Colletotrichum orbiculare species complex fungi are hemibiotrophic plant pathogens that cause anthracnose of field crops and weeds. Members of this group have genomes that are remarkably expanded relative to other Colletotrichum fungi and compartmentalized into AT-rich, gene-poor and GC-rich, gene-rich regions. Here, we present an updated version of the C. orbiculare genome, as well as draft genomes of three other members from the C. orbiculare species complex: the alfalfa pathogen C. trifolii, the prickly mallow pathogen C. sidae, and the burweed pathogen C. spinosum. The data reported here will be important for comparative genomics analyses to identify factors that play a role in the evolution and maintenance of the expanded, compartmentalized genomes of these fungi, which may contribute to their pathogenicity.
        
Title: Genus-Wide Comparative Genome Analyses of Colletotrichum Species Reveal Specific Gene Family Losses and Gains during Adaptation to Specific Infection Lifestyles Gan P, Narusaka M, Kumakura N, Tsushima A, Takano Y, Narusaka Y, Shirasu K Ref: Genome Biol Evol, 8:1467, 2016 : PubMed
Members from Colletotrichum genus adopt a diverse range of lifestyles during infection of plants and represent a group of agriculturally devastating pathogens. In this study, we present the draft genome of Colletotrichum incanum from the spaethianum clade of Colletotrichum and the comparative analyses with five other Colletotrichum species from distinct lineages. We show that the C. incanum strain, originally isolated from Japanese daikon radish, is able to infect both eudicot plants, such as certain ecotypes of the eudicot Arabidopsis, and monocot plants, such as lily. Being closely related to Colletotrichum species both in the graminicola clade, whose members are restricted strictly to monocot hosts, and to the destructivum clade, whose members are mostly associated with dicot infections, C. incanum provides an interesting model system for comparative genomics to study how fungal pathogens adapt to monocot and dicot hosts. Genus-wide comparative genome analyses reveal that Colletotrichum species have tailored profiles of their carbohydrate-degrading enzymes according to their infection lifestyles. In addition, we show evidence that positive selection acting on secreted and nuclear localized proteins that are highly conserved may be important in adaptation to specific hosts or ecological niches.
Hemibiotrophic fungal plant pathogens represent a group of agronomically significant disease-causing agents that grow first on living tissue and then cause host death in later, necrotrophic growth. Among these, Colletotrichum spp. are devastating pathogens of many crops. Identifying expanded classes of genes in the genomes of phytopathogenic Colletotrichum, especially those associated with specific stages of hemibiotrophy, can provide insights on how these pathogens infect a large number of hosts. The genomes of Colletotrichum orbiculare, which infects cucurbits and Nicotiana benthamiana, and C. gloeosporioides, which infects a wide range of crops, were sequenced and analyzed, focusing on features with potential roles in pathogenicity. Regulation of C. orbiculare gene expression was investigated during infection of N. benthamiana using a custom microarray. Genes expanded in both genomes compared to other fungi included sequences encoding small, secreted proteins (SSPs), secondary metabolite synthesis genes, proteases and carbohydrate-degrading enzymes. Many SSP and secondary metabolite synthesis genes were upregulated during initial stages of host colonization, whereas the necrotrophic stage of growth is characterized by upregulation of sequences encoding degradative enzymes. Hemibiotrophy in C. orbiculare is characterized by distinct stage-specific gene expression profiles of expanded classes of potential pathogenicity genes.
Functional analysis of a genome requires accurate gene structure information and a complete gene inventory. A dual experimental strategy was used to verify and correct the initial genome sequence annotation of the reference plant Arabidopsis. Sequencing full-length cDNAs and hybridizations using RNA populations from various tissues to a set of high-density oligonucleotide arrays spanning the entire genome allowed the accurate annotation of thousands of gene structures. We identified 5817 novel transcription units, including a substantial amount of antisense gene transcription, and 40 genes within the genetically defined centromeres. This approach resulted in completion of approximately 30% of the Arabidopsis ORFeome as a resource for global functional experimentation of the plant proteome.
Full-length complementary DNAs (cDNAs) are essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. We isolated 155,144 RIKEN Arabidopsis full-length (RAFL) cDNA clones. The 3'-end expressed sequence tags (ESTs) of 155,144 RAFL cDNAs were clustered into 14,668 nonredundant cDNA groups, about 60% of predicted genes. We also obtained 5' ESTs from 14,034 nonredundant cDNA groups and constructed a promoter database. The sequence database of the RAFL cDNAs is useful for promoter analysis and correct annotation of predicted transcription units and gene products. Furthermore, the full-length cDNAs are useful resources for analyses of the expression profiles, functions, and structures of plant proteins.