Sutton GG

References (21)

Title : Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species - Pearce_2017_BMC.Biol_15_63
Author(s) : Pearce SL , Clarke DF , East PD , Elfekih S , Gordon KHJ , Jermiin LS , McGaughran A , Oakeshott JG , Papanicolaou A , Perera OP , Rane RV , Richards S , Tay WT , Walsh TK , Anderson A , Anderson CJ , Asgari S , Board PG , Bretschneider A , Campbell PM , Chertemps T , Christeller JT , Coppin CW , Downes SJ , Duan G , Farnsworth CA , Good RT , Han LB , Han YC , Hatje K , Horne I , Huang YP , Hughes DST , Jacquin-Joly E , James W , Jhangiani S , Kollmar M , Kuwar SS , Li S , Liu NY , Maibeche MT , Miller JR , Montagne N , Perry T , Qu J , Song SV , Sutton GG , Vogel H , Walenz BP , Xu W , Zhang HJ , Zou Z , Batterham P , Edwards OR , Feyereisen R , Gibbs RA , Heckel DG , McGrath A , Robin C , Scherer SE , Worley KC , Wu YD
Ref : BMC Biol , 15 :63 , 2017
Abstract : BACKGROUND: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. RESULTS: We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. CONCLUSIONS: The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant.
ESTHER : Pearce_2017_BMC.Biol_15_63
PubMedSearch : Pearce_2017_BMC.Biol_15_63
PubMedID: 28756777
Gene_locus related to this paper: helam-a0a2w1bn75 , helam-a0a2w1bp69 , helam-a0a2w1bvf3

Title : A catalog of reference genomes from the human microbiome - Nelson_2010_Science_328_994
Author(s) : Nelson KE , Weinstock GM , Highlander SK , Worley KC , Creasy HH , Wortman JR , Rusch DB , Mitreva M , Sodergren E , Chinwalla AT , Feldgarden M , Gevers D , Haas BJ , Madupu R , Ward DV , Birren BW , Gibbs RA , Methe B , Petrosino JF , Strausberg RL , Sutton GG , White OR , Wilson RK , Durkin S , Giglio MG , Gujja S , Howarth C , Kodira CD , Kyrpides N , Mehta T , Muzny DM , Pearson M , Pepin K , Pati A , Qin X , Yandava C , Zeng Q , Zhang L , Berlin AM , Chen L , Hepburn TA , Johnson J , McCorrison J , Miller J , Minx P , Nusbaum C , Russ C , Sykes SM , Tomlinson CM , Young S , Warren WC , Badger J , Crabtree J , Markowitz VM , Orvis J , Cree A , Ferriera S , Fulton LL , Fulton RS , Gillis M , Hemphill LD , Joshi V , Kovar C , Torralba M , Wetterstrand KA , Abouellleil A , Wollam AM , Buhay CJ , Ding Y , Dugan S , Fitzgerald MG , Holder M , Hostetler J , Clifton SW , Allen-Vercoe E , Earl AM , Farmer CN , Liolios K , Surette MG , Xu Q , Pohl C , Wilczek-Boney K , Zhu D
Ref : Science , 328 :994 , 2010
Abstract : The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified ("novel") polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (approximately 97%) were unique. In addition, this set of microbial genomes allows for approximately 40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.
ESTHER : Nelson_2010_Science_328_994
PubMedSearch : Nelson_2010_Science_328_994
PubMedID: 20489017
Gene_locus related to this paper: strp2-q04l35 , strpn-AXE1 , strpn-pepx

Title : The dynamic genome of Hydra - Chapman_2010_Nature_464_592
Author(s) : Chapman JA , Kirkness EF , Simakov O , Hampson SE , Mitros T , Weinmaier T , Rattei T , Balasubramanian PG , Borman J , Busam D , Disbennett K , Pfannkoch C , Sumin N , Sutton GG , Viswanathan LD , Walenz B , Goodstein DM , Hellsten U , Kawashima T , Prochnik SE , Putnam NH , Shu S , Blumberg B , Dana CE , Gee L , Kibler DF , Law L , Lindgens D , Martinez DE , Peng J , Wigge PA , Bertulat B , Guder C , Nakamura Y , Ozbek S , Watanabe H , Khalturin K , Hemmrich G , Franke A , Augustin R , Fraune S , Hayakawa E , Hayakawa S , Hirose M , Hwang JS , Ikeo K , Nishimiya-Fujisawa C , Ogura A , Takahashi T , Steinmetz PR , Zhang X , Aufschnaiter R , Eder MK , Gorny AK , Salvenmoser W , Heimberg AM , Wheeler BM , Peterson KJ , Bottger A , Tischler P , Wolf A , Gojobori T , Remington KA , Strausberg RL , Venter JC , Technau U , Hobmayer B , Bosch TC , Holstein TW , Fujisawa T , Bode HR , David CN , Rokhsar DS , Steele RE
Ref : Nature , 464 :592 , 2010
Abstract : The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.
ESTHER : Chapman_2010_Nature_464_592
PubMedSearch : Chapman_2010_Nature_464_592
PubMedID: 20228792
Gene_locus related to this paper: 9burk-c9y6c0 , 9burk-c9y8q9 , 9burk-c9y9d4 , 9burk-c9ya28 , 9burk-c9yb37 , 9burk-c9ycr9 , 9burk-c9ydq0 , 9burk-c9ydr2 , 9burk-c9yew1 , 9burk-c9yf78 , 9burk-c9ygh2 , 9burk-c9y7j2

Title : Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle - Kirkness_2010_Proc.Natl.Acad.Sci.U.S.A_107_12168
Author(s) : Kirkness EF , Haas BJ , Sun W , Braig HR , Perotti MA , Clark JM , Lee SH , Robertson HM , Kennedy RC , Elhaik E , Gerlach D , Kriventseva EV , Elsik CG , Graur D , Hill CA , Veenstra JA , Walenz B , Tubio JM , Ribeiro JM , Rozas J , Johnston JS , Reese JT , Popadic A , Tojo M , Raoult D , Reed DL , Tomoyasu Y , Kraus E , Mittapalli O , Margam VM , Li HM , Meyer JM , Johnson RM , Romero-Severson J , Vanzee JP , Alvarez-Ponce D , Vieira FG , Aguade M , Guirao-Rico S , Anzola JM , Yoon KS , Strycharz JP , Unger MF , Christley S , Lobo NF , Seufferheld MJ , Wang N , Dasch GA , Struchiner CJ , Madey G , Hannick LI , Bidwell S , Joardar V , Caler E , Shao R , Barker SC , Cameron S , Bruggner RV , Regier A , Johnson J , Viswanathan L , Utterback TR , Sutton GG , Lawson D , Waterhouse RM , Venter JC , Strausberg RL , Berenbaum MR , Collins FH , Zdobnov EM , Pittendrigh BR
Ref : Proc Natl Acad Sci U S A , 107 :12168 , 2010
Abstract : As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.
ESTHER : Kirkness_2010_Proc.Natl.Acad.Sci.U.S.A_107_12168
PubMedSearch : Kirkness_2010_Proc.Natl.Acad.Sci.U.S.A_107_12168
PubMedID: 20566863
Gene_locus related to this paper: pedhb-ACHE1 , pedhb-ACHE2 , pedhc-e0v9b5 , pedhc-e0v9b6 , pedhc-e0v9b7 , pedhc-e0vbv5 , pedhc-e0vcd0 , pedhc-e0vcl7 , pedhc-e0vd69 , pedhc-e0ve50 , pedhc-e0vel6 , pedhc-e0vel7 , pedhc-e0vf98 , pedhc-e0vfs8 , pedhc-e0vfv0 , pedhc-e0vg01 , pedhc-e0vha2 , pedhc-e0vha4 , pedhc-e0vi52 , pedhc-e0vp42 , pedhc-e0vqu6 , pedhc-e0vuj9 , pedhc-e0vup6 , pedhc-e0vv55 , pedhc-e0vwv3 , pedhc-e0vxf7 , pedhc-e0vxg1 , pedhc-e0w4a6 , pedhc-e0w4c8 , pedhc-e0w271 , pedhc-e0w444 , pedhc-e0vym0 , pedhc-e0vdk9 , pedhc-e0vk10 , pedhc-e0vgw4 , pedhc-e0vgw7 , pedhc-e0vga1 , pedhc-e0w3s1 , pedhc-e0vzt2

Title : Evolution of genes and genomes on the Drosophila phylogeny - Clark_2007_Nature_450_203
Author(s) : Clark AG , Eisen MB , Smith DR , Bergman CM , Oliver B , Markow TA , Kaufman TC , Kellis M , Gelbart W , Iyer VN , Pollard DA , Sackton TB , Larracuente AM , Singh ND , Abad JP , Abt DN , Adryan B , Aguade M , Akashi H , Anderson WW , Aquadro CF , Ardell DH , Arguello R , Artieri CG , Barbash DA , Barker D , Barsanti P , Batterham P , Batzoglou S , Begun D , Bhutkar A , Blanco E , Bosak SA , Bradley RK , Brand AD , Brent MR , Brooks AN , Brown RH , Butlin RK , Caggese C , Calvi BR , Bernardo de Carvalho A , Caspi A , Castrezana S , Celniker SE , Chang JL , Chapple C , Chatterji S , Chinwalla A , Civetta A , Clifton SW , Comeron JM , Costello JC , Coyne JA , Daub J , David RG , Delcher AL , Delehaunty K , Do CB , Ebling H , Edwards K , Eickbush T , Evans JD , Filipski A , Findeiss S , Freyhult E , Fulton L , Fulton R , Garcia AC , Gardiner A , Garfield DA , Garvin BE , Gibson G , Gilbert D , Gnerre S , Godfrey J , Good R , Gotea V , Gravely B , Greenberg AJ , Griffiths-Jones S , Gross S , Guigo R , Gustafson EA , Haerty W , Hahn MW , Halligan DL , Halpern AL , Halter GM , Han MV , Heger A , Hillier L , Hinrichs AS , Holmes I , Hoskins RA , Hubisz MJ , Hultmark D , Huntley MA , Jaffe DB , Jagadeeshan S , Jeck WR , Johnson J , Jones CD , Jordan WC , Karpen GH , Kataoka E , Keightley PD , Kheradpour P , Kirkness EF , Koerich LB , Kristiansen K , Kudrna D , Kulathinal RJ , Kumar S , Kwok R , Lander E , Langley CH , Lapoint R , Lazzaro BP , Lee SJ , Levesque L , Li R , Lin CF , Lin MF , Lindblad-Toh K , Llopart A , Long M , Low L , Lozovsky E , Lu J , Luo M , Machado CA , Makalowski W , Marzo M , Matsuda M , Matzkin L , McAllister B , McBride CS , McKernan B , McKernan K , Mendez-Lago M , Minx P , Mollenhauer MU , Montooth K , Mount SM , Mu X , Myers E , Negre B , Newfeld S , Nielsen R , Noor MA , O'Grady P , Pachter L , Papaceit M , Parisi MJ , Parisi M , Parts L , Pedersen JS , Pesole G , Phillippy AM , Ponting CP , Pop M , Porcelli D , Powell JR , Prohaska S , Pruitt K , Puig M , Quesneville H , Ram KR , Rand D , Rasmussen MD , Reed LK , Reenan R , Reily A , Remington KA , Rieger TT , Ritchie MG , Robin C , Rogers YH , Rohde C , Rozas J , Rubenfield MJ , Ruiz A , Russo S , Salzberg SL , Sanchez-Gracia A , Saranga DJ , Sato H , Schaeffer SW , Schatz MC , Schlenke T , Schwartz R , Segarra C , Singh RS , Sirot L , Sirota M , Sisneros NB , Smith CD , Smith TF , Spieth J , Stage DE , Stark A , Stephan W , Strausberg RL , Strempel S , Sturgill D , Sutton G , Sutton GG , Tao W , Teichmann S , Tobari YN , Tomimura Y , Tsolas JM , Valente VL , Venter E , Venter JC , Vicario S , Vieira FG , Vilella AJ , Villasante A , Walenz B , Wang J , Wasserman M , Watts T , Wilson D , Wilson RK , Wing RA , Wolfner MF , Wong A , Wong GK , Wu CI , Wu G , Yamamoto D , Yang HP , Yang SP , Yorke JA , Yoshida K , Zdobnov E , Zhang P , Zhang Y , Zimin AV , Baldwin J , Abdouelleil A , Abdulkadir J , Abebe A , Abera B , Abreu J , Acer SC , Aftuck L , Alexander A , An P , Anderson E , Anderson S , Arachi H , Azer M , Bachantsang P , Barry A , Bayul T , Berlin A , Bessette D , Bloom T , Blye J , Boguslavskiy L , Bonnet C , Boukhgalter B , Bourzgui I , Brown A , Cahill P , Channer S , Cheshatsang Y , Chuda L , Citroen M , Collymore A , Cooke P , Costello M , D'Aco K , Daza R , De Haan G , DeGray S , DeMaso C , Dhargay N , Dooley K , Dooley E , Doricent M , Dorje P , Dorjee K , Dupes A , Elong R , Falk J , Farina A , Faro S , Ferguson D , Fisher S , Foley CD , Franke A , Friedrich D , Gadbois L , Gearin G , Gearin CR , Giannoukos G , Goode T , Graham J , Grandbois E , Grewal S , Gyaltsen K , Hafez N , Hagos B , Hall J , Henson C , Hollinger A , Honan T , Huard MD , Hughes L , Hurhula B , Husby ME , Kamat A , Kanga B , Kashin S , Khazanovich D , Kisner P , Lance K , Lara M , Lee W , Lennon N , Letendre F , LeVine R , Lipovsky A , Liu X , Liu J , Liu S , Lokyitsang T , Lokyitsang Y , Lubonja R , Lui A , Macdonald P , Magnisalis V , Maru K , Matthews C , McCusker W , McDonough S , Mehta T , Meldrim J , Meneus L , Mihai O , Mihalev A , Mihova T , Mittelman R , Mlenga V , Montmayeur A , Mulrain L , Navidi A , Naylor J , Negash T , Nguyen T , Nguyen N , Nicol R , Norbu C , Norbu N , Novod N , O'Neill B , Osman S , Markiewicz E , Oyono OL , Patti C , Phunkhang P , Pierre F , Priest M , Raghuraman S , Rege F , Reyes R , Rise C , Rogov P , Ross K , Ryan E , Settipalli S , Shea T , Sherpa N , Shi L , Shih D , Sparrow T , Spaulding J , Stalker J , Stange-Thomann N , Stavropoulos S , Stone C , Strader C , Tesfaye S , Thomson T , Thoulutsang Y , Thoulutsang D , Topham K , Topping I , Tsamla T , Vassiliev H , Vo A , Wangchuk T , Wangdi T , Weiand M , Wilkinson J , Wilson A , Yadav S , Young G , Yu Q , Zembek L , Zhong D , Zimmer A , Zwirko Z , Alvarez P , Brockman W , Butler J , Chin C , Grabherr M , Kleber M , Mauceli E , MacCallum I
Ref : Nature , 450 :203 , 2007
Abstract : Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
ESTHER : Clark_2007_Nature_450_203
PubMedSearch : Clark_2007_Nature_450_203
PubMedID: 17994087
Gene_locus related to this paper: droan-ACHE , droan-b3lx10 , droan-b3lx75 , droan-b3lxv7 , droan-b3ly87 , droan-b3lyh4 , droan-b3lyh5 , droan-b3lyh7 , droan-b3lyh9 , droan-b3lyi0 , droan-b3lyi2 , droan-b3lyi3 , droan-b3lyi4 , droan-b3lyj8 , droan-b3lyj9 , droan-b3lyx4 , droan-b3lyx5 , droan-b3lyx6 , droan-b3lyx7 , droan-b3lyx9 , droan-b3lz72 , droan-b3m1x3 , droan-b3m2d4 , droan-b3m3d9 , droan-b3m4e3 , droan-b3m5w1 , droan-b3m6i7 , droan-b3m7v2 , droan-b3m9a5 , droan-b3m9f4 , droan-b3m9p3 , droan-b3m254 , droan-b3m259 , droan-b3m260 , droan-b3m262 , droan-b3m524 , droan-b3m635 , droan-b3m845 , droan-b3m846 , droan-b3md01 , droan-b3mdh7 , droan-b3mdm6 , droan-b3mdw8 , droan-b3mee1 , droan-b3mf47 , droan-b3mf48 , droan-b3mg94 , droan-b3mgk2 , droan-b3mgn6 , droan-b3mii3 , droan-b3mjk2 , droan-b3mjk3 , droan-b3mjk4 , droan-b3mjk5 , droan-b3mjl2 , droan-b3mjl4 , droan-b3mjl7 , droan-b3mjl9 , droan-b3mjm8 , droan-b3mjm9 , droan-b3mjs6 , droan-b3mkr0 , droan-b3ml20 , droan-b3mly4 , droan-b3mly5 , droan-b3mly6 , droan-b3mmm8 , droan-b3mnb5 , droan-b3mny9 , droan-b3mtj5 , droan-b3muw4 , droan-b3muw8 , droan-b3n0e7 , droan-b3n2j7 , droan-b3n247 , droan-c5idb2 , droer-ACHE , droer-b3n5c7 , droer-b3n5d0 , droer-b3n5d8 , droer-b3n5d9 , droer-b3n5t7 , droer-b3n5y4 , droer-b3n7d2 , droer-b3n7d3 , droer-b3n7d4 , droer-b3n7k8 , droer-b3n8e4 , droer-b3n8f7 , droer-b3n8f8 , droer-b3n9e1 , droer-b3n319 , droer-b3n547 , droer-b3n549 , droer-b3n558 , droer-b3n560 , droer-b3n577 , droer-b3n612 , droer-b3nar5 , droer-b3nb91 , droer-b3nct9 , droer-b3nd53 , droer-b3ndh9 , droer-b3ndq8 , droer-b3ne66 , droer-b3ne67 , droer-b3ne97 , droer-b3nfk3 , droer-b3nfq9 , droer-b3nim7 , droer-b3nkn2 , droer-b3nm11 , droer-b3nmh4 , droer-b3nmy2 , droer-b3npx2 , droer-b3npx3 , droer-b3nq76 , droer-b3nqg9 , droer-b3nqm8 , droer-b3nr28 , droer-b3nrd3 , droer-b3nst4 , droer-b3nwa7 , droer-b3nyp5.1 , droer-b3nyp5.2 , droer-b3nyp6 , droer-b3nyp7 , droer-b3nyp8 , droer-b3nyp9 , droer-b3nyq3 , droer-b3nz06 , droer-b3nz14 , droer-b3nzj0 , droer-b3p0c0 , droer-b3p0c1 , droer-b3p0c2 , droer-b3p2x6 , droer-b3p2x7 , droer-b3p2x9 , droer-b3p2y1 , droer-b3p2y2 , droer-b3p6d4 , droer-b3p6d5 , droer-b3p6w3 , droer-b3p7b4 , droer-b3p7h9 , droer-b3p152 , droer-b3p486 , droer-b3p487 , droer-b3p488 , droer-b3p489 , droer-EST6 , droer-q670j5 , drogr-ACHE , drogr-b4iwp3 , drogr-b4iww3 , drogr-b4iwy3 , drogr-b4ixf7 , drogr-b4ixh4 , drogr-b4iyz5 , drogr-b4j2s2 , drogr-b4j2u8 , drogr-b4j3u1 , drogr-b4j3v3 , drogr-b4j4g7 , drogr-b4j4x9 , drogr-b4j6e6 , drogr-b4j9c9 , drogr-b4j9y4 , drogr-b4j156 , drogr-b4j384 , drogr-b4j605 , drogr-b4j685 , drogr-b4ja76 , drogr-b4jay5 , drogr-b4jcf0 , drogr-b4jcf1 , drogr-b4jdg6 , drogr-b4jdg7 , drogr-b4jdh6 , drogr-b4jdz1 , drogr-b4jdz2 , drogr-b4jdz4 , drogr-b4je66 , drogr-b4je79 , drogr-b4je82 , drogr-b4je88 , drogr-b4je89 , drogr-b4je90 , drogr-b4je91 , drogr-b4jf76 , drogr-b4jf79 , drogr-b4jf80 , drogr-b4jf81 , drogr-b4jf82 , drogr-b4jf83 , drogr-b4jf84 , drogr-b4jf85 , drogr-b4jf87 , drogr-b4jf91 , drogr-b4jf92 , drogr-b4jg66 , drogr-b4jgh0 , drogr-b4jgh1 , drogr-b4jgr9 , drogr-b4ji67 , drogr-b4jls2 , drogr-b4jnh9 , drogr-b4jpc6 , drogr-b4jpq3 , drogr-b4jpx9 , drogr-b4jql2 , drogr-b4jrh5 , drogr-b4jsb2 , drogr-b4jth3 , drogr-b4jti1 , drogr-b4jul5 , drogr-b4jur4 , drogr-b4jvh3 , drogr-b4jz00 , drogr-b4jz03 , drogr-b4jz04 , drogr-b4jz05 , drogr-b4jzh2 , drogr-b4k0u2 , drogr-b4k2r1 , drogr-b4k234 , drogr-b4k235 , drome-BEM46 , drome-CG3734 , drome-CG9953 , drome-CG11626 , drome-GH02439 , dromo-ACHE , dromo-b4k6a7 , dromo-b4k6a8 , dromo-b4k6q8 , dromo-b4k6q9 , dromo-b4k6r1 , dromo-b4k6r3 , dromo-b4k6r4 , dromo-b4k6r5 , dromo-b4k6r6 , dromo-b4k6r7 , dromo-b4k6r8 , dromo-b4k6r9 , dromo-b4k6s0 , dromo-b4k6s1 , dromo-b4k6s2 , dromo-b4k9c7 , dromo-b4k9d3 , dromo-b4k571 , dromo-b4k721 , dromo-b4ka74 , dromo-b4ka89 , dromo-b4kaj4 , dromo-b4kc20 , dromo-b4kcl2 , dromo-b4kcl3 , dromo-b4kd55.1 , dromo-b4kd55.2 , dromo-b4kd56 , dromo-b4kd57 , dromo-b4kde1 , dromo-b4kdg2 , dromo-b4kdh4 , dromo-b4kdh5 , dromo-b4kdh6 , dromo-A0A0Q9XDF2 , dromo-b4kdh8.1 , dromo-b4kdh8.2 , dromo-b4kg04 , dromo-b4kg05 , dromo-b4kg06 , dromo-b4kg16 , dromo-b4kg44 , dromo-b4kg90 , dromo-b4kh20 , dromo-b4kh21 , dromo-b4kht7 , dromo-b4kid3 , dromo-b4kik0 , dromo-b4kjx0 , dromo-b4kki1 , dromo-b4kkp6 , dromo-b4kkp8 , dromo-b4kkq8 , dromo-b4kkr0 , dromo-b4kkr3 , dromo-b4kkr4 , dromo-b4kks0 , dromo-b4kks1 , dromo-b4kks2 , dromo-b4kla1 , dromo-b4klv8 , dromo-b4knt4 , dromo-b4kp08 , dromo-b4kp16 , dromo-b4kqa6 , dromo-b4kqa7 , dromo-b4kqa8 , dromo-b4kqh1 , dromo-b4kst4 , dromo-b4ksy6 , dromo-b4kt84 , dromo-b4ktf5 , dromo-b4ktf6 , dromo-b4kvl3 , dromo-b4kvw2 , dromo-b4kwv4 , dromo-b4kwv5 , dromo-b4kxz6 , dromo-b4ky12 , dromo-b4ky36 , dromo-b4ky44 , dromo-b4kzu7 , dromo-b4l0n8 , dromo-b4l4u5 , dromo-b4l6l9 , dromo-b4l084 , drope-ACHE , drope-b4g3s6 , drope-b4g4p7 , drope-b4g6v4 , drope-b4g8m0 , drope-b4g8n6 , drope-b4g8n7 , drope-b4g9p2 , drope-b4g815 , drope-b4g816 , drope-b4gat7 , drope-b4gav5 , drope-b4gb05 , drope-b4gc08 , drope-b4gcr3 , drope-b4gdk2 , drope-b4gdl9 , drope-b4gdv9 , drope-b4gei8 , drope-b4gei9 , drope-b4gej0 , drope-b4ghz9 , drope-b4gj62 , drope-b4gj64 , drope-b4gj74 , drope-b4gkf4 , drope-b4gkv2 , drope-b4gky9 , drope-b4gl76 , drope-b4glf3 , drope-b4gmt3 , drope-b4gmt7 , drope-b4gmt9 , drope-b4gmu2 , drope-b4gmu3 , drope-b4gmu4 , drope-b4gmu5 , drope-b4gmu6 , drope-b4gmu7 , drope-b4gmv1 , drope-b4gn08 , drope-b4gpa7 , drope-b4gq13 , drope-b4grh7 , drope-b4gsf9 , drope-b4gsw4 , drope-b4gsw5 , drope-b4gsx2 , drope-b4gsx7 , drope-b4gsy6 , drope-b4gsy7 , drope-b4guj8 , drope-b4gw36 , drope-b4gzc2 , drope-b4gzc6 , drope-b4gzc7 , drope-b4h4p9 , drope-b4h5l3 , drope-b4h6a0 , drope-b4h6a8 , drope-b4h6a9 , drope-b4h6b0 , drope-b4h7m7 , drope-b4h462 , drope-b4h601 , drope-b4h602 , drope-b4hay1 , drope-b4hb18 , drope-est5a , drope-est5b , drope-est5c , drops-ACHE , drops-b5dhd2 , drops-b5dk96 , drops-b5dpe3 , drops-b5drp9 , drops-b5dwa7 , drops-b5dwa8 , drops-b5dz85 , drops-b5dz86 , drops-est5a , drops-est5b , drops-q29bq2 , drops-q29dd7 , drops-q29ew0 , drops-q291d5 , drops-q291e8 , drops-q293n1 , drops-q293n4 , drops-q293n5 , drops-q293n6 , drops-q294n6 , drops-q294n7 , drops-q294n9 , drops-q294p4 , drose-b4he97 , drose-b4hfu2 , drose-b4hg54 , drose-b4hga0 , drose-b4hgu9 , drose-b4hgv0 , drose-b4hgv3 , drose-b4hgv4 , drose-b4hhm8 , drose-b4hhs6 , drose-b4hie4 , drose-b4him9 , drose-b4hk63 , drose-b4hkj5 , drose-b4hr07 , drose-b4hr81 , drose-b4hre7 , drose-b4hs13 , drose-b4hsj9 , drose-b4hsk0 , drose-b4hsm8 , drose-b4hvr5 , drose-b4hwr7 , drose-b4hwr8 , drose-b4hwr9 , drose-b4hws6 , drose-b4hws7 , drose-b4hwt0 , drose-b4hwt2 , drose-b4hwu1 , drose-b4hwu2 , drose-b4hxs9 , drose-b4hxu4 , drose-b4hxz1 , drose-b4hyp8 , drose-b4hyp9 , drose-b4hyq0 , drose-b4hyz4 , drose-b4hyz5 , drose-b4i1k8 , drose-b4i2f3 , drose-b4i2w5 , drose-b4i4u3 , drose-b4i4u7 , drose-b4i4u9 , drose-b4i4v0 , drose-b4i4v1 , drose-b4i4v4 , drose-b4i4v5 , drose-b4i4v6 , drose-b4i4v7 , drose-b4i4v8 , drose-b4i4w0 , drose-b4i7s6 , drose-b4i133 , drose-b4i857 , drose-b4iam7 , drose-b4iam9 , drose-b4iaq6 , drose-b4icf6 , drose-b4icf7 , drose-b4id80 , drose-b4ifc5 , drose-b4ihv9 , drose-b4iie9 , drose-b4ilj8 , drose-b4in13 , drose-b4inj9 , drosi-ACHE , drosi-aes04a , drosi-b4nsh8 , drosi-b4q3d7 , drosi-b4q4w5 , drosi-b4q4y7 , drosi-b4q6h6 , drosi-b4q7u2 , drosi-b4q7u3 , drosi-b4q9c6 , drosi-b4q9c7 , drosi-b4q9d3 , drosi-b4q9d4 , drosi-b4q9r0 , drosi-b4q9r1 , drosi-b4q9r3 , drosi-b4q9s2 , drosi-b4q9s3 , drosi-b4q429 , drosi-b4q530 , drosi-b4q734 , drosi-b4q782 , drosi-b4q783 , drosi-b4q942 , drosi-b4qet1 , drosi-b4qfv6 , drosi-b4qge5 , drosi-b4qgh5 , drosi-b4qgs5 , drosi-b4qhf3 , drosi-b4qhf4 , drosi-b4qhi5 , drosi-b4qjr2 , drosi-b4qjr3 , drosi-b4qjv6 , drosi-b4qk23 , drosi-b4qk51 , drosi-b4qlt1 , drosi-b4qlz9 , drosi-b4qmn9 , drosi-b4qrq7 , drosi-b4qs01 , drosi-b4qs57 , drosi-b4qs82 , drosi-b4qs83 , drosi-b4qs84 , drosi-b4qs85 , drosi-b4qs86 , drosi-b4qsq1 , drosi-b4quk6 , drosi-b4qvg5 , drosi-b4qvg6 , drosi-b4qzn2 , drosi-b4qzn3 , drosi-b4qzn5 , drosi-b4qzn7 , drosi-b4qzn8 , drosi-b4qzp2 , drosi-b4qzp3 , drosi-b4qzp4 , drosi-b4qzp5 , drosi-b4qzp6 , drosi-b4qzp7 , drosi-b4r1a4 , drosi-b4r025 , drosi-b4r207 , drosi-b4r662 , drosi-este6 , drosi-q670k8 , drovi-ACHE , drovi-b4lev2 , drovi-b4lf33 , drovi-b4lf51 , drovi-b4lg54 , drovi-b4lg72 , drovi-b4lgc6 , drovi-b4lgd5 , drovi-b4lgg0 , drovi-b4lgk5 , drovi-b4lgn2 , drovi-b4lh17 , drovi-b4lh18 , drovi-b4lk43 , drovi-b4ll59 , drovi-b4ll60 , drovi-b4llm5 , drovi-b4lln3 , drovi-b4lmk4 , drovi-b4lmp0 , drovi-b4lnr4 , drovi-b4lp47 , drovi-b4lpd0 , drovi-b4lps0 , drovi-b4lqc6 , drovi-b4lr00 , drovi-b4lrp6 , drovi-b4lrw2 , drovi-b4lse7 , drovi-b4lse9 , drovi-b4lsf0 , drovi-b4lsn0 , drovi-b4lsq5 , drovi-b4lt32 , drovi-b4ltr1 , drovi-b4lui7 , drovi-b4lui9 , drovi-b4luj8 , drovi-b4luk0 , drovi-b4luk3 , drovi-b4luk8 , drovi-b4luk9 , drovi-b4lul0 , drovi-b4lve2 , drovi-b4lxi9 , drovi-b4lxj8 , drovi-b4lyf3 , drovi-b4lyq2 , drovi-b4lyq3 , drovi-b4lz07 , drovi-b4lz13 , drovi-b4lz14 , drovi-b4lz15 , drovi-b4m0j7 , drovi-b4m0s0 , drovi-b4m2b6 , drovi-b4m4h7 , drovi-b4m4h8 , drovi-b4m4i0 , drovi-b4m4i2 , drovi-b4m4i3.A , drovi-b4m4i3.B , drovi-b4m4i4 , drovi-b4m4i5 , drovi-b4m4i6 , drovi-b4m4i7 , drovi-b4m4i8 , drovi-b4m4i9 , drovi-b4m4j2 , drovi-b4m5a0 , drovi-b4m5a1 , drovi-b4m5a2 , drovi-b4m6b9 , drovi-b4m7k9 , drovi-b4m9g9 , drovi-b4m9h0 , drovi-b4m564 , drovi-b4m599 , drovi-b4m918 , drovi-b4mb87 , drovi-b4mc71 , drovi-b4mfa4 , drowi-ACHE , drowi-b4mjb9 , drowi-b4mkt7 , drowi-b4mlc1 , drowi-b4mp68 , drowi-b4mqe9 , drowi-b4mqf0.2 , drowi-b4mqf1 , drowi-b4mqf3 , drowi-b4mqf4 , drowi-b4mqf5 , drowi-b4mqq6 , drowi-b4mrd1 , drowi-b4mrk3 , drowi-b4mtl5 , drowi-b4mug2 , drowi-b4muj8 , drowi-b4mv18 , drowi-b4mw32 , drowi-b4mw85 , drowi-b4mwp2 , drowi-b4mwp6 , drowi-b4mwq5 , drowi-b4mwr0 , drowi-b4mwr8 , drowi-b4mwr9 , drowi-b4mwt1 , drowi-b4mwz7 , drowi-b4mxn5 , drowi-b4my54 , drowi-b4myg1 , drowi-b4myh5 , drowi-b4n0d4 , drowi-b4n1a7 , drowi-b4n1c8 , drowi-b4n3s9 , drowi-b4n3x7 , drowi-b4n4x9 , drowi-b4n4y0 , drowi-b4n6m1 , drowi-b4n6n0 , drowi-b4n6n7 , drowi-b4n6u6 , drowi-b4n7s6 , drowi-b4n7s7 , drowi-b4n7s8 , drowi-b4n899.1 , drowi-b4n8a1 , drowi-b4n8a2 , drowi-b4n8a3 , drowi-b4n8a4 , drowi-b4n8a9 , drowi-b4n023 , drowi-b4n075 , drowi-b4n543 , drowi-b4n888 , drowi-b4n889 , drowi-b4n891 , drowi-b4n893 , drowi-b4n895 , drowi-b4n897 , drowi-b4n898 , drowi-b4n899.2 , drowi-b4nae3 , drowi-b4ner8 , drowi-b4ng76 , drowi-b4nga7 , drowi-b4ngb5 , drowi-b4nhz9 , drowi-b4nj18 , drowi-b4nj19 , drowi-b4nja7 , drowi-b4nja8 , drowi-b4nja9 , drowi-b4njk8 , drowi-b4nkc8 , drowi-b4nky0 , drowi-b4nl36 , drowi-b4nm27 , drowi-b4nn59 , drowi-b4nnc1 , drowi-b4nng1 , drowi-b4nng2 , droya-ACHE , droya-aes04 , droya-b4itg2 , droya-b4itg6 , droya-b4itu9 , droya-b4iuv4 , droya-b4iuv5 , droya-b4nxe6 , droya-b4nxg5 , droya-b4nxg6 , droya-b4nxg8 , droya-b4nxw4 , droya-b4ny57 , droya-b4ny58 , droya-b4ny86 , droya-b4nzz8 , droya-b4p0b5 , droya-b4p0q9 , droya-b4p0r0 , droya-b4p0r7 , droya-b4p0r8 , droya-b4p0r9 , droya-b4p0s0 , droya-b4p0s2 , droya-b4p0t0 , droya-b4p0t1 , droya-b4p3h4 , droya-b4p3x8 , droya-b4p5g8 , droya-b4p6c9 , droya-b4p6l9 , droya-b4p6r1 , droya-b4p6r2 , droya-b4p7u4 , droya-b4p8w7 , droya-b4p023 , droya-b4p241 , droya-b4p774 , droya-b4pat9 , droya-b4pbl1 , droya-b4pd22 , droya-b4pd70 , droya-b4pdm8 , droya-b4pet9 , droya-b4pff9 , droya-b4pga7 , droya-b4pgu0 , droya-b4pig3 , droya-b4pjt8 , droya-b4pka2 , droya-b4plh2 , droya-b4pma3 , droya-b4pmv3 , droya-b4pmv4 , droya-b4pmv5 , droya-b4pn92 , droya-b4pp65 , droya-b4ppc5 , droya-b4ppc6 , droya-b4ppc7 , droya-b4ppc8 , droya-b4pq03 , droya-b4prg6B , droya-b4prg9 , droya-b4prh3 , droya-b4prh4 , droya-b4prh6 , droya-b4prh7 , droya-b4psz8 , droya-b4psz9 , droya-b4pv22 , droya-b4q0g5 , droya-b4q246 , droya-EST6 , droya-q71d76 , drowi-b4n7m9 , drope-b4gkk1 , droer-b3n5s3 , drose-b4i1w5 , drowi-a0a0q9x0t3 , drogr-b4jvm7 , dromo-b4ku70 , drovi-b4mcn9 , drovi-b4lty2 , drogr-b4jdu1 , drovi-a0a0q9wiq8 , dromo-b4kf70 , drosi-b2zi86 , droya-b4p2y4 , drose-b2zic5 , droer-b3n895

Title : Evolutionary and biomedical insights from the rhesus macaque genome - Gibbs_2007_Science_316_222
Author(s) : Gibbs RA , Rogers J , Katze MG , Bumgarner R , Weinstock GM , Mardis ER , Remington KA , Strausberg RL , Venter JC , Wilson RK , Batzer MA , Bustamante CD , Eichler EE , Hahn MW , Hardison RC , Makova KD , Miller W , Milosavljevic A , Palermo RE , Siepel A , Sikela JM , Attaway T , Bell S , Bernard KE , Buhay CJ , Chandrabose MN , Dao M , Davis C , Delehaunty KD , Ding Y , Dinh HH , Dugan-Rocha S , Fulton LA , Gabisi RA , Garner TT , Godfrey J , Hawes AC , Hernandez J , Hines S , Holder M , Hume J , Jhangiani SN , Joshi V , Khan ZM , Kirkness EF , Cree A , Fowler RG , Lee S , Lewis LR , Li Z , Liu YS , Moore SM , Muzny D , Nazareth LV , Ngo DN , Okwuonu GO , Pai G , Parker D , Paul HA , Pfannkoch C , Pohl CS , Rogers YH , Ruiz SJ , Sabo A , Santibanez J , Schneider BW , Smith SM , Sodergren E , Svatek AF , Utterback TR , Vattathil S , Warren W , White CS , Chinwalla AT , Feng Y , Halpern AL , Hillier LW , Huang X , Minx P , Nelson JO , Pepin KH , Qin X , Sutton GG , Venter E , Walenz BP , Wallis JW , Worley KC , Yang SP , Jones SM , Marra MA , Rocchi M , Schein JE , Baertsch R , Clarke L , Csuros M , Glasscock J , Harris RA , Havlak P , Jackson AR , Jiang H , Liu Y , Messina DN , Shen Y , Song HX , Wylie T , Zhang L , Birney E , Han K , Konkel MK , Lee J , Smit AF , Ullmer B , Wang H , Xing J , Burhans R , Cheng Z , Karro JE , Ma J , Raney B , She X , Cox MJ , Demuth JP , Dumas LJ , Han SG , Hopkins J , Karimpour-Fard A , Kim YH , Pollack JR , Vinar T , Addo-Quaye C , Degenhardt J , Denby A , Hubisz MJ , Indap A , Kosiol C , Lahn BT , Lawson HA , Marklein A , Nielsen R , Vallender EJ , Clark AG , Ferguson B , Hernandez RD , Hirani K , Kehrer-Sawatzki H , Kolb J , Patil S , Pu LL , Ren Y , Smith DG , Wheeler DA , Schenck I , Ball EV , Chen R , Cooper DN , Giardine B , Hsu F , Kent WJ , Lesk A , Nelson DL , O'Brien W E , Prufer K , Stenson PD , Wallace JC , Ke H , Liu XM , Wang P , Xiang AP , Yang F , Barber GP , Haussler D , Karolchik D , Kern AD , Kuhn RM , Smith KE , Zwieg AS
Ref : Science , 316 :222 , 2007
Abstract : The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
ESTHER : Gibbs_2007_Science_316_222
PubMedSearch : Gibbs_2007_Science_316_222
PubMedID: 17431167
Gene_locus related to this paper: macmu-3neur , macmu-ACHE , macmu-BCHE , macmu-f6rul6 , macmu-f6sz31 , macmu-f6the6 , macmu-f6unj2 , macmu-f6wtx1 , macmu-f6zkq5 , macmu-f7aa58 , macmu-f7ai42 , macmu-f7aim4 , macmu-f7buk8 , macmu-f7cfi8 , macmu-f7cnr2 , macmu-f7cu68 , macmu-f7flv1 , macmu-f7ggk1 , macmu-f7hir7 , macmu-g7n054 , macmu-KANSL3 , macmu-TEX30 , macmu-Y4neur , macmu-g7n4x3 , macmu-i2cy02 , macmu-f7ba84 , macmu-CES2 , macmu-h9er02 , macmu-a0a1d5rbr3 , macmu-a0a1d5q4k5 , macmu-g7mxj6 , macmu-f7dn71 , macmu-f7hkw9 , macmu-f7hm08 , macmu-g7mke4 , macmu-a0a1d5rh04 , macmu-h9fud6 , macmu-f6qwx1 , macmu-f7h4t2 , macmu-h9zaw9 , macmu-f7h550 , macmu-a0a1d5q9w1 , macmu-f7gkb9 , macmu-f7hp78 , macmu-a0a1d5qvu5

Title : Genome sequence of the Brown Norway rat yields insights into mammalian evolution - Gibbs_2004_Nature_428_493
Author(s) : Gibbs RA , Weinstock GM , Metzker ML , Muzny DM , Sodergren EJ , Scherer S , Scott G , Steffen D , Worley KC , Burch PE , Okwuonu G , Hines S , Lewis L , DeRamo C , Delgado O , Dugan-Rocha S , Miner G , Morgan M , Hawes A , Gill R , Celera , Holt RA , Adams MD , Amanatides PG , Baden-Tillson H , Barnstead M , Chin S , Evans CA , Ferriera S , Fosler C , Glodek A , Gu Z , Jennings D , Kraft CL , Nguyen T , Pfannkoch CM , Sitter C , Sutton GG , Venter JC , Woodage T , Smith D , Lee HM , Gustafson E , Cahill P , Kana A , Doucette-Stamm L , Weinstock K , Fechtel K , Weiss RB , Dunn DM , Green ED , Blakesley RW , Bouffard GG , de Jong PJ , Osoegawa K , Zhu B , Marra M , Schein J , Bosdet I , Fjell C , Jones S , Krzywinski M , Mathewson C , Siddiqui A , Wye N , McPherson J , Zhao S , Fraser CM , Shetty J , Shatsman S , Geer K , Chen Y , Abramzon S , Nierman WC , Havlak PH , Chen R , Durbin KJ , Egan A , Ren Y , Song XZ , Li B , Liu Y , Qin X , Cawley S , Cooney AJ , D'Souza LM , Martin K , Wu JQ , Gonzalez-Garay ML , Jackson AR , Kalafus KJ , McLeod MP , Milosavljevic A , Virk D , Volkov A , Wheeler DA , Zhang Z , Bailey JA , Eichler EE , Tuzun E , Birney E , Mongin E , Ureta-Vidal A , Woodwark C , Zdobnov E , Bork P , Suyama M , Torrents D , Alexandersson M , Trask BJ , Young JM , Huang H , Wang H , Xing H , Daniels S , Gietzen D , Schmidt J , Stevens K , Vitt U , Wingrove J , Camara F , Mar Alba M , Abril JF , Guigo R , Smit A , Dubchak I , Rubin EM , Couronne O , Poliakov A , Hubner N , Ganten D , Goesele C , Hummel O , Kreitler T , Lee YA , Monti J , Schulz H , Zimdahl H , Himmelbauer H , Lehrach H , Jacob HJ , Bromberg S , Gullings-Handley J , Jensen-Seaman MI , Kwitek AE , Lazar J , Pasko D , Tonellato PJ , Twigger S , Ponting CP , Duarte JM , Rice S , Goodstadt L , Beatson SA , Emes RD , Winter EE , Webber C , Brandt P , Nyakatura G , Adetobi M , Chiaromonte F , Elnitski L , Eswara P , Hardison RC , Hou M , Kolbe D , Makova K , Miller W , Nekrutenko A , Riemer C , Schwartz S , Taylor J , Yang S , Zhang Y , Lindpaintner K , Andrews TD , Caccamo M , Clamp M , Clarke L , Curwen V , Durbin R , Eyras E , Searle SM , Cooper GM , Batzoglou S , Brudno M , Sidow A , Stone EA , Payseur BA , Bourque G , Lopez-Otin C , Puente XS , Chakrabarti K , Chatterji S , Dewey C , Pachter L , Bray N , Yap VB , Caspi A , Tesler G , Pevzner PA , Haussler D , Roskin KM , Baertsch R , Clawson H , Furey TS , Hinrichs AS , Karolchik D , Kent WJ , Rosenbloom KR , Trumbower H , Weirauch M , Cooper DN , Stenson PD , Ma B , Brent M , Arumugam M , Shteynberg D , Copley RR , Taylor MS , Riethman H , Mudunuri U , Peterson J , Guyer M , Felsenfeld A , Old S , Mockrin S , Collins F
Ref : Nature , 428 :493 , 2004
Abstract : The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.
ESTHER : Gibbs_2004_Nature_428_493
PubMedSearch : Gibbs_2004_Nature_428_493
PubMedID: 15057822
Gene_locus related to this paper: rat-abhea , rat-abheb , rat-cd029 , rat-d3zaw4 , rat-dpp9 , rat-d3zhq1 , rat-d3zkp8 , rat-d3zuq1 , rat-d3zxw8 , rat-d4a4w4 , rat-d4a7w1 , rat-d4a9l7 , rat-d4a071 , rat-d4aa31 , rat-d4aa33 , rat-d4aa61 , rat-dglb , rat-f1lz91 , rat-Kansl3 , rat-nceh1 , rat-Tex30 , ratno-1hlip , ratno-1neur , ratno-1plip , ratno-2neur , ratno-3neur , ratno-3plip , ratno-ABH15 , ratno-ACHE , ratno-balip , ratno-BCHE , ratno-cauxin , ratno-Ces1d , ratno-Ces1e , ratno-Ces2f , ratno-d3ze31 , ratno-d3zp14 , ratno-d3zxi3 , ratno-d3zxq0 , ratno-d3zxq1 , ratno-d4a3d4 , ratno-d4aa05 , ratno-dpp4 , ratno-dpp6 , ratno-est8 , ratno-FAP , ratno-hyep , ratno-hyes , ratno-kmcxe , ratno-lmcxe , ratno-LOC246252 , ratno-MGLL , ratno-pbcxe , ratno-phebest , ratno-Ppgb , ratno-q4qr68 , ratno-q6ayr2 , ratno-q6q629 , ratno-SPG21 , ratno-thyro , rat-m0rc77 , rat-a0a0g2k9y7 , rat-a0a0g2kb83 , rat-d3zba8 , rat-d3zbj1 , rat-d3zcr8 , rat-d3zxw5 , rat-d4a340 , rat-f1lvg7 , rat-m0r509 , rat-m0r5d4 , rat-b5den3 , rat-d3zxk4 , rat-d4a1b6 , rat-d3zmg4 , rat-ab17c

Title : Heterochromatic sequences in a Drosophila whole-genome shotgun assembly - Hoskins_2002_Genome.Biol_3_RESEARCH0085
Author(s) : Hoskins RA , Smith CD , Carlson JW , Carvalho AB , Halpern A , Kaminker JS , Kennedy C , Mungall CJ , Sullivan BA , Sutton GG , Yasuhara JC , Wakimoto BT , Myers EW , Celniker SE , Rubin GM , Karpen GH
Ref : Genome Biol , 3 :RESEARCH0085 , 2002
Abstract : BACKGROUND: Most eukaryotic genomes include a substantial repeat-rich fraction termed heterochromatin, which is concentrated in centric and telomeric regions. The repetitive nature of heterochromatic sequence makes it difficult to assemble and analyze. To better understand the heterochromatic component of the Drosophila melanogaster genome, we characterized and annotated portions of a whole-genome shotgun sequence assembly.
RESULTS: WGS3, an improved whole-genome shotgun assembly, includes 20.7 Mb of draft-quality sequence not represented in the Release 3 sequence spanning the euchromatin. We annotated this sequence using the methods employed in the re-annotation of the Release 3 euchromatic sequence. This analysis predicted 297 protein-coding genes and six non-protein-coding genes, including known heterochromatic genes, and regions of similarity to known transposable elements. Bacterial artificial chromosome (BAC)-based fluorescence in situ hybridization analysis was used to correlate the genomic sequence with the cytogenetic map in order to refine the genomic definition of the centric heterochromatin; on the basis of our cytological definition, the annotated Release 3 euchromatic sequence extends into the centric heterochromatin on each chromosome arm.
CONCLUSIONS: Whole-genome shotgun assembly produced a reliable draft-quality sequence of a significant part of the Drosophila heterochromatin. Annotation of this sequence defined the intron-exon structures of 30 known protein-coding genes and 267 protein-coding gene models. The cytogenetic mapping suggests that an additional 150 predicted genes are located in heterochromatin at the base of the Release 3 euchromatic sequence. Our analysis suggests strategies for improving the sequence and annotation of the heterochromatic portions of the Drosophila and other complex genomes.
ESTHER : Hoskins_2002_Genome.Biol_3_RESEARCH0085
PubMedSearch : Hoskins_2002_Genome.Biol_3_RESEARCH0085
PubMedID: 12537574
Gene_locus related to this paper: drome-CG9542 , drome-CG11309 , drome-CG17097 , drome-CG17374 , drome-KRAKEN

Title : The genome sequence of the malaria mosquito Anopheles gambiae - Holt_2002_Science_298_129
Author(s) : Holt RA , Subramanian GM , Halpern A , Sutton GG , Charlab R , Nusskern DR , Wincker P , Clark AG , Ribeiro JM , Wides R , Salzberg SL , Loftus B , Yandell M , Majoros WH , Rusch DB , Lai Z , Kraft CL , Abril JF , Anthouard V , Arensburger P , Atkinson PW , Baden H , de Berardinis V , Baldwin D , Benes V , Biedler J , Blass C , Bolanos R , Boscus D , Barnstead M , Cai S , Center A , Chaturverdi K , Christophides GK , Chrystal MA , Clamp M , Cravchik A , Curwen V , Dana A , Delcher A , Dew I , Evans CA , Flanigan M , Grundschober-Freimoser A , Friedli L , Gu Z , Guan P , Guigo R , Hillenmeyer ME , Hladun SL , Hogan JR , Hong YS , Hoover J , Jaillon O , Ke Z , Kodira C , Kokoza E , Koutsos A , Letunic I , Levitsky A , Liang Y , Lin JJ , Lobo NF , Lopez JR , Malek JA , McIntosh TC , Meister S , Miller J , Mobarry C , Mongin E , Murphy SD , O'Brochta DA , Pfannkoch C , Qi R , Regier MA , Remington K , Shao H , Sharakhova MV , Sitter CD , Shetty J , Smith TJ , Strong R , Sun J , Thomasova D , Ton LQ , Topalis P , Tu Z , Unger MF , Walenz B , Wang A , Wang J , Wang M , Wang X , Woodford KJ , Wortman JR , Wu M , Yao A , Zdobnov EM , Zhang H , Zhao Q , Zhao S , Zhu SC , Zhimulev I , Coluzzi M , della Torre A , Roth CW , Louis C , Kalush F , Mural RJ , Myers EW , Adams MD , Smith HO , Broder S , Gardner MJ , Fraser CM , Birney E , Bork P , Brey PT , Venter JC , Weissenbach J , Kafatos FC , Collins FH , Hoffman SL
Ref : Science , 298 :129 , 2002
Abstract : Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
ESTHER : Holt_2002_Science_298_129
PubMedSearch : Holt_2002_Science_298_129
PubMedID: 12364791
Gene_locus related to this paper: anoga-a0nb77 , anoga-a0nbp6 , anoga-a0neb7 , anoga-a0nei9 , anoga-a0nej0 , anoga-a0ngj1 , anoga-a7ut12 , anoga-a7uuz9 , anoga-ACHE1 , anoga-ACHE2 , anoga-agCG44620 , anoga-agCG44666 , anoga-agCG45273 , anoga-agCG45279 , anoga-agCG45511 , anoga-agCG46741 , anoga-agCG47651 , anoga-agCG47655 , anoga-agCG47661 , anoga-agCG47690 , anoga-agCG48797 , anoga-AGCG49362 , anoga-agCG49462 , anoga-agCG49870 , anoga-agCG49872 , anoga-agCG49876 , anoga-agCG50851 , anoga-agCG51879 , anoga-agCG52383 , anoga-agCG54954 , anoga-AGCG55021 , anoga-agCG55401 , anoga-agCG55408 , anoga-agCG56978 , anoga-ebiG239 , anoga-ebiG2660 , anoga-ebiG5718 , anoga-ebiG5974 , anoga-ebiG8504 , anoga-ebiG8742 , anoga-glita , anoga-nrtac , anoga-q5tpv0 , anoga-Q5TVS6 , anoga-q7pm39 , anoga-q7ppw9 , anoga-q7pq17 , anoga-Q7PQT0 , anoga-q7q8m4 , anoga-q7q626 , anoga-q7qa14 , anoga-q7qa52 , anoga-q7qal7 , anoga-q7qbj0 , anoga-f5hl20 , anoga-q7qkh2 , anoga-a0a1s4h1y7 , anoga-q7q887

Title : Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster - Zdobnov_2002_Science_298_149
Author(s) : Zdobnov EM , von Mering C , Letunic I , Torrents D , Suyama M , Copley RR , Christophides GK , Thomasova D , Holt RA , Subramanian GM , Mueller HM , Dimopoulos G , Law JH , Wells MA , Birney E , Charlab R , Halpern AL , Kokoza E , Kraft CL , Lai Z , Lewis S , Louis C , Barillas-Mury C , Nusskern D , Rubin GM , Salzberg SL , Sutton GG , Topalis P , Wides R , Wincker P , Yandell M , Collins FH , Ribeiro J , Gelbart WM , Kafatos FC , Bork P
Ref : Science , 298 :149 , 2002
Abstract : Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small "microsyntenic" clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.
ESTHER : Zdobnov_2002_Science_298_149
PubMedSearch : Zdobnov_2002_Science_298_149
PubMedID: 12364792

Title : A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome - Mural_2002_Science_296_1661
Author(s) : Mural RJ , Adams MD , Myers EW , Smith HO , Miklos GL , Wides R , Halpern A , Li PW , Sutton GG , Nadeau J , Salzberg SL , Holt RA , Kodira CD , Lu F , Chen L , Deng Z , Evangelista CC , Gan W , Heiman TJ , Li J , Li Z , Merkulov GV , Milshina NV , Naik AK , Qi R , Shue BC , Wang A , Wang J , Wang X , Yan X , Ye J , Yooseph S , Zhao Q , Zheng L , Zhu SC , Biddick K , Bolanos R , Delcher AL , Dew IM , Fasulo D , Flanigan MJ , Huson DH , Kravitz SA , Miller JR , Mobarry CM , Reinert K , Remington KA , Zhang Q , Zheng XH , Nusskern DR , Lai Z , Lei Y , Zhong W , Yao A , Guan P , Ji RR , Gu Z , Wang ZY , Zhong F , Xiao C , Chiang CC , Yandell M , Wortman JR , Amanatides PG , Hladun SL , Pratts EC , Johnson JE , Dodson KL , Woodford KJ , Evans CA , Gropman B , Rusch DB , Venter E , Wang M , Smith TJ , Houck JT , Tompkins DE , Haynes C , Jacob D , Chin SH , Allen DR , Dahlke CE , Sanders R , Li K , Liu X , Levitsky AA , Majoros WH , Chen Q , Xia AC , Lopez JR , Donnelly MT , Newman MH , Glodek A , Kraft CL , Nodell M , Ali F , An HJ , Baldwin-Pitts D , Beeson KY , Cai S , Carnes M , Carver A , Caulk PM , Center A , Chen YH , Cheng ML , Coyne MD , Crowder M , Danaher S , Davenport LB , Desilets R , Dietz SM , Doup L , Dullaghan P , Ferriera S , Fosler CR , Gire HC , Gluecksmann A , Gocayne JD , Gray J , Hart B , Haynes J , Hoover J , Howland T , Ibegwam C , Jalali M , Johns D , Kline L , Ma DS , MacCawley S , Magoon A , Mann F , May D , McIntosh TC , Mehta S , Moy L , Moy MC , Murphy BJ , Murphy SD , Nelson KA , Nuri Z , Parker KA , Prudhomme AC , Puri VN , Qureshi H , Raley JC , Reardon MS , Regier MA , Rogers YH , Romblad DL , Schutz J , Scott JL , Scott R , Sitter CD , Smallwood M , Sprague AC , Stewart E , Strong RV , Suh E , Sylvester K , Thomas R , Tint NN , Tsonis C , Wang G , Williams MS , Williams SM , Windsor SM , Wolfe K , Wu MM , Zaveri J , Chaturvedi K , Gabrielian AE , Ke Z , Sun J , Subramanian G , Venter JC , Pfannkoch CM , Barnstead M , Stephenson LD
Ref : Science , 296 :1661 , 2002
Abstract : The high degree of similarity between the mouse and human genomes is demonstrated through analysis of the sequence of mouse chromosome 16 (Mmu 16), which was obtained as part of a whole-genome shotgun assembly of the mouse genome. The mouse genome is about 10% smaller than the human genome, owing to a lower repetitive DNA content. Comparison of the structure and protein-coding potential of Mmu 16 with that of the homologous segments of the human genome identifies regions of conserved synteny with human chromosomes (Hsa) 3, 8, 12, 16, 21, and 22. Gene content and order are highly conserved between Mmu 16 and the syntenic blocks of the human genome. Of the 731 predicted genes on Mmu 16, 509 align with orthologs on the corresponding portions of the human genome, 44 are likely paralogous to these genes, and 164 genes have homologs elsewhere in the human genome; there are 14 genes for which we could find no human counterpart.
ESTHER : Mural_2002_Science_296_1661
PubMedSearch : Mural_2002_Science_296_1661
PubMedID: 12040188
Gene_locus related to this paper: mouse-ABH15 , mouse-Ces3b , mouse-Ces4a , mouse-dpp4 , mouse-FAP , mouse-Lipg , mouse-Q8C1A9 , mouse-rbbp9 , mouse-SERHL , mouse-SPG21 , mouse-w4vsp6

Title : Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence - Celniker_2002_Genome.Biol_3_RESEARCH0079
Author(s) : Celniker SE , Wheeler DA , Kronmiller B , Carlson JW , Halpern A , Patel S , Adams M , Champe M , Dugan SP , Frise E , Hodgson A , George RA , Hoskins RA , Laverty T , Muzny DM , Nelson CR , Pacleb JM , Park S , Pfeiffer BD , Richards S , Sodergren EJ , Svirskas R , Tabor PE , Wan K , Stapleton M , Sutton GG , Venter C , Weinstock G , Scherer SE , Myers EW , Gibbs RA , Rubin GM
Ref : Genome Biol , 3 :RESEARCH0079 , 2002
Abstract : BACKGROUND: The Drosophila melanogaster genome was the first metazoan genome to have been sequenced by the whole-genome shotgun (WGS) method. Two issues relating to this achievement were widely debated in the genomics community: how correct is the sequence with respect to base-pair (bp) accuracy and frequency of assembly errors? And, how difficult is it to bring a WGS sequence to the accepted standard for finished sequence? We are now in a position to answer these questions.
RESULTS: Our finishing process was designed to close gaps, improve sequence quality and validate the assembly. Sequence traces derived from the WGS and draft sequencing of individual bacterial artificial chromosomes (BACs) were assembled into BAC-sized segments. These segments were brought to high quality, and then joined to constitute the sequence of each chromosome arm. Overall assembly was verified by comparison to a physical map of fingerprinted BAC clones. In the current version of the 116.9 Mb euchromatic genome, called Release 3, the six euchromatic chromosome arms are represented by 13 scaffolds with a total of 37 sequence gaps. We compared Release 3 to Release 2; in autosomal regions of unique sequence, the error rate of Release 2 was one in 20,000 bp.
CONCLUSIONS: The WGS strategy can efficiently produce a high-quality sequence of a metazoan genome while generating the reagents required for sequence finishing. However, the initial method of repeat assembly was flawed. The sequence we report here, Release 3, is a reliable resource for molecular genetic experimentation and computational analysis.
ESTHER : Celniker_2002_Genome.Biol_3_RESEARCH0079
PubMedSearch : Celniker_2002_Genome.Biol_3_RESEARCH0079
PubMedID: 12537568
Gene_locus related to this paper: drome-CG8058 , drome-CG9542 , drome-CG11309 , drome-CG11406 , drome-CG17097 , drome-CG17374 , drome-glita , drome-KRAKEN

Title : The sequence of the human genome - Venter_2001_Science_291_1304
Author(s) : Venter JC , Adams MD , Myers EW , Li PW , Mural RJ , Sutton GG , Smith HO , Yandell M , Evans CA , Holt RA , Gocayne JD , Amanatides P , Ballew RM , Huson DH , Wortman JR , Zhang Q , Kodira CD , Zheng XH , Chen L , Skupski M , Subramanian G , Thomas PD , Zhang J , Gabor Miklos GL , Nelson C , Broder S , Clark AG , Nadeau J , McKusick VA , Zinder N , Levine AJ , Roberts RJ , Simon M , Slayman C , Hunkapiller M , Bolanos R , Delcher A , Dew I , Fasulo D , Flanigan M , Florea L , Halpern A , Hannenhalli S , Kravitz S , Levy S , Mobarry C , Reinert K , Remington K , Abu-Threideh J , Beasley E , Biddick K , Bonazzi V , Brandon R , Cargill M , Chandramouliswaran I , Charlab R , Chaturvedi K , Deng Z , Di Francesco V , Dunn P , Eilbeck K , Evangelista C , Gabrielian AE , Gan W , Ge W , Gong F , Gu Z , Guan P , Heiman TJ , Higgins ME , Ji RR , Ke Z , Ketchum KA , Lai Z , Lei Y , Li Z , Li J , Liang Y , Lin X , Lu F , Merkulov GV , Milshina N , Moore HM , Naik AK , Narayan VA , Neelam B , Nusskern D , Rusch DB , Salzberg S , Shao W , Shue B , Sun J , Wang Z , Wang A , Wang X , Wang J , Wei M , Wides R , Xiao C , Yan C , Yao A , Ye J , Zhan M , Zhang W , Zhang H , Zhao Q , Zheng L , Zhong F , Zhong W , Zhu S , Zhao S , Gilbert D , Baumhueter S , Spier G , Carter C , Cravchik A , Woodage T , Ali F , An H , Awe A , Baldwin D , Baden H , Barnstead M , Barrow I , Beeson K , Busam D , Carver A , Center A , Cheng ML , Curry L , Danaher S , Davenport L , Desilets R , Dietz S , Dodson K , Doup L , Ferriera S , Garg N , Gluecksmann A , Hart B , Haynes J , Haynes C , Heiner C , Hladun S , Hostin D , Houck J , Howland T , Ibegwam C , Johnson J , Kalush F , Kline L , Koduru S , Love A , Mann F , May D , McCawley S , McIntosh T , McMullen I , Moy M , Moy L , Murphy B , Nelson K , Pfannkoch C , Pratts E , Puri V , Qureshi H , Reardon M , Rodriguez R , Rogers YH , Romblad D , Ruhfel B , Scott R , Sitter C , Smallwood M , Stewart E , Strong R , Suh E , Thomas R , Tint NN , Tse S , Vech C , Wang G , Wetter J , Williams S , Williams M , Windsor S , Winn-Deen E , Wolfe K , Zaveri J , Zaveri K , Abril JF , Guigo R , Campbell MJ , Sjolander KV , Karlak B , Kejariwal A , Mi H , Lazareva B , Hatton T , Narechania A , Diemer K , Muruganujan A , Guo N , Sato S , Bafna V , Istrail S , Lippert R , Schwartz R , Walenz B , Yooseph S , Allen D , Basu A , Baxendale J , Blick L , Caminha M , Carnes-Stine J , Caulk P , Chiang YH , Coyne M , Dahlke C , Mays A , Dombroski M , Donnelly M , Ely D , Esparham S , Fosler C , Gire H , Glanowski S , Glasser K , Glodek A , Gorokhov M , Graham K , Gropman B , Harris M , Heil J , Henderson S , Hoover J , Jennings D , Jordan C , Jordan J , Kasha J , Kagan L , Kraft C , Levitsky A , Lewis M , Liu X , Lopez J , Ma D , Majoros W , McDaniel J , Murphy S , Newman M , Nguyen T , Nguyen N , Nodell M , Pan S , Peck J , Peterson M , Rowe W , Sanders R , Scott J , Simpson M , Smith T , Sprague A , Stockwell T , Turner R , Venter E , Wang M , Wen M , Wu D , Wu M , Xia A , Zandieh A , Zhu X
Ref : Science , 291 :1304 , 2001
Abstract : A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies-a whole-genome assembly and a regional chromosome assembly-were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional approximately 12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
ESTHER : Venter_2001_Science_291_1304
PubMedSearch : Venter_2001_Science_291_1304
PubMedID: 11181995
Gene_locus related to this paper: human-AADAC , human-ABHD1 , human-ABHD10 , human-ABHD11 , human-ACHE , human-BCHE , human-LDAH , human-ABHD18 , human-CMBL , human-ABHD17A , human-KANSL3 , human-LIPA , human-LYPLAL1 , human-NDRG2 , human-NLGN3 , human-NLGN4X , human-NLGN4Y , human-PAFAH2 , human-PREPL , human-RBBP9 , human-SPG21

Title : A whole-genome assembly of Drosophila - Myers_2000_Science_287_2196
Author(s) : Myers EW , Sutton GG , Delcher AL , Dew IM , Fasulo DP , Flanigan MJ , Kravitz SA , Mobarry CM , Reinert KH , Remington KA , Anson EL , Bolanos RA , Chou HH , Jordan CM , Halpern AL , Lonardi S , Beasley EM , Brandon RC , Chen L , Dunn PJ , Lai Z , Liang Y , Nusskern DR , Zhan M , Zhang Q , Zheng X , Rubin GM , Adams MD , Venter JC
Ref : Science , 287 :2196 , 2000
Abstract : We report on the quality of a whole-genome assembly of Drosophila melanogaster and the nature of the computer algorithms that accomplished it. Three independent external data sources essentially agree with and support the assembly's sequence and ordering of contigs across the euchromatic portion of the genome. In addition, there are isolated contigs that we believe represent nonrepetitive pockets within the heterochromatin of the centromeres. Comparison with a previously sequenced 2.9- megabase region indicates that sequencing accuracy within nonrepetitive segments is greater than 99. 99% without manual curation. As such, this initial reconstruction of the Drosophila sequence should be of substantial value to the scientific community.
ESTHER : Myers_2000_Science_287_2196
PubMedSearch : Myers_2000_Science_287_2196
PubMedID: 10731133

Title : The genome sequence of Drosophila melanogaster - Adams_2000_Science_287_2185
Author(s) : Adams MD , Celniker SE , Holt RA , Evans CA , Gocayne JD , Amanatides PG , Scherer SE , Li PW , Hoskins RA , Galle RF , George RA , Lewis SE , Richards S , Ashburner M , Henderson SN , Sutton GG , Wortman JR , Yandell MD , Zhang Q , Chen LX , Brandon RC , Rogers YH , Blazej RG , Champe M , Pfeiffer BD , Wan KH , Doyle C , Baxter EG , Helt G , Nelson CR , Gabor GL , Abril JF , Agbayani A , An HJ , Andrews-Pfannkoch C , Baldwin D , Ballew RM , Basu A , Baxendale J , Bayraktaroglu L , Beasley EM , Beeson KY , Benos PV , Berman BP , Bhandari D , Bolshakov S , Borkova D , Botchan MR , Bouck J , Brokstein P , Brottier P , Burtis KC , Busam DA , Butler H , Cadieu E , Center A , Chandra I , Cherry JM , Cawley S , Dahlke C , Davenport LB , Davies P , de Pablos B , Delcher A , Deng Z , Mays AD , Dew I , Dietz SM , Dodson K , Doup LE , Downes M , Dugan-Rocha S , Dunkov BC , Dunn P , Durbin KJ , Evangelista CC , Ferraz C , Ferriera S , Fleischmann W , Fosler C , Gabrielian AE , Garg NS , Gelbart WM , Glasser K , Glodek A , Gong F , Gorrell JH , Gu Z , Guan P , Harris M , Harris NL , Harvey D , Heiman TJ , Hernandez JR , Houck J , Hostin D , Houston KA , Howland TJ , Wei MH , Ibegwam C , Jalali M , Kalush F , Karpen GH , Ke Z , Kennison JA , Ketchum KA , Kimmel BE , Kodira CD , Kraft C , Kravitz S , Kulp D , Lai Z , Lasko P , Lei Y , Levitsky AA , Li J , Li Z , Liang Y , Lin X , Liu X , Mattei B , McIntosh TC , McLeod MP , McPherson D , Merkulov G , Milshina NV , Mobarry C , Morris J , Moshrefi A , Mount SM , Moy M , Murphy B , Murphy L , Muzny DM , Nelson DL , Nelson DR , Nelson KA , Nixon K , Nusskern DR , Pacleb JM , Palazzolo M , Pittman GS , Pan S , Pollard J , Puri V , Reese MG , Reinert K , Remington K , Saunders RD , Scheeler F , Shen H , Shue BC , Siden-Kiamos I , Simpson M , Skupski MP , Smith T , Spier E , Spradling AC , Stapleton M , Strong R , Sun E , Svirskas R , Tector C , Turner R , Venter E , Wang AH , Wang X , Wang ZY , Wassarman DA , Weinstock GM , Weissenbach J , Williams SM , WoodageT , Worley KC , Wu D , Yang S , Yao QA , Ye J , Yeh RF , Zaveri JS , Zhan M , Zhang G , Zhao Q , Zheng L , Zheng XH , Zhong FN , Zhong W , Zhou X , Zhu S , Zhu X , Smith HO , Gibbs RA , Myers EW , Rubin GM , Venter JC
Ref : Science , 287 :2185 , 2000
Abstract : The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.
ESTHER : Adams_2000_Science_287_2185
PubMedSearch : Adams_2000_Science_287_2185
PubMedID: 10731132
Gene_locus related to this paper: drome-1vite , drome-2vite , drome-3vite , drome-a1z6g9 , drome-abhd2 , drome-ACHE , drome-b6idz4 , drome-BEM46 , drome-CG5707 , drome-CG5704 , drome-CG1309 , drome-CG1882 , drome-CG1986 , drome-CG2059 , drome-CG2493 , drome-CG2528 , drome-CG2772 , drome-CG3160 , drome-CG3344 , drome-CG3523 , drome-CG3524 , drome-CG3734 , drome-CG3739 , drome-CG3744 , drome-CG3841 , drome-CG4267 , drome-CG4382 , drome-CG4390 , drome-CG4572 , drome-CG4582 , drome-CG4851 , drome-CG4979 , drome-CG5068 , drome-CG5162 , drome-CG5355 , drome-CG5377 , drome-CG5397 , drome-CG5412 , drome-CG5665 , drome-CG5932 , drome-CG5966 , drome-CG6018 , drome-CG6113 , drome-CG6271 , drome-CG6283 , drome-CG6295 , drome-CG6296 , drome-CG6414 , drome-CG6431 , drome-CG6472 , drome-CG6567 , drome-CG6675 , drome-CG6753 , drome-CG6847 , drome-CG7329 , drome-CG7367 , drome-CG7529 , drome-CG7632 , drome-CG8058 , drome-CG8093 , drome-CG8233 , drome-CG8424 , drome-CG8425 , drome-CG9059 , drome-CG9186 , drome-CG9287 , drome-CG9289 , drome-CG9542 , drome-CG9858 , drome-CG9953 , drome-CG9966 , drome-CG10116 , drome-CG10163 , drome-CG10175 , drome-CG10339 , drome-CG10357 , drome-CG10982 , drome-CG11034 , drome-CG11055 , drome-CG11309 , drome-CG11319 , drome-CG11406 , drome-CG11598 , drome-CG11600 , drome-CG11608 , drome-CG11626 , drome-CG11935 , drome-CG12108 , drome-CG12869 , drome-CG13282 , drome-CG13562 , drome-CG13772 , drome-CG14034 , drome-nlg3 , drome-CG14717 , drome-CG15101 , drome-CG15102 , drome-CG15106 , drome-CG15111 , drome-CG15820 , drome-CG15821 , drome-CG15879 , drome-CG17097 , drome-CG17099 , drome-CG17101 , drome-CG17191 , drome-CG17192 , drome-CG17292 , drome-CG18258 , drome-CG18284 , drome-CG18301 , drome-CG18302 , drome-CG18493 , drome-CG18530 , drome-CG18641 , drome-CG18815 , drome-CG31089 , drome-CG31091 , drome-CG32333 , drome-CG32483 , drome-CG33174 , drome-dnlg1 , drome-este4 , drome-este6 , drome-GH02384 , drome-GH02439 , drome-glita , drome-KRAKEN , drome-lip1 , drome-LIP2 , drome-lip3 , drome-MESK2 , drome-nrtac , drome-OME , drome-q7k274 , drome-Q9VJN0 , drome-Q8IP31 , drome-q9vux3

Title : Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima - Nelson_1999_Nature_399_323
Author(s) : Nelson KE , Clayton RA , Gill SR , Gwinn ML , Dodson RJ , Haft DH , Hickey EK , Peterson JD , Nelson WC , Ketchum KA , McDonald L , Utterback TR , Malek JA , Linher KD , Garrett MM , Stewart AM , Cotton MD , Pratt MS , Phillips CA , Richardson D , Heidelberg J , Sutton GG , Fleischmann RD , Eisen JA , White O , Salzberg SL , Smith HO , Venter JC , Fraser CM
Ref : Nature , 399 :323 , 1999
Abstract : The 1,860,725-base-pair genome of Thermotoga maritima MSB8 contains 1,877 predicted coding regions, 1,014 (54%) of which have functional assignments and 863 (46%) of which are of unknown function. Genome analysis reveals numerous pathways involved in degradation of sugars and plant polysaccharides, and 108 genes that have orthologues only in the genomes of other thermophilic Eubacteria and Archaea. Of the Eubacteria sequenced to date, T. maritima has the highest percentage (24%) of genes that are most similar to archaeal genes. Eighty-one archaeal-like genes are clustered in 15 regions of the T. maritima genome that range in size from 4 to 20 kilobases. Conservation of gene order between T. maritima and Archaea in many of the clustered regions suggests that lateral gene transfer may have occurred between thermophilic Eubacteria and Archaea.
ESTHER : Nelson_1999_Nature_399_323
PubMedSearch : Nelson_1999_Nature_399_323
PubMedID: 10360571
Gene_locus related to this paper: thema-ESTA , thema-q9x0d6 , thema-q9x042 , thema-TM0033 , thema-TM0053 , thema-TM0077 , thema-TM0336 , thema-TM1160 , thema-TM1350

Title : Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum - Gardner_1998_Science_282_1126
Author(s) : Gardner MJ , Tettelin H , Carucci DJ , Cummings LM , Aravind L , Koonin EV , Shallom S , Mason T , Yu K , Fujii C , Pederson J , Shen K , Jing J , Aston C , Lai Z , Schwartz DC , Pertea M , Salzberg S , Zhou L , Sutton GG , Clayton R , White O , Smith HO , Fraser CM , Hoffman SL
Ref : Science , 282 :1126 , 1998
Abstract : Chromosome 2 of Plasmodium falciparum was sequenced; this sequence contains 947,103 base pairs and encodes 210 predicted genes. In comparison with the Saccharomyces cerevisiae genome, chromosome 2 has a lower gene density, introns are more frequent, and proteins are markedly enriched in nonglobular domains. A family of surface proteins, rifins, that may play a role in antigenic variation was identified. The complete sequencing of chromosome 2 has shown that sequencing of the A+T-rich P. falciparum genome is technically feasible.
ESTHER : Gardner_1998_Science_282_1126
PubMedSearch : Gardner_1998_Science_282_1126
PubMedID: 9804551

Title : Complete Genome Sequence of Treponema pallidum, the Syphilis Spirochete - Fraser_1998_Science_281_375
Author(s) : Fraser CM , Norris SJ , Weinstock GM , White O , Sutton GG , Dodson R , Gwinn M , Hickey EK , Clayton R , Ketchum KA , Sodergren E , Hardham JM , McLeod MP , Salzberg S , Peterson J , Khalak H , Richardson D , Howell JK , Chidambaram M , Utterback T , McDonald L , Artiach P , Bowman C , Cotton MD , Fujii C , Garland S , Hatch B , Horst K , Roberts K , Sandusky M , Weidman J , Smith HO , Venter JC
Ref : Science , 281 :375 , 1998
Abstract : The complete genome sequence of Treponema pallidum was determined and shown to be 1,138,006 base pairs containing 1041 predicted coding sequences (open reading frames). Systems for DNA replication, transcription, translation, and repair are intact, but catabolic and biosynthetic activities are minimized. The number of identifiable transporters is small, and no phosphoenolpyruvate:phosphotransferase carbohydrate transporters were found. Potential virulence factors include a family of 12 potential membrane proteins and several putative hemolysins. Comparison of the T. pallidum genome sequence with that of another pathogenic spirochete, Borrelia burgdorferi, the agent of Lyme disease, identified unique and common genes and substantiates the considerable diversity observed among pathogenic spirochetes.
ESTHER : Fraser_1998_Science_281_375
PubMedSearch : Fraser_1998_Science_281_375
PubMedID: 9665876
Gene_locus related to this paper: trepa-naptd , trepa-TP0902 , trepa-TP0952

Title : The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus - Klenk_1997_Nature_390_364
Author(s) : Klenk HP , Clayton RA , Tomb JF , White O , Nelson KE , Ketchum KA , Dodson RJ , Gwinn M , Hickey EK , Peterson JD , Richardson DL , Kerlavage AR , Graham DE , Kyrpides NC , Fleischmann RD , Quackenbush J , Lee NH , Sutton GG , Gill S , Kirkness EF , Dougherty BA , McKenney K , Adams MD , Loftus B , Peterson S , Reich CI , McNeil LK , Badger JH , Glodek A , Zhou L , Overbeek R , Gocayne JD , Weidman JF , McDonald L , Utterback T , Cotton MD , Spriggs T , Artiach P , Kaine BP , Sykes SM , Sadow PW , D'Andrea KP , Bowman C , Fujii C , Garland SA , Mason TM , Olsen GJ , Fraser CM , Smith HO , Woese CR , Venter JC
Ref : Nature , 390 :364 , 1997
Abstract : Archaeoglobus fulgidus is the first sulphur-metabolizing organism to have its genome sequence determined. Its genome of 2,178,400 base pairs contains 2,436 open reading frames (ORFs). The information processing systems and the biosynthetic pathways for essential components (nucleotides, amino acids and cofactors) have extensive correlation with their counterparts in the archaeon Methanococcus jannaschii. The genomes of these two Archaea indicate dramatic differences in the way these organisms sense their environment, perform regulatory and transport functions, and gain energy. In contrast to M. jannaschii, A. fulgidus has fewer restriction-modification systems, and none of its genes appears to contain inteins. A quarter (651 ORFs) of the A. fulgidus genome encodes functionally uncharacterized yet conserved proteins, two-thirds of which are shared with M. jannaschii (428 ORFs). Another quarter of the genome encodes new proteins indicating substantial archaeal gene diversity.
ESTHER : Klenk_1997_Nature_390_364
PubMedSearch : Klenk_1997_Nature_390_364
PubMedID: 9389475
Gene_locus related to this paper: arcfu-AF0514 , arcfu-AF0675 , arcfu-AF1134 , arcfu-AF1563 , arcfu-AF1753 , arcfu-AF1763 , arcfu-est1 , arcfu-est2 , arcfu-est3 , arcfu-estea , arcfu-o28594 , arcfu-o29442 , arcfu-pcbd

Title : The complete genome sequence of the gastric pathogen Helicobacter pylori. - Tomb_1997_Nature_388_539
Author(s) : Tomb J-F , White O , Kerlavage AR , Clayton RA , Sutton GG , Fleischmann RD , Ketchum KA , Klenk H-P , Gill S , Dougherty BA , Nelson K , Quackenbush J , Zhou L , Kirkness EF , Peterson S , Loftus B , Richardson D , Dodson R , Khalak HG , Glodek A , McKenney K , FitzGerald LM , Lee N , Adams MD , Hickey EK , Berg DE , Gocayne JD , Utterback TR , Peterson JD , Kelley JM , Cotton MD , Weidman JM , Fujii C , Bowman C , Watthey L , Wallin E , Hayes WS , Borodovsky M , Karp PD , Smith HO , Fraser CM , Venter JC
Ref : Nature , 388 :539 , 1997
Abstract : Helicobacter pylori, strain 26695, has a circular genome of 1,667,867 base pairs and 1,590 predicted coding sequences. Sequence analysis indicates that H. pylori has well-developed systems for motility, for scavenging iron, and for DNA restriction and modification. Many putative adhesins, lipoproteins and other outer membrane proteins were identified, underscoring the potential complexity of host-pathogen interaction. Based on the large number of sequence-related genes encoding outer membrane proteins and the presence of homopolymeric tracts and dinucleotide repeats in coding sequences, H. pylori, like several other mucosal pathogens, probably uses recombination and slipped-strand mispairing within repeats as mechanisms for antigenic variation and adaptive evolution. Consistent with its restricted niche, H. pylori has a few regulatory networks, and a limited metabolic repertoire and biosynthetic capacity. Its survival in acid conditions depends, in part, on its ability to establish a positive inside-membrane potential in low pH.
ESTHER : Tomb_1997_Nature_388_539
PubMedSearch : Tomb_1997_Nature_388_539
PubMedID: 9252185
Gene_locus related to this paper: helpy-HP0739 , helpy-o25061

Title : Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi - Fraser_1997_Nature_390_580
Author(s) : Fraser CM , Casjens S , Huang WM , Sutton GG , Clayton R , Lathigra R , White O , Ketchum KA , Dodson R , Hickey EK , Gwinn M , Dougherty B , Tomb JF , Fleischmann RD , Richardson D , Peterson J , Kerlavage AR , Quackenbush J , Salzberg S , Hanson M , van Vugt R , Palmer N , Adams MD , Gocayne J , Weidman J , Utterback T , Watthey L , McDonald L , Artiach P , Bowman C , Garland S , Fujii C , Cotton MD , Horst K , Roberts K , Hatch B , Smith HO , Venter JC
Ref : Nature , 390 :580 , 1997
Abstract : The genome of the bacterium Borrelia burgdorferi B31, the aetiologic agent of Lyme disease, contains a linear chromosome of 910,725 base pairs and at least 17 linear and circular plasmids with a combined size of more than 533,000 base pairs. The chromosome contains 853 genes encoding a basic set of proteins for DNA replication, transcription, translation, solute transport and energy metabolism, but, like Mycoplasma genitalium, it contains no genes for cellular biosynthetic reactions. Because B. burgdorferi and M. genitalium are distantly related eubacteria, we suggest that their limited metabolic capacities reflect convergent evolution by gene loss from more metabolically competent progenitors. Of 430 genes on 11 plasmids, most have no known biological function; 39% of plasmid genes are paralogues that form 47 gene families. The biological significance of the multiple plasmid-encoded genes is not clear, although they may be involved in antigenic variation or immune evasion.
ESTHER : Fraser_1997_Nature_390_580
PubMedSearch : Fraser_1997_Nature_390_580
PubMedID: 9403685
Gene_locus related to this paper: borbu-BB0646