Dehouck MP

References (4)

Title : A New Class of Bi- and Trifunctional Sugar Oximes as Antidotes against Organophosphorus Poisoning - Da Silva_2022_J.Med.Chem_65_4649
Author(s) : Da Silva O , Probst N , Landry C , Hanak AS , Warnault P , Coisne C , Calas AG , Gosselet F , Courageux C , Gastellier AJ , Trancart M , Baati R , Dehouck MP , Jean L , Nachon F , Renard PY , Dias J
Ref : Journal of Medicinal Chemistry , 65 :4649 , 2022
Abstract : Recent events demonstrated that organophosphorus nerve agents are a serious threat for civilian and military populations. The current therapy includes a pyridinium aldoxime reactivator to restore the enzymatic activity of acetylcholinesterase located in the central nervous system and neuro-muscular junctions. One major drawback of these charged acetylcholinesterase reactivators is their poor ability to cross the blood-brain barrier. In this study, we propose to evaluate glucoconjugated oximes devoid of permanent charge as potential central nervous system reactivators. We determined their in vitro reactivation efficacy on inhibited human acetylcholinesterase, the crystal structure of two compounds in complex with the enzyme, their protective index on intoxicated mice, and their pharmacokinetics. We then evaluated their endothelial permeability coefficients with a human in vitro model. This study shed light on the structural restrains of new sugar oximes designed to reach the central nervous system through the glucose transporter located at the blood-brain barrier.
ESTHER : Da Silva_2022_J.Med.Chem_65_4649
PubMedSearch : Da Silva_2022_J.Med.Chem_65_4649
PubMedID: 35255209
Gene_locus related to this paper: human-ACHE

Title : Chemoselective Hydrogenation of 6-Alkynyl-3-fluoro-2-pyridinaldoximes: Access to First-in-Class 6-Alkyl-3-Fluoro-2-pyridinaldoxime Scaffolds as New Reactivators of Sarin-Inhibited Human Acetylcholinesterase with Increased Blood-Brain Barrier Permeability - Yerri_2020_Chemistry_26_15035
Author(s) : Yerri J , Dias J , Nimmakayala MR , Razafindrainibe F , Courageux C , Gastellier AJ , Jegoux J , Coisne C , Landry C , Gosselet F , Hachani J , Goossens JF , Dehouck MP , Nachon F , Baati R
Ref : Chemistry , 26 :15035 , 2020
Abstract : Novel 6-alkyl- and 6-alkenyl-3-fluoro-2-pyridinaldoximes have been synthesised by using a mild and efficient chemoselective hydrogenation of 6-alkynyl-3-fluoro-2-pyridinaldoxime scaffolds, without altering the reducible, unprotected, sensitive oxime functionality and the C-F bond. These novel 6-alkyl-3-fluoro-2-pyridinaldoximes may find medicinal application as antidotes to organophosphate poisoning. Indeed, one low-molecular-weight compound exhibited increased affinity for sarin-inhibited acetylcholinesterase (hAChE) and greater reactivation efficiency or resurrection for sarin-inhibited hAChE, compared with those of 2-pyridinaldoxime (2-PAM) and 1-({[4-(aminocarbonyl)pyridinio]methoxy}methyl)-2-[(hydroxyimino)methyl]pyridinium chloride (HI-6), two pyridinium salts currently used as antidote by several countries. In addition, the uncharged 3-fluorinated bifunctional hybrid showed increased in vitro blood-brain barrier permeability compared with those of 2-PAM, HI-6 and obidoxime. These promising features of novel low-molecular-weight alkylfluoropyridinaldoxime open up a new era for the design, synthesis and discovery of central non-quaternary broad spectrum reactivators for organophosphate-inhibited cholinesterases.
ESTHER : Yerri_2020_Chemistry_26_15035
PubMedSearch : Yerri_2020_Chemistry_26_15035
PubMedID: 32633095

Title : Efficacy Assessment of an Uncharged Reactivator of NOP-Inhibited Acetylcholinesterase Based on Tetrahydroacridine Pyridine-Aldoxime Hybrid in Mouse Compared to Pralidoxime - Calas_2020_Biomolecules_10_
Author(s) : Calas AG , Hanak AS , Jaffre N , Nervo A , Dias J , Rousseau C , Courageux C , Brazzolotto X , Villa P , Obrecht A , Goossens JF , Landry C , Hachani J , Gosselet F , Dehouck MP , Yerri J , Kliachyna M , Baati R , Nachon F
Ref : Biomolecules , 10 : , 2020
Abstract : (1) Background: Human exposure to organophosphorus compounds employed as pesticides or as chemical warfare agents induces deleterious effects due to cholinesterase inhibition. One therapeutic approach is the reactivation of inhibited acetylcholinesterase by oximes. While currently available oximes are unable to reach the central nervous system to reactivate cholinesterases or to display a wide spectrum of action against the variety of organophosphorus compounds, we aim to identify new reactivators without such drawbacks. (2) Methods: This study gathers an exhaustive work to assess in vitro and in vivo efficacy, and toxicity of a hybrid tetrahydroacridine pyridinaldoxime reactivator, KM297, compared to pralidoxime. (3) Results: Blood-brain barrier crossing assay carried out on a human in vitro model established that KM297 has an endothelial permeability coefficient twice that of pralidoxime. It also presents higher cytotoxicity, particularly on bone marrow-derived cells. Its strong cholinesterase inhibition potency seems to be correlated to its low protective efficacy in mice exposed to paraoxon. Ventilatory monitoring of KM297-treated mice by double-chamber plethysmography shows toxic effects at the selected therapeutic dose. This breathing assessment could help define the No Observed Adverse Effect Level (NOAEL) dose of new oximes which would have a maximum therapeutic effect without any toxic side effects.
ESTHER : Calas_2020_Biomolecules_10_
PubMedSearch : Calas_2020_Biomolecules_10_
PubMedID: 32512884

Title : Development and Pharmacological Characterization of Selective Blockers of 2-Arachidonoyl Glycerol Degradation with Efficacy in Rodent Models of Multiple Sclerosis and Pain - Brindisi_2016_J.Med.Chem_59_2612
Author(s) : Brindisi M , Maramai S , Gemma S , Brogi S , Grillo A , Di Cesare Mannelli L , Gabellieri E , Lamponi S , Saponara S , Gorelli B , Tedesco D , Bonfiglio T , Landry C , Jung KM , Armirotti A , Luongo L , Ligresti A , Piscitelli F , Bertucci C , Dehouck MP , Campiani G , Maione S , Ghelardini C , Pittaluga A , Piomelli D , Di Marzo V , Butini S
Ref : Journal of Medicinal Chemistry , 59 :2612 , 2016
Abstract : We report the discovery of compound 4a, a potent beta-lactam-based monoacylglycerol lipase (MGL) inhibitor characterized by an irreversible and stereoselective mechanism of action, high membrane permeability, high brain penetration evaluated using a human in vitro blood-brain barrier model, high selectivity in binding and affinity-based proteomic profiling assays, and low in vitro toxicity. Mode-of-action studies demonstrate that 4a, by blocking MGL, increases 2-arachidonoylglycerol and behaves as a cannabinoid (CB1/CB2) receptor indirect agonist. Administration of 4a in mice suffering from experimental autoimmune encephalitis ameliorates the severity of the clinical symptoms in a CB1/CB2-dependent manner. Moreover, 4a produced analgesic effects in a rodent model of acute inflammatory pain, which was antagonized by CB1 and CB2 receptor antagonists/inverse agonists. 4a also relieves the neuropathic hypersensitivity induced by oxaliplatin. Given these evidence, 4a, as MGL selective inhibitor, could represent a valuable lead for the future development of therapeutic options for multiple sclerosis and chronic pain.
ESTHER : Brindisi_2016_J.Med.Chem_59_2612
PubMedSearch : Brindisi_2016_J.Med.Chem_59_2612
PubMedID: 26888301