Hanak AS

References (3)

Title : No-observed-adverse-effect-level (NOAEL) assessment as an optimized dose of cholinesterase reactivators for the treatment of exposure to warfare nerve agents in mice - Trancart_2024_Chem.Biol.Interact__110929
Author(s) : Trancart M , Hanak AS , Dambrune C , Madi M , Voros C , Baati R , Calas AG
Ref : Chemico-Biological Interactions , :110929 , 2024
Abstract : Despite the international convention on the prohibition of chemical weapons ratified in 1997, the threat of conflicts and terrorist attacks involving such weapons still exists. Among these, organophosphorus-nerve agents (OPs) inhibit cholinesterases (ChE) causing cholinergic syndrome. The reactivation of these enzymes is therefore essential to protect the poisoned people. However, these reactivating molecules, mainly named oximes, have major drawbacks with limited efficacy against some OPs and a non-negligible ChE inhibitor potential if administered at an inadequate dose, an effect that they are precisely supposed to mitigate. As a result, this project focused on assessing therapeutic efficacy, in mice, up to the NOAEL dose, the maximum dose of oxime that does not induce any observable toxic effect. NOAEL doses of HI-6 DMS, a reference oxime, and JDS364. HCl, a candidate reactivator, were assessed using dual-chamber plethysmography, with respiratory ventilation impairment as a toxicity criterion. Time-course modeling parameters and pharmacodynamic profiles, reflecting the interaction between the oxime and circulating ChE, were evaluated for treatments at their NOAEL and higher doses. Finally, the therapeutic potential against OPs poisoning was determined through the assessment of protective indices. For JDS364. HCl, the NOAEL dose corresponds to the smallest dose inducing the most significant therapeutic effect without causing any abnormality in ChE activity. In contrast, for HI-6 DMS, its therapeutic benefit was observed at doses higher than its NOAEL, leading to alterations in respiratory function. These alterations could not be directly correlated with ChE inhibition and had no adverse effects on survival. They are potentially attributed to the stimulation of non-enzymatic cholinergic targets by HI-6 DMS. Thus, the NOAEL appears to be an optimal dose for evaluating the efficacy of oximes, particularly when it can be linked to respiratory alterations effectively resulting from ChE inhibition.
ESTHER : Trancart_2024_Chem.Biol.Interact__110929
PubMedSearch : Trancart_2024_Chem.Biol.Interact__110929
PubMedID: 38417730

Title : A New Class of Bi- and Trifunctional Sugar Oximes as Antidotes against Organophosphorus Poisoning - Da Silva_2022_J.Med.Chem_65_4649
Author(s) : Da Silva O , Probst N , Landry C , Hanak AS , Warnault P , Coisne C , Calas AG , Gosselet F , Courageux C , Gastellier AJ , Trancart M , Baati R , Dehouck MP , Jean L , Nachon F , Renard PY , Dias J
Ref : Journal of Medicinal Chemistry , 65 :4649 , 2022
Abstract : Recent events demonstrated that organophosphorus nerve agents are a serious threat for civilian and military populations. The current therapy includes a pyridinium aldoxime reactivator to restore the enzymatic activity of acetylcholinesterase located in the central nervous system and neuro-muscular junctions. One major drawback of these charged acetylcholinesterase reactivators is their poor ability to cross the blood-brain barrier. In this study, we propose to evaluate glucoconjugated oximes devoid of permanent charge as potential central nervous system reactivators. We determined their in vitro reactivation efficacy on inhibited human acetylcholinesterase, the crystal structure of two compounds in complex with the enzyme, their protective index on intoxicated mice, and their pharmacokinetics. We then evaluated their endothelial permeability coefficients with a human in vitro model. This study shed light on the structural restrains of new sugar oximes designed to reach the central nervous system through the glucose transporter located at the blood-brain barrier.
ESTHER : Da Silva_2022_J.Med.Chem_65_4649
PubMedSearch : Da Silva_2022_J.Med.Chem_65_4649
PubMedID: 35255209
Gene_locus related to this paper: human-ACHE

Title : Efficacy Assessment of an Uncharged Reactivator of NOP-Inhibited Acetylcholinesterase Based on Tetrahydroacridine Pyridine-Aldoxime Hybrid in Mouse Compared to Pralidoxime - Calas_2020_Biomolecules_10_
Author(s) : Calas AG , Hanak AS , Jaffre N , Nervo A , Dias J , Rousseau C , Courageux C , Brazzolotto X , Villa P , Obrecht A , Goossens JF , Landry C , Hachani J , Gosselet F , Dehouck MP , Yerri J , Kliachyna M , Baati R , Nachon F
Ref : Biomolecules , 10 : , 2020
Abstract : (1) Background: Human exposure to organophosphorus compounds employed as pesticides or as chemical warfare agents induces deleterious effects due to cholinesterase inhibition. One therapeutic approach is the reactivation of inhibited acetylcholinesterase by oximes. While currently available oximes are unable to reach the central nervous system to reactivate cholinesterases or to display a wide spectrum of action against the variety of organophosphorus compounds, we aim to identify new reactivators without such drawbacks. (2) Methods: This study gathers an exhaustive work to assess in vitro and in vivo efficacy, and toxicity of a hybrid tetrahydroacridine pyridinaldoxime reactivator, KM297, compared to pralidoxime. (3) Results: Blood-brain barrier crossing assay carried out on a human in vitro model established that KM297 has an endothelial permeability coefficient twice that of pralidoxime. It also presents higher cytotoxicity, particularly on bone marrow-derived cells. Its strong cholinesterase inhibition potency seems to be correlated to its low protective efficacy in mice exposed to paraoxon. Ventilatory monitoring of KM297-treated mice by double-chamber plethysmography shows toxic effects at the selected therapeutic dose. This breathing assessment could help define the No Observed Adverse Effect Level (NOAEL) dose of new oximes which would have a maximum therapeutic effect without any toxic side effects.
ESTHER : Calas_2020_Biomolecules_10_
PubMedSearch : Calas_2020_Biomolecules_10_
PubMedID: 32512884