Leung FC , Zhou Y , Cao J , Sun X , Fu Y , Fang X , Guo X , Wang B , Hou R , Shen F , Mu B , Ni P , Lin R , Qian W , Wang G , Yu C , Nie W , Wang J , Wu Z , Liang H , Min J , Wu Q , Cheng S , Ruan J , Wang M , Shi Z , Wen M , Liu B , Ren X , Zheng H , Dong D , Cook K , Shan G , Zhang H , Kosiol C , Xie X , Lu Z , Li Y , Steiner CC , Lam TT , Lin S , Zhang Q , Li G , Tian J , Gong T , Liu H , Zhang D , Fang L , Ye C , Zhang J , Hu W , Xu A , Ren Y , Zhang G , Bruford MW , Li Q , Ma L , Guo Y , An N , Hu Y , Zheng Y , Shi Y , Li Z , Liu Q , Chen Y , Zhao J , Qu N , Zhao S , Tian F , Wang X , Wang H , Xu L , Liu X , Vinar T , Wang Y , Lam TW , Yiu SM , Liu S , Huang Y , Yang G , Jiang Z , Qin N , Li L , Bolund L , Kristiansen K , Wong GK , Olson M , Zhang X , Li S , Yang H
Ref : Nature , 463 :311 , 2010
Abstract : Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes.
ESTHER : Li_2010_Nature_463_311
PubMedSearch : Li_2010_Nature_463_311
PubMedID: 20010809
Gene_locus related to this paper: ailme-ABH15 , ailme-ACHE , ailme-BCHE , ailme-d2gtv3 , ailme-d2gty9 , ailme-d2gu87 , ailme-d2gu97 , ailme-d2gve7 , ailme-d2gwu1 , ailme-d2gx08 , ailme-d2gyt0 , ailme-d2gz36 , ailme-d2gz37 , ailme-d2gz38 , ailme-d2gz39 , ailme-d2gz40 , ailme-d2h5r9 , ailme-d2h7b7 , ailme-d2h9c9 , ailme-d2h794 , ailme-d2hau7 , ailme-d2hau8 , ailme-d2hcd9 , ailme-d2hdi6 , ailme-d2heu6 , ailme-d2hga4 , ailme-d2hqw5 , ailme-d2hs98 , ailme-d2hsx4 , ailme-d2hti6 , ailme-d2htv3 , ailme-d2htz6 , ailme-d2huc7 , ailme-d2hwj8 , ailme-d2hwy7 , ailme-d2hxm1 , ailme-d2hyc8 , ailme-d2hyv2 , ailme-d2hz11 , ailme-d2hza3 , ailme-d2hzr4 , ailme-d2i1l4 , ailme-d2i2g8 , ailme-g1l7m3 , ailme-g1lu36 , ailme-g1m769 , ailme-g1mc29 , ailme-g1mdj8 , ailme-g1mdr5 , ailme-g1mfp4 , ailme-g1mfx5 , ailme-g1lj41 , ailme-g1lm28 , ailme-g1l3u1 , ailme-g1l7l1 , ailme-g1m5i3 , ailme-g1l2f6 , ailme-g1lji5 , ailme-g1lqk3 , ailme-g1l8s9 , ailme-d2h717 , ailme-d2h718 , ailme-d2h719 , ailme-d2h720 , ailme-g1m5v0 , ailme-g1m5y7 , ailme-g1lkt7 , ailme-g1l2a1 , ailme-g1lsc8 , ailme-g1lrp4 , ailme-d2gv02 , ailme-g1mik5 , ailme-g1ljr1 , ailme-g1lxw7 , ailme-d2h8b5 , ailme-d2h2r2 , ailme-d2h9w7 , ailme-g1meh3 , ailme-g1m719

Title : A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides - Liu_2009_J.Neurosci_29_918
Author(s) : Liu Q , Huang Y , Xue F , Simard AR , DeChon J , Li G , Zhang J , Lucero L , Wang M , Sierks M , Hu G , Chang Y , Lukas RJ , Wu J
Ref : Journal of Neuroscience , 29 :918 , 2009
Abstract : Nicotinic acetylcholine receptors (nAChRs) containing alpha7 subunits are thought to assemble as homomers. alpha7-nAChR function has been implicated in learning and memory, and alterations of alpha7-nAChR have been found in patients with Alzheimer's disease (AD). Here we report findings consistent with a novel, naturally occurring nAChR subtype in rodent, basal forebrain cholinergic neurons. In these cells, alpha7 subunits are coexpressed, colocalize, and coassemble with beta2 subunit(s). Compared with homomeric alpha7-nAChRs from ventral tegmental area neurons, functional, presumably heteromeric alpha7beta2-nAChRs on cholinergic neurons freshly dissociated from medial septum/diagonal band (MS/DB) exhibit relatively slow kinetics of whole-cell current responses to nicotinic agonists and are more sensitive to the beta2 subunit-containing nAChR-selective antagonist, dihydro-beta-erythroidine (DHbetaE). Interestingly, presumed, heteromeric alpha7beta2-nAChRs are highly sensitive to functional inhibition by pathologically relevant concentrations of oligomeric, but not monomeric or fibrillar, forms of amyloid beta(1-42) (Abeta(1-42)). Slow whole-cell current kinetics, sensitivity to DHbetaE, and specific antagonism by oligomeric Abeta(1-42) also are characteristics of heteromeric alpha7beta2-nAChRs, but not of homomeric alpha7-nAChRs, heterologously expressed in Xenopus oocytes. Moreover, choline-induced currents have faster kinetics and less sensitivity to Abeta when elicited from MS/DB neurons derived from nAChR beta2 subunit knock-out mice rather than from wild-type mice. The presence of novel, functional, heteromeric alpha7beta2-nAChRs on basal forebrain cholinergic neurons and their high sensitivity to blockade by low concentrations of oligomeric Abeta(1-42) suggests possible mechanisms for deficits in cholinergic signaling that could occur early in the etiopathogenesis of AD and might be targeted by disease therapies.
ESTHER : Liu_2009_J.Neurosci_29_918
PubMedSearch : Liu_2009_J.Neurosci_29_918
PubMedID: 19176801

Title : Structural basis and enzymatic mechanism of the biosynthesis of C9- from C10-monoterpenoid indole alkaloids - Yang_2009_Angew.Chem.Int.Ed.Engl_48_5211
Author(s) : Yang L , Hill M , Wang M , Panjikar S , Stockigt J
Ref : Angew Chem Int Ed Engl , 48 :5211 , 2009
Abstract : Cutting carbons: The three-dimensional structure of polyneuridine aldehyde esterase (PNAE) gives insight into the enzymatic mechanism of the biosynthesis of C(9)- from C(10)-monoterpenoid indole alkaloids (see scheme). PNAE is a very substrate-specific serine esterase. It harbors the catalytic triad S87-D216-H244, and is a new member of the alpha/beta-fold hydrolase superfamily. Its novel function leads to the diversification of alkaloid structures.
ESTHER : Yang_2009_Angew.Chem.Int.Ed.Engl_48_5211
PubMedSearch : Yang_2009_Angew.Chem.Int.Ed.Engl_48_5211
PubMedID: 19496101
Gene_locus related to this paper: rause-pnae

Title : Continuous colorimetric assay for acetylcholinesterase and inhibitor screening with gold nanoparticles - Wang_2009_Langmuir_25_2504
Author(s) : Wang M , Gu X , Zhang G , Zhang D , Zhu D
Ref : Langmuir , 25 :2504 , 2009
Abstract : We report herein a new colorimetric assay method for acetylcholinesterase (AChE) activity and its inhibitor screening by making use of the following facts: (1) the aggregation of gold nanoparticles (Au-NPs) results in the red-shift of the plasmon absorption due to interparticle plasmon interactions and (2) AChE can catalyze the hydrolysis of acetylthiocholine into thiocholine which can induce the aggregation of Au-NPs. With this convenient method, the activity of AChE with a concentration as low as 0.6 mU/mL can be assayed. Moreover, this assay method is also useful for screening inhibitors of AChE. Given its simplicity and easy-operation, this method may extend to high-throughput screening of AChE inhibitors and relevant drug discovery.
ESTHER : Wang_2009_Langmuir_25_2504
PubMedSearch : Wang_2009_Langmuir_25_2504
PubMedID: 19154124

Title : The genome of the cucumber, Cucumis sativus L - Huang_2009_Nat.Genet_41_1275
Author(s) : Huang S , Li R , Zhang Z , Li L , Gu X , Fan W , Lucas WJ , Wang X , Xie B , Ni P , Ren Y , Zhu H , Li J , Lin K , Jin W , Fei Z , Li G , Staub J , Kilian A , van der Vossen EA , Wu Y , Guo J , He J , Jia Z , Tian G , Lu Y , Ruan J , Qian W , Wang M , Huang Q , Li B , Xuan Z , Cao J , Asan , Wu Z , Zhang J , Cai Q , Bai Y , Zhao B , Han Y , Li Y , Li X , Wang S , Shi Q , Liu S , Cho WK , Kim JY , Xu Y , Heller-Uszynska K , Miao H , Cheng Z , Zhang S , Wu J , Yang Y , Kang H , Li M , Liang H , Ren X , Shi Z , Wen M , Jian M , Yang H , Zhang G , Yang Z , Chen R , Ma L , Liu H , Zhou Y , Zhao J , Fang X , Fang L , Liu D , Zheng H , Zhang Y , Qin N , Li Z , Yang G , Yang S , Bolund L , Kristiansen K , Li S , Zhang X , Wang J , Sun R , Zhang B , Jiang S , Du Y
Ref : Nat Genet , 41 :1275 , 2009
Abstract : Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA sequencing technologies to obtain 72.2-fold genome coverage. The absence of recent whole-genome duplication, along with the presence of few tandem duplications, explains the small number of genes in the cucumber. Our study establishes that five of the cucumber's seven chromosomes arose from fusions of ten ancestral chromosomes after divergence from Cucumis melo. The sequenced cucumber genome affords insight into traits such as its sex expression, disease resistance, biosynthesis of cucurbitacin and 'fresh green' odor. We also identify 686 gene clusters related to phloem function. The cucumber genome provides a valuable resource for developing elite cultivars and for studying the evolution and function of the plant vascular system.
ESTHER : Huang_2009_Nat.Genet_41_1275
PubMedSearch : Huang_2009_Nat.Genet_41_1275
PubMedID: 19881527
Gene_locus related to this paper: cucsa-a0a0a0ktw5 , cucsa-a0a0a0lnt6 , cucsa-a0a0a0kpn7 , cucsa-a0a0a0lvt9 , cucsa-a0a0a0kdx8 , cucsa-a0a0a0m228 , cucsa-a0a0a0kz31 , cucsa-a0a0a0k5t5 , cucsa-a0a0a0kfs7 , cucsa-a0a0a0kjj7 , cucsa-a0a0a0kzs7 , cucsa-a0a0a0l0a6 , cucsa-a0a0a0l4w4 , cucsa-a0a0a0lpz0 , cucsa-a0a0a0ls66

Title : Convenient and continuous fluorometric assay method for acetylcholinesterase and inhibitor screening based on the aggregation-induced emission - Wang_2009_Anal.Chem_81_4444
Author(s) : Wang M , Gu X , Zhang G , Zhang D , Zhu D
Ref : Analytical Chemistry , 81 :4444 , 2009
Abstract : A new convenient and continuous fluorometric assay method for acetylcholinesterase (AChE) and its inhibitor screening is successfully established with the ensemble of 1 [a TPE (tetraphenylethylene) compound with two sulfonate (-SO(3)(-)) units] and myristoylcholine (an amphiphilic compound as a good substrate of AChE). This new assay method is designed by making use of the aggregation-induced emission (AIE) feature of TPE compounds. Both dynamic light scattering (DLS) and fluorescence confocal microscopic measurements indicated the formation of aggregation complex for the ensemble of 1 and myristoylcholine and further disassembly of the aggregation complex after introducing AChE. The analysis for AChE can be carried out continuously, and AChE with concentration as low as 0.5 U/mL can be assayed. The results also clearly demonstrate the usefulness of this convenient assay method for kinetic study of AChE-catalyzed myristoylcholine hydrolysis and screening inhibitors of AChE. Given its simplicity and easy operation, this method may extend to high-throughput screening of AChE inhibitors and relevant Alzheimer's disease (AD) drug discovery.
ESTHER : Wang_2009_Anal.Chem_81_4444
PubMedSearch : Wang_2009_Anal.Chem_81_4444
PubMedID: 19374428

Title : A rapid and efficient method for directed screening of lipase-producing Burkholderia cepacia complex strains with organic solvent tolerance from rhizosphere - Shu_2009_J.Biosci.Bioeng_107_658
Author(s) : Shu Z , Lin R , Jiang H , Zhang Y , Wang M , Huang J
Ref : J Biosci Bioeng , 107 :658 , 2009
Abstract : Lipase from Burkholderia cepacia strain is one of the most versatile biocatalysts and is used widely in many biotechnological application fields including detergent additives, the resolution of racemic compounds, etc. Based on the known whole genomic information of B. cepacia strain, both ampicillin and kanamycin were added to the TB-T medium to screen B. cepacia complex stains from rhizosphere soil samples. The selected colonies from the modified TB-T medium were then qualitatively determined the ability to produce extracellular lipase on the rhodamine B-olive oil agar plates. A total of 35 lipolytic pseudo-B. cepacia complex strains were isolated and the positive rate of lipolytic bacteria was 65%. Among them, 15 pseudo-B. cepacia complex strains showed tolerance to benzene, n-hexane and n-heptane at concentration of 10% (V/V) and were identified by the recA gene sequence. All of the 14 lipolytic bacteria were identified as B. cepacia complex strains except that the recA gene sequence of one lipolytic bacterium, strain ZMB009, was not obtained.
ESTHER : Shu_2009_J.Biosci.Bioeng_107_658
PubMedSearch : Shu_2009_J.Biosci.Bioeng_107_658
PubMedID: 19447345

Title : The genome of a lepidopteran model insect, the silkworm Bombyx mori - Xia_2008_Insect.Biochem.Mol.Biol_38_1036
Author(s) : Xia Q , Wang J , Zhou Z , Li R , Fan W , Cheng D , Cheng T , Qin J , Duana J , Xu H , Li Q , Li N , Wang M , Dai F , Liu C , Lin Y , Zhao P , Zhang H , Liu S , Zha X , Li C , Zhao A , Pan M , Pan G , Shen Y , Gao Z , Wang Z , Wang G , Wu Z , Hou Y , Chai C , Yu Q , He N , Zhang Z , Li S , Yang H , Lu C , Xiang Z , Mita K , Kasahara M , Nakatani Y , Yamamoto K , Abe H , Ahsan B , Daimoni T , Doi K , Fujii T , Fujiwara H , Fujiyama A , Futahashi R , Hashimotol S , Ishibashi J , Iwami M , Kadono-Okuda K , Kanamori H , Kataoka H , Katsuma S , Kawaoka S , Kawasaki H , Kohara Y , Kozaki T , Kuroshu RM , Kuwazaki S , Matsushima K , Minami H , Nagayasu Y , Nakagawa T , Narukawa J , Nohata J , Ohishi K , Ono Y , Osanai-Futahashi M , Ozaki K , Qu W , Roller L , Sasaki S , Sasaki T , Seino A , Shimomura M , Shin-I T , Shinoda T , Shiotsuki T , Suetsugu Y , Sugano S , Suwa M , Suzuki Y , Takiya S , Tamura T , Tanaka H , Tanaka Y , Touhara K , Yamada T , Yamakawa M , Yamanaka N , Yoshikawa H , Zhong YS , Shimada T , Morishita S
Ref : Insect Biochemistry & Molecular Biology , 38 :1036 , 2008
Abstract : Bombyx mori, the domesticated silkworm, is a major insect model for research, and the first lepidopteran for which draft genome sequences became available in 2004. Two independent data sets from whole-genome shotgun sequencing were merged and assembled together with newly obtained fosmid- and BAC-end sequences. The remarkably improved new assembly is presented here. The 8.5-fold sequence coverage of an estimated 432 Mb genome was assembled into scaffolds with an N50 size of approximately 3.7 Mb; the largest scaffold was 14.5 million base pairs. With help of a high-density SNP linkage map, we anchored 87% of the scaffold sequences to all 28 chromosomes. A particular feature was the high repetitive sequence content estimated to be 43.6% and that consisted mainly of transposable elements. We predicted 14,623 gene models based on a GLEAN-based algorithm, a more accurate prediction than the previous gene models for this species. Over three thousand silkworm genes have no homologs in other insect or vertebrate genomes. Some insights into gene evolution and into characteristic biological processes are presented here and in other papers in this issue. The massive silk production correlates with the existence of specific tRNA clusters, and of several sericin genes assembled in a cluster. The silkworm's adaptation to feeding on mulberry leaves, which contain toxic alkaloids, is likely linked to the presence of new-type sucrase genes, apparently acquired from bacteria. The silkworm genome also revealed the cascade of genes involved in the juvenile hormone biosynthesis pathway, and a large number of cuticular protein genes.
ESTHER : Xia_2008_Insect.Biochem.Mol.Biol_38_1036
PubMedSearch : Xia_2008_Insect.Biochem.Mol.Biol_38_1036
PubMedID: 19121390
Gene_locus related to this paper: bommo-a0mnw6 , bommo-a1yw85 , bommo-a9ls22 , bommo-ACHE1 , bommo-ACHE2 , bommo-b0fgv8 , bommo-b1q137 , bommo-b1q139 , bommo-b1q140 , bommo-b1q141 , bommo-b2zdz0 , bommo-b3gef6 , bommo-b3gef7 , bommo-b3gs55 , bommo-b3gs56 , bommo-d2ktu3 , bommo-d2ktu5 , bommo-d9ile0 , bommo-e1cga5 , bommo-e1cga6 , bommo-g8fpz6 , bommo-h9iu43 , bommo-h9iu46 , bommo-h9iu47.1 , bommo-h9iu47.2 , bommo-h9iue5 , bommo-h9ivg2 , bommo-h9iwj7 , bommo-h9iwj8 , bommo-h9ix58 , bommo-h9ixi1.1 , bommo-h9ixi1.2 , bommo-h9iy47 , bommo-h9izw1 , bommo-h9j0s4 , bommo-h9j1y0 , bommo-h9j3r0 , bommo-h9j3w6 , bommo-h9j3w7 , bommo-h9j5t0 , bommo-h9j8g3 , bommo-h9j9k9 , bommo-h9j066 , bommo-h9j067 , bommo-h9j593 , bommo-h9j594 , bommo-h9j990 , bommo-h9jde8 , bommo-h9jde9 , bommo-h9jdf0 , bommo-h9jds4 , bommo-h9jle7 , bommo-h9jn83 , bommo-h9jn85 , bommo-h9jrg2 , bommo-h9jyh9 , bommo-JHE , bommo-m1rmh6 , bommo-q1hq05 , bommo-q4tte1 , bommo-h9j592 , bommo-h9j604 , bommo-h9jpm8 , bommo-h9iss4 , bommo-h9j2c7

Title : Immobilization of acetylcholinesterase based on the controllable adsorption of carbon nanotubes onto an alkanethiol monolayer for carbaryl sensing - Du_2008_Analyst_133_1790
Author(s) : Du D , Wang M , Cai J , Tao Y , Tu H , Zhang A
Ref : Analyst , 133 :1790 , 2008
Abstract : A simple method to immobilize acetylcholinesterase (AChE) on the controllable adsorption of multiwalled carbon nanotubes (MWCNTs) onto an alkanethiol self-assembled monolayer (C(6)H(13)SH SAM) modified Au electrode was proposed. The surface coverage of the MWCNTs was readily controlled by adjusting the immersion time for the adsorption of the MWCNTs. Atomic force microscopy (AFM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to monitor these controllable fabrication processes. The MWCNTs adsorbed onto the SAM surface substantially restores the heterogeneous electron transfer between the bare Au electrode and the redox system in the solution phase that is almost totally blocked by the SAM of C(6)H(13)SH, and as a result, the prepared MWCNT-SAM-modified electrode possesses good electrode reactivity without a remarkable barrier to heterogeneous electron transfer. Due to the inherent conductive properties of MWCNTs, the immobilized AChE exhibited high affinity to its substrate and produced a detectable and fast response. Thus, a sensitive, efficient and stable amperometric sensor for quantitative determination of carbaryl was developed. The inhibition of carbaryl was proportional to its concentration ranging from 0.001 to 1 microg mL(-1) and 2 to 15 microg mL(-1), with a detection limit of 0.6 ng mL(-1). The determination of carbaryl in garlic samples showed acceptable accuracy, which provided a new promising tool for analysis of enzyme inhibitors.
ESTHER : Du_2008_Analyst_133_1790
PubMedSearch : Du_2008_Analyst_133_1790
PubMedID: 19082085

Title : Facile synthesis of new carbon-11 labeled conformationally restricted rivastigmine analogues as potential PET agents for imaging AChE and BChE enzymes - Wang_2008_Appl.Radiat.Isot_66_506
Author(s) : Wang M , Wang JQ , Gao M , Zheng QH
Ref : Appl Radiat Isot , 66 :506 , 2008
Abstract : Rivastigmine is a newer-generation inhibitor with a dual inhibitory action on both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes, and is used for the treatment of AChE- and BChE-related diseases such as brain Alzheimer's disease and cardiovascular disease. New carbon-11 labeled conformationally restricted rivastigmine analogues radiolabeled quaternary ammonium triflate salts, (3aR,9bS)-1-[(11)C]methyl-1-methyl-6-(methylcarbamoyloxy)-2,3,3a,4,5,9b-hexahydro -1H-benzo[g]indolium triflate ([(11)C]8) and (3aR,9bS)-1-[(11)C]methyl-1-methyl-6-(heptylcarbamoyloxy)-2,3,3a,4,5,9b-hexahydro -1H-benzo[g]indolium triflate ([(11)C]9), were designed and synthesized as potential positron emission tomography (PET) agents for imaging AChE and BChE enzymes. The appropriate precursors were labeled with [(11)C]CH(3)OTf through N-[(11)C]methylation, and the target tracers were isolated by solid-phase extraction (SPE) using a cation-exchange CM Sep-Pak cartridge in 40-50% radiochemical yields decay corrected to end of bombardment (EOB), 15-20 min overall synthesis time, and 148-222 GBq/micromol specific activity at EOB.
ESTHER : Wang_2008_Appl.Radiat.Isot_66_506
PubMedSearch : Wang_2008_Appl.Radiat.Isot_66_506
PubMedID: 18155915

Title : Crystal structure of homoserine O-acetyltransferase from Leptospira interrogans - Wang_2007_Biochem.Biophys.Res.Commun_363_1050
Author(s) : Wang M , Liu L , Wang Y , Wei Z , Zhang P , Li Y , Jiang X , Xu H , Gong W
Ref : Biochemical & Biophysical Research Communications , 363 :1050 , 2007
Abstract : Homoserine O-acetyltransferase (HTA, EC 2.3.1.31) initiates methionine biosynthesis pathway by catalyzing the transfer of acetyl group from acetyl-CoA to homoserine. This study reports the crystal structure of HTA from Leptospira interrogans determined at 2.2A resolution using selenomethionyl single-wavelength anomalous diffraction method. HTA is modular and consists of two structurally distinct domains--a core alpha/beta domain containing the catalytic site and a helical bundle called the lid domain. Overall, the structure fold belongs to alpha/beta hydrolase superfamily with the characteristic 'catalytic triad' residues in the active site. Detailed structure analysis showed that the catalytic histidine and serine are both present in two conformations, which may be involved in the catalytic mechanism for acetyl transfer.
ESTHER : Wang_2007_Biochem.Biophys.Res.Commun_363_1050
PubMedSearch : Wang_2007_Biochem.Biophys.Res.Commun_363_1050
PubMedID: 17927957
Gene_locus related to this paper: lepin-METX

Title : Antiobesity properties of two African plants (Afromomum meleguetta and Spilanthes acmella) by pancreatic lipase inhibition - Ekanem_2007_Phytother.Res_21_1253
Author(s) : Ekanem AP , Wang M , Simon JE , Moreno DA
Ref : Phytother Res , 21 :1253 , 2007
Abstract : Ethanol extracts of seeds of Afromomum meleguetta and flower buds of Splilanthes acmella presented pancreatic lipase inhibitory activities in a concentration related manner under in vitro conditions. The two plants were extracted with 70% ethanol by sonication, fractionated on silica gel and tested at concentrations in the range 0.75-2.0 mg/mL. Lipase inhibitory activities of 90% and 40% were observed in A. meleguetta and S. acmella, respectively. The two plants have potentials as candidates for weight reduction and obesity control.
ESTHER : Ekanem_2007_Phytother.Res_21_1253
PubMedSearch : Ekanem_2007_Phytother.Res_21_1253
PubMedID: 17705140

Title : Small-molecule compounds that modulate lipolysis in adipose tissue: targeting strategies and molecular classes - Wang_2006_Chem.Biol_13_1019
Author(s) : Wang M , Fotsch C
Ref : Chemical Biology , 13 :1019 , 2006
Abstract : Lipolysis is an important pathway in maintaining energy homeostasis through the degradation of triglycerides in adipose tissue and the release of fatty acids into the circulation as an energy source. However, an elevated level of circulating fatty acids leads to unfavorable metabolic effects such as insulin resistance and dyslipidemia. Cell surface receptors and intracellular components of the lipolytic pathway have been targeted to develop antilipolytic agents, among which are G-protein-coupled receptor agonists and lipase inhibitors. In addition, molecules that stimulate lipolysis have been tested in clinical trials as a treatment for obesity. Together, these molecules represent a diverse group of regulators for this pathway. This review will discuss strategies to target lipolysis and the major issues with representative small-molecule modulators of this pathway.
ESTHER : Wang_2006_Chem.Biol_13_1019
PubMedSearch : Wang_2006_Chem.Biol_13_1019
PubMedID: 17052606

Title : In vitro SAR of (5-(2H)-isoxazolonyl) ureas, potent inhibitors of hormone-sensitive lipase - Lowe_2004_Bioorg.Med.Chem.Lett_14_3155
Author(s) : Lowe DB , Magnuson S , Qi N , Campbell AM , Cook J , Hong Z , Wang M , Rodriguez M , Achebe F , Kluender H , Wong WC , Bullock WH , Salhanick AI , Witman-Jones T , Bowling ME , Keiper C , Clairmont KB
Ref : Bioorganic & Medicinal Chemistry Lett , 14 :3155 , 2004
Abstract : A series of (5-(2H)-isoxazolonyl) ureas were developed as nanomolar inhibitors of hormone-sensitive lipase, an enzyme of potential importance in the treatment of diabetes.
ESTHER : Lowe_2004_Bioorg.Med.Chem.Lett_14_3155
PubMedSearch : Lowe_2004_Bioorg.Med.Chem.Lett_14_3155
PubMedID: 15149665

Title : NDRG1 is necessary for p53-dependent apoptosis - Stein_2004_J.Biol.Chem_279_48930
Author(s) : Stein S , Thomas EK , Herzog B , Westfall MD , Rocheleau JV , Jackson RS, 2nd , Wang M , Liang P
Ref : Journal of Biological Chemistry , 279 :48930 , 2004
Abstract : Although a number of target genes for the tumor suppressor p53 have been described, the mechanism of p53-dependent apoptosis is incompletely understood. Thus, it is essential to identify and characterize additional target genes that could mediate apoptosis. In the study reported here, we isolated a p53-regulated gene named NDRG1 (N-Myc down-regulated gene 1). Its expression is induced by DNA damage in a p53-dependent fashion. The promoter region of the NDRG1 gene contains a p53 binding site that confers p53-dependent transcriptional activation via a heterologous reporter. RNA interference and inducible gene expression approaches suggest that NDRG1 is necessary but not sufficient for p53-mediated caspase activation and apoptosis. This report further supports the notion that p53 controls a network of genes that are required for its apoptotic function.
ESTHER : Stein_2004_J.Biol.Chem_279_48930
PubMedSearch : Stein_2004_J.Biol.Chem_279_48930
PubMedID: 15377670
Gene_locus related to this paper: human-NDRG1

Title : A complete gene cluster from Streptomyces nanchangensis NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin - Sun_2003_Chem.Biol_10_431
Author(s) : Sun Y , Zhou X , Dong H , Tu G , Wang M , Wang B , Deng Z
Ref : Chemical Biology , 10 :431 , 2003
Abstract : The PKS genes for biosynthesis of the polyether nanchangmycin are organized to encode two sets of proteins (six and seven ORFs, respectively), but are separated by independent ORFs that encode an epimerase, epoxidase, and epoxide hydrolase, and, notably, an independent ACP. One of the PKS modules lacks a corresponding ACP. We propose that the process of oxidative cyclization to form the polyether structure occurs when the polyketide chain is still anchored on the independent ACP before release. 4-O-methyl-L-rhodinose biosynthesis and its transglycosylation involve four putative genes, and regulation of nanchangmycin biosynthesis seems to involve activation as well as repression. In-frame deletion of a KR6 domain generated the nanchangmycin aglycone with loss of 4-O-methyl-L-rhodinose and antibacterial activity, in agreement with the assignments of the PKS domains catalyzing specific biosynthetic steps.
ESTHER : Sun_2003_Chem.Biol_10_431
PubMedSearch : Sun_2003_Chem.Biol_10_431
PubMedID: 12770825
Gene_locus related to this paper: strna-NANE

Title : The genome sequence of the malaria mosquito Anopheles gambiae - Holt_2002_Science_298_129
Author(s) : Holt RA , Subramanian GM , Halpern A , Sutton GG , Charlab R , Nusskern DR , Wincker P , Clark AG , Ribeiro JM , Wides R , Salzberg SL , Loftus B , Yandell M , Majoros WH , Rusch DB , Lai Z , Kraft CL , Abril JF , Anthouard V , Arensburger P , Atkinson PW , Baden H , de Berardinis V , Baldwin D , Benes V , Biedler J , Blass C , Bolanos R , Boscus D , Barnstead M , Cai S , Center A , Chaturverdi K , Christophides GK , Chrystal MA , Clamp M , Cravchik A , Curwen V , Dana A , Delcher A , Dew I , Evans CA , Flanigan M , Grundschober-Freimoser A , Friedli L , Gu Z , Guan P , Guigo R , Hillenmeyer ME , Hladun SL , Hogan JR , Hong YS , Hoover J , Jaillon O , Ke Z , Kodira C , Kokoza E , Koutsos A , Letunic I , Levitsky A , Liang Y , Lin JJ , Lobo NF , Lopez JR , Malek JA , McIntosh TC , Meister S , Miller J , Mobarry C , Mongin E , Murphy SD , O'Brochta DA , Pfannkoch C , Qi R , Regier MA , Remington K , Shao H , Sharakhova MV , Sitter CD , Shetty J , Smith TJ , Strong R , Sun J , Thomasova D , Ton LQ , Topalis P , Tu Z , Unger MF , Walenz B , Wang A , Wang J , Wang M , Wang X , Woodford KJ , Wortman JR , Wu M , Yao A , Zdobnov EM , Zhang H , Zhao Q , Zhao S , Zhu SC , Zhimulev I , Coluzzi M , della Torre A , Roth CW , Louis C , Kalush F , Mural RJ , Myers EW , Adams MD , Smith HO , Broder S , Gardner MJ , Fraser CM , Birney E , Bork P , Brey PT , Venter JC , Weissenbach J , Kafatos FC , Collins FH , Hoffman SL
Ref : Science , 298 :129 , 2002
Abstract : Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
ESTHER : Holt_2002_Science_298_129
PubMedSearch : Holt_2002_Science_298_129
PubMedID: 12364791
Gene_locus related to this paper: anoga-a0nb77 , anoga-a0nbp6 , anoga-a0neb7 , anoga-a0nei9 , anoga-a0nej0 , anoga-a0ngj1 , anoga-a7ut12 , anoga-a7uuz9 , anoga-ACHE1 , anoga-ACHE2 , anoga-agCG44620 , anoga-agCG44666 , anoga-agCG45273 , anoga-agCG45279 , anoga-agCG45511 , anoga-agCG46741 , anoga-agCG47651 , anoga-agCG47655 , anoga-agCG47661 , anoga-agCG47690 , anoga-agCG48797 , anoga-AGCG49362 , anoga-agCG49462 , anoga-agCG49870 , anoga-agCG49872 , anoga-agCG49876 , anoga-agCG50851 , anoga-agCG51879 , anoga-agCG52383 , anoga-agCG54954 , anoga-AGCG55021 , anoga-agCG55401 , anoga-agCG55408 , anoga-agCG56978 , anoga-ebiG239 , anoga-ebiG2660 , anoga-ebiG5718 , anoga-ebiG5974 , anoga-ebiG8504 , anoga-ebiG8742 , anoga-glita , anoga-nrtac , anoga-q5tpv0 , anoga-Q5TVS6 , anoga-q7pm39 , anoga-q7ppw9 , anoga-q7pq17 , anoga-Q7PQT0 , anoga-q7q8m4 , anoga-q7q626 , anoga-q7qa14 , anoga-q7qa52 , anoga-q7qal7 , anoga-q7qbj0 , anoga-f5hl20 , anoga-q7qkh2 , anoga-a0a1s4h1y7 , anoga-q7q887

Title : A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome - Mural_2002_Science_296_1661
Author(s) : Mural RJ , Adams MD , Myers EW , Smith HO , Miklos GL , Wides R , Halpern A , Li PW , Sutton GG , Nadeau J , Salzberg SL , Holt RA , Kodira CD , Lu F , Chen L , Deng Z , Evangelista CC , Gan W , Heiman TJ , Li J , Li Z , Merkulov GV , Milshina NV , Naik AK , Qi R , Shue BC , Wang A , Wang J , Wang X , Yan X , Ye J , Yooseph S , Zhao Q , Zheng L , Zhu SC , Biddick K , Bolanos R , Delcher AL , Dew IM , Fasulo D , Flanigan MJ , Huson DH , Kravitz SA , Miller JR , Mobarry CM , Reinert K , Remington KA , Zhang Q , Zheng XH , Nusskern DR , Lai Z , Lei Y , Zhong W , Yao A , Guan P , Ji RR , Gu Z , Wang ZY , Zhong F , Xiao C , Chiang CC , Yandell M , Wortman JR , Amanatides PG , Hladun SL , Pratts EC , Johnson JE , Dodson KL , Woodford KJ , Evans CA , Gropman B , Rusch DB , Venter E , Wang M , Smith TJ , Houck JT , Tompkins DE , Haynes C , Jacob D , Chin SH , Allen DR , Dahlke CE , Sanders R , Li K , Liu X , Levitsky AA , Majoros WH , Chen Q , Xia AC , Lopez JR , Donnelly MT , Newman MH , Glodek A , Kraft CL , Nodell M , Ali F , An HJ , Baldwin-Pitts D , Beeson KY , Cai S , Carnes M , Carver A , Caulk PM , Center A , Chen YH , Cheng ML , Coyne MD , Crowder M , Danaher S , Davenport LB , Desilets R , Dietz SM , Doup L , Dullaghan P , Ferriera S , Fosler CR , Gire HC , Gluecksmann A , Gocayne JD , Gray J , Hart B , Haynes J , Hoover J , Howland T , Ibegwam C , Jalali M , Johns D , Kline L , Ma DS , MacCawley S , Magoon A , Mann F , May D , McIntosh TC , Mehta S , Moy L , Moy MC , Murphy BJ , Murphy SD , Nelson KA , Nuri Z , Parker KA , Prudhomme AC , Puri VN , Qureshi H , Raley JC , Reardon MS , Regier MA , Rogers YH , Romblad DL , Schutz J , Scott JL , Scott R , Sitter CD , Smallwood M , Sprague AC , Stewart E , Strong RV , Suh E , Sylvester K , Thomas R , Tint NN , Tsonis C , Wang G , Williams MS , Williams SM , Windsor SM , Wolfe K , Wu MM , Zaveri J , Chaturvedi K , Gabrielian AE , Ke Z , Sun J , Subramanian G , Venter JC , Pfannkoch CM , Barnstead M , Stephenson LD
Ref : Science , 296 :1661 , 2002
Abstract : The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22. Gene content and order are highly conserved between Mmu 16 and the syntenic blocks of the human genome. Of the 731 predicted genes on Mmu 16, 509 align with orthologs on the corresponding portions of the human genome, 44 are likely paralogous to these genes, and 164 genes have homologs elsewhere in the human genome; there are 14 genes for which we could find no human counterpart.
ESTHER : Mural_2002_Science_296_1661
PubMedSearch : Mural_2002_Science_296_1661
PubMedID: 12040188
Gene_locus related to this paper: mouse-ABH15 , mouse-Ces3b , mouse-Ces4a , mouse-dpp4 , mouse-FAP , mouse-Lipg , mouse-Q8C1A9 , mouse-rbbp9 , mouse-SERHL , mouse-SPG21 , mouse-w4vsp6

Title : The sequence of the human genome - Venter_2001_Science_291_1304
Author(s) : Venter JC , Adams MD , Myers EW , Li PW , Mural RJ , Sutton GG , Smith HO , Yandell M , Evans CA , Holt RA , Gocayne JD , Amanatides P , Ballew RM , Huson DH , Wortman JR , Zhang Q , Kodira CD , Zheng XH , Chen L , Skupski M , Subramanian G , Thomas PD , Zhang J , Gabor Miklos GL , Nelson C , Broder S , Clark AG , Nadeau J , McKusick VA , Zinder N , Levine AJ , Roberts RJ , Simon M , Slayman C , Hunkapiller M , Bolanos R , Delcher A , Dew I , Fasulo D , Flanigan M , Florea L , Halpern A , Hannenhalli S , Kravitz S , Levy S , Mobarry C , Reinert K , Remington K , Abu-Threideh J , Beasley E , Biddick K , Bonazzi V , Brandon R , Cargill M , Chandramouliswaran I , Charlab R , Chaturvedi K , Deng Z , Di Francesco V , Dunn P , Eilbeck K , Evangelista C , Gabrielian AE , Gan W , Ge W , Gong F , Gu Z , Guan P , Heiman TJ , Higgins ME , Ji RR , Ke Z , Ketchum KA , Lai Z , Lei Y , Li Z , Li J , Liang Y , Lin X , Lu F , Merkulov GV , Milshina N , Moore HM , Naik AK , Narayan VA , Neelam B , Nusskern D , Rusch DB , Salzberg S , Shao W , Shue B , Sun J , Wang Z , Wang A , Wang X , Wang J , Wei M , Wides R , Xiao C , Yan C , Yao A , Ye J , Zhan M , Zhang W , Zhang H , Zhao Q , Zheng L , Zhong F , Zhong W , Zhu S , Zhao S , Gilbert D , Baumhueter S , Spier G , Carter C , Cravchik A , Woodage T , Ali F , An H , Awe A , Baldwin D , Baden H , Barnstead M , Barrow I , Beeson K , Busam D , Carver A , Center A , Cheng ML , Curry L , Danaher S , Davenport L , Desilets R , Dietz S , Dodson K , Doup L , Ferriera S , Garg N , Gluecksmann A , Hart B , Haynes J , Haynes C , Heiner C , Hladun S , Hostin D , Houck J , Howland T , Ibegwam C , Johnson J , Kalush F , Kline L , Koduru S , Love A , Mann F , May D , McCawley S , McIntosh T , McMullen I , Moy M , Moy L , Murphy B , Nelson K , Pfannkoch C , Pratts E , Puri V , Qureshi H , Reardon M , Rodriguez R , Rogers YH , Romblad D , Ruhfel B , Scott R , Sitter C , Smallwood M , Stewart E , Strong R , Suh E , Thomas R , Tint NN , Tse S , Vech C , Wang G , Wetter J , Williams S , Williams M , Windsor S , Winn-Deen E , Wolfe K , Zaveri J , Zaveri K , Abril JF , Guigo R , Campbell MJ , Sjolander KV , Karlak B , Kejariwal A , Mi H , Lazareva B , Hatton T , Narechania A , Diemer K , Muruganujan A , Guo N , Sato S , Bafna V , Istrail S , Lippert R , Schwartz R , Walenz B , Yooseph S , Allen D , Basu A , Baxendale J , Blick L , Caminha M , Carnes-Stine J , Caulk P , Chiang YH , Coyne M , Dahlke C , Mays A , Dombroski M , Donnelly M , Ely D , Esparham S , Fosler C , Gire H , Glanowski S , Glasser K , Glodek A , Gorokhov M , Graham K , Gropman B , Harris M , Heil J , Henderson S , Hoover J , Jennings D , Jordan C , Jordan J , Kasha J , Kagan L , Kraft C , Levitsky A , Lewis M , Liu X , Lopez J , Ma D , Majoros W , McDaniel J , Murphy S , Newman M , Nguyen T , Nguyen N , Nodell M , Pan S , Peck J , Peterson M , Rowe W , Sanders R , Scott J , Simpson M , Smith T , Sprague A , Stockwell T , Turner R , Venter E , Wang M , Wen M , Wu D , Wu M , Xia A , Zandieh A , Zhu X
Ref : Science , 291 :1304 , 2001
Abstract : A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
ESTHER : Venter_2001_Science_291_1304
PubMedSearch : Venter_2001_Science_291_1304
PubMedID: 11181995
Gene_locus related to this paper: human-AADAC , human-ABHD1 , human-ABHD10 , human-ABHD11 , human-ACHE , human-BCHE , human-LDAH , human-ABHD18 , human-CMBL , human-ABHD17A , human-KANSL3 , human-LIPA , human-LYPLAL1 , human-NDRG2 , human-NLGN3 , human-NLGN4X , human-NLGN4Y , human-PAFAH2 , human-PREPL , human-RBBP9 , human-SPG21

Title : Histamine H(3) receptor-mediated inhibition of endogenous acetylcholine release from the isolated, vascularly perfused rat stomach - Yokotani_2000_Eur.J.Pharmacol_392_23
Author(s) : Yokotani K , Murakami Y , Okada S , Wang M , Nakamura K
Ref : European Journal of Pharmacology , 392 :23 , 2000
Abstract : We studied the effects of histamine H(3) receptor ligands on the release of endogenous acetylcholine from the isolated, vascularly perfused rat stomach. The stomach was perfused via the celiac artery with modified Krebs-Ringer solution containing physostigmine. Released acetylcholine from the portal vein was electrochemically measured using high-performance liquid chromatography and an enzyme system. Vagus nerves were electrically stimulated twice for 2 min (0.5 or 2.5 Hz). Acetylcholine release evoked at 2.5 Hz was slightly inhibited by histamine and effectively potentiated by thioperamide, a histamine H(3) receptor antagonist. Acetylcholine release evoked at 0.5 Hz in the presence of atropine was not influenced by thioperamide, but effectively inhibited by histamine, R-alpha-methylhistamine or imetit, histamine H(3) receptor agonists. These inhibitory effects were abolished by thioperamide or pertussis toxin. These results suggest that histamine attenuates acetylcholine release from vagus nerves through histamine H(3) receptor-mediated and pertussis toxin-sensitive mechanisms in the rat stomach.
ESTHER : Yokotani_2000_Eur.J.Pharmacol_392_23
PubMedSearch : Yokotani_2000_Eur.J.Pharmacol_392_23
PubMedID: 10748268