Kelley JM

References (3)

Title : The complete genome sequence of the gastric pathogen Helicobacter pylori. - Tomb_1997_Nature_388_539
Author(s) : Tomb J-F , White O , Kerlavage AR , Clayton RA , Sutton GG , Fleischmann RD , Ketchum KA , Klenk H-P , Gill S , Dougherty BA , Nelson K , Quackenbush J , Zhou L , Kirkness EF , Peterson S , Loftus B , Richardson D , Dodson R , Khalak HG , Glodek A , McKenney K , FitzGerald LM , Lee N , Adams MD , Hickey EK , Berg DE , Gocayne JD , Utterback TR , Peterson JD , Kelley JM , Cotton MD , Weidman JM , Fujii C , Bowman C , Watthey L , Wallin E , Hayes WS , Borodovsky M , Karp PD , Smith HO , Fraser CM , Venter JC
Ref : Nature , 388 :539 , 1997
Abstract : Helicobacter pylori, strain 26695, has a circular genome of 1,667,867 base pairs and 1,590 predicted coding sequences. Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification. Many putative adhesins, lipoproteins and other outer membrane proteins were identified, underscoring the potential complexity of host-pathogen interaction. Based on the large number of sequence-related genes encoding outer membrane proteins and the presence of homopolymeric tracts and dinucleotide repeats in coding sequences, H. pylori, like several other mucosal pathogens, probably uses recombination and slipped-strand mispairing within repeats as mechanisms for antigenic variation and adaptive evolution. Consistent with its restricted niche, H. pylori has a few regulatory networks, and a limited metabolic repertoire and biosynthetic capacity. Its survival in acid conditions depends, in part, on its ability to establish a positive inside-membrane potential in low pH.
ESTHER : Tomb_1997_Nature_388_539
PubMedSearch : Tomb_1997_Nature_388_539
PubMedID: 9252185
Gene_locus related to this paper: helpy-HP0739 , helpy-o25061

Title : The minimal gene complement of Mycoplasma genitalium - Fraser_1995_Science_270_397
Author(s) : Fraser CM , Gocayne JD , White O , Adams MD , Clayton RA , Fleischmann RD , Bult CJ , Kerlavage AR , Sutton G , Kelley JM , Fritchman RD , Weidman JF , Small KV , Sandusky M , Fuhrmann J , Nguyen D , Utterback TR , Saudek DM , Phillips CA , Merrick JM , Tomb JF , Dougherty BA , Bott KF , Hu PC , Lucier TS , Peterson SN , Smith HO , Hutchison CA, 3rd , Venter JC
Ref : Science , 270 :397 , 1995
Abstract : The complete nucleotide sequence (580,070 base pairs) of the Mycoplasma genitalium genome, the smallest known genome of any free-living organism, has been determined by whole-genome random sequencing and assembly. A total of only 470 predicted coding regions were identified that include genes required for DNA replication, transcription and translation, DNA repair, cellular transport, and energy metabolism. Comparison of this genome to that of Haemophilus influenzae suggests that differences in genome content are reflected as profound differences in physiology and metabolic capacity between these two organisms.
ESTHER : Fraser_1995_Science_270_397
PubMedSearch : Fraser_1995_Science_270_397
PubMedID: 7569993
Gene_locus related to this paper: mycge-esl1 , mycge-esl2 , mycge-esl3 , mycge-pip

Title : Whole-genome random sequencing and assembly of Haemophilus influenzae Rd - Fleischmann_1995_Science_269_496
Author(s) : Fleischmann RD , Adams MD , White O , Clayton RA , Kirkness EF , Kerlavage AR , Bult CJ , Tomb JF , Dougherty BA , Merrick JM , McKenney K , Sutton G , FitzHugh W , Fields C , Gocayne JD , Scott J , Shirley R , Liu LI , Glodek A , Kelley JM , Weidman JF , Phillips CA , Spriggs T , Hedblom E , Cotton MD , Utterback TR , Hanna MC , Nguyen DT , Saudek DM , Brandon RC , FineLD , Fritchman JL , Fuhrmann JL , Geoghagen NS , Gnehm CL , McDonald LA , Keith V , Small KV , Fraser CM , Smith HO , Venter JC
Ref : Science , 269 :496 , 1995
Abstract : An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence (1,830,137 base pairs) of the genome from the bacterium Haemophilus influenzae Rd. This approach eliminates the need for initial mapping efforts and is therefore applicable to the vast array of microbial species for which genome maps are unavailable. The H. influenzae Rd genome sequence (Genome Sequence DataBase accession number L42023) represents the only complete genome sequence from a free-living organism.
ESTHER : Fleischmann_1995_Science_269_496
PubMedSearch : Fleischmann_1995_Science_269_496
PubMedID: 7542800
Gene_locus related to this paper: haein-HI0193 , haein-metx , haein-pldb , haein-sfgh , haein-y1552 , haein-yfbb