Yu G

References (24)

Title : Acute thermal stress increased enzyme activity and muscle energy distribution of yellowfin tuna - Liu_2023_PLoS.One_18_e0289606
Author(s) : Liu H , Yang R , Fu Z , Yu G , Li M , Dai S , Ma Z , Zong H
Ref : PLoS ONE , 18 :e0289606 , 2023
Abstract : Heat is a powerful stressor for fish living in natural and artificial environments. Understanding the effects of heat stress on the physiological processes of fish is essential for better aquaculture and fisheries management. In this experiment, a heating rod was used to increase the temperature at 2 degreesC/h to study the changes of energy allocation (CEA) and energy metabolity-related enzyme activities, including pepsin, trypsin, amylase, lipase, acid phosphatase, lactate dehydrogenase, alanine aminotransferase, glutamic oxalic aminotransferase and energy reserve (Ea), energy expenditure (ETS), in juvenile yellowfin tuna cells under acute temperature stress. The results showed that the Ea of juvenile yellowfin tuna muscles in response to high temperature (34 degreesC) was significantly lower than that of the control (28 degreesC), and it also increased ETS. At 6 h, CEA decreased slightly in the high-temperature group, but, the difference in CEA between 24 h and 0 h decreased. After heat stress for 6 h, the activities of acid phosphatase (ACP), lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and glutamic oxalacetic transaminase (AST) increased, indicating that the metabolic rate was accelerated. After heat stress for 24 h, the activity of ALT decreased, indicating that with time elapsed, the activities of some protein metabolizing enzymes increased, and some decreased. In this study, digestive enzymes, trypsin and lipase increased gradually. After heat stress, Ea and Ec change significantly. Yellowfin tuna muscles use lipids in response to sharp temperature increases at high temperatures, red muscles respond to temperature changes by increasing energy in the early stages, but not nearly as much, and white muscles reduce lipids.
ESTHER : Liu_2023_PLoS.One_18_e0289606
PubMedSearch : Liu_2023_PLoS.One_18_e0289606
PubMedID: 37796965

Title : Soluble epoxide hydrolase deficiency attenuates airway inflammation in COPD via IRE1alpha\/JNK\/AP-1 signaling pathway - Yu_2023_J.Inflamm.(Lond)_20_36
Author(s) : Yu Y , Yang A , He X , Wu B , Wu Y , Li Y , Nie S , Xu B , Wang H , Yu G
Ref : J Inflamm (Lond) , 20 :36 , 2023
Abstract : BACKGROUND: Soluble Epoxide Hydrolase (sEH) metabolizes anti-inflammatory epoxyeicosatrienoic acids and critically affects airway inflammation in chronic obstructive pulmonary disease (COPD). Considering the excessive endoplasmic reticulum stress is associated with the earlier onset of COPD. The role of sEH and endoplasmic reticulum stress in the pathogenesis of COPD remains unknown. METHOD: 16 weeks of cigarette-exposed mice were used to detect the relationship between sEH and endoplasmic reticulum stress in COPD. Human epithelial cells were used in vitro to determine the regulation mechanism of sEH in endoplasmic reticulum stress induced by cigarette smoke. RESULTS: sEH deficiency helps reduce emphysema formation after smoke exposure by alleviating endoplasmic reticulum stress response. sEH deficiency effectively reverses the upregulation of phosphorylation IRE1alpha and JNK and the nuclear expression of AP-1, alleviating the secretion of inflammatory factors induced by cigarette smoke extract. Furthermore, the treatment with endoplasmic reticulum stress and IRE1alpha inhibitor downregulated cigarette smoke extract-induced sEH expression and the secretion of inflammatory factors. CONCLUSION: sEH probably alleviates airway inflammatory response and endoplasmic reticulum stress via the IRE1alpha/JNK/AP-1 pathway, which might attenuate lung injury caused by long-term smoking and provide a new pharmacological target for preventing and treating COPD.
ESTHER : Yu_2023_J.Inflamm.(Lond)_20_36
PubMedSearch : Yu_2023_J.Inflamm.(Lond)_20_36
PubMedID: 37915073

Title : Combined-methods elucidate the multi-organ toxicity of cylindrospermopsin (CYN) on Daphnia magna - He_2023_Environ.Pollut__121250
Author(s) : He Z , Chen Y , Huo D , Gao J , Xu Y , Yang R , Yang Y , Yu G
Ref : Environ Pollut , :121250 , 2023
Abstract : Global water bodies are now at risk from inevitable cyanobacterial blooms and their production of multiple cyanotoxins, in particular cylindrospermopsin (CYN). However, research on the CYN toxicity and its molecular mechanisms is still limited, whilst the responses of aquatic species against CYN are uncovered. By integrating behavioral observations, chemical detections and transcriptome analysis, this study demonstrated that CYN exerted multi-organ toxicity to model species, Daphnia magna. The present study confirmed that CYN could cause protein inhibition by undermining total protein contents, and altered the gene expression related to proteolysis. Meantime, CYN induced oxidative stress by increasing reactive oxidative species (ROS) level, decreasing the glutathione (GSH) concentration, and interfered with protoheme formation process molecularly. Neurotoxicity led by CYN was solidly determined by abnormal swimming patterns, reduced acetylcholinesterase (AChE), and downward expression of muscarinic acetylcholine receptor (CHRM). Importantly, for the first time, this research determined CYN directly interfered with energy metabolism in cladocerans. CYN distinctively reduced filtration and ingestion rate by targeting on heart and thoracic limbs, which declined the energy intake, and could be further displayed by the reduction of motional strength and the trypsin concentration. These phenotypic alterations were supported by transcriptomic profile, including the down-regulation of oxidative phosphorylation and ATP synthesis. Moreover, CYN was speculated to trigger the self-defense responses of D. magna, known as "abandon-ship" by moderating lipid metabolism and distribution. This study, overall, comprehensively demonstrated the CYN toxicity and the responses of D. magna against it, which is of great significance to the advancements of CYN toxicity knowledge.
ESTHER : He_2023_Environ.Pollut__121250
PubMedSearch : He_2023_Environ.Pollut__121250
PubMedID: 36813104

Title : Development of novel 2-aminoalkyl-6-(2-hydroxyphenyl)pyridazin-3(2H)-one derivatives as balanced multifunctional agents against Alzheimer's disease - Shi_2022_Eur.J.Med.Chem_230_114098
Author(s) : Shi Y , Zhang H , Song Q , Yu G , Liu Z , Zhong F , Tan Z , Liu X , Deng Y
Ref : Eur Journal of Medicinal Chemistry , 230 :114098 , 2022
Abstract : Based on multitarget-directed ligands approach, through two rounds of screening, a series of 2-aminoalkyl-6-(2-hydroxyphenyl)pyridazin-3(2H)-one derivatives were designed, synthesized and evaluated as innovative multifunctional agents against Alzheimer's disease. In vitro biological assays indicated that most of the hybrids were endowed with great AChE inhibitory activity, excellent antioxidant activity and moderate Abeta(1-42) aggregation inhibition. Taken both efficacy and balance into account, 12a was identified as the optimal multifunctional ligand with significant inhibition of AChE (EeAChE, IC(50) = 0.20 microM; HuAChE, IC(50) = 37.02 nM) and anti-Abeta activity (IC(50) = 1.92 microM for self-induced Abeta(1-42) aggregation; IC(50) = 1.80 microM for disaggregation of Abeta(1-42) fibrils; IC(50) = 2.18 microM for Cu(2+)-induced Abeta(1-42) aggregation; IC(50) = 1.17 microM for disaggregation of Cu(2+)-induced Abeta(1-42) fibrils; 81.7% for HuAChE-induced Abeta(1-40) aggregation). Moreover, it was equipped with the potential to serve as antioxidant (3.03 Trolox equivalents), metals chelator and anti-neuroinflammation agent for synergetic treatment. Finally, in vivo study demonstrated that 12a, with suitable BBB permeability (log BB = -0.61), could efficaciously ameliorate cognitive dysfunction on scopolamine-treated mice by regulating cholinergic system and oxidative stress simultaneously. Altogether, these results highlight the potential of 12a as an innovative balanced multifunctional candidate for Alzheimer's disease treatment.
ESTHER : Shi_2022_Eur.J.Med.Chem_230_114098
PubMedSearch : Shi_2022_Eur.J.Med.Chem_230_114098
PubMedID: 35026532

Title : Discovery of novel 3-butyl-6-benzyloxyphthalide Mannich base derivatives as multifunctional agents against Alzheimer's disease - Liu_2022_Bioorg.Med.Chem_58_116660
Author(s) : Liu Z , Shi Y , Zhang X , Yu G , Li J , Cong S , Deng Y
Ref : Bioorganic & Medicinal Chemistry , 58 :116660 , 2022
Abstract : Based on the multitarget-directed ligands strategy, a series of 3-butyl-6-benzyloxyphthalide Mannich base derivatives were designed, synthesized and identified for Alzheimer's disease (AD). Biological activity studies demonstrated that the designed hybrids showed multitarget activities toward AD. Among them, compound 7d was the most potent agent with excellent inhibitory activities on EeAChE (IC(50) = 0.087 microM), HuAChE (IC(50) = 0.041 microM) and MAO-B (IC(50) = 0.30 microM). Furthermore, molecular docking studies were conducted to investigate the interaction mode with enzymes. Besides, 7d also possessed good effects of Cu(2+) chelation, ameliorate oxidative stress, and anti-neuroinflammation, desirable BBB permeability and eligible drug-like properties. Altogether, the multifunctional profiles of 7d prove that it deserves further investigation as a novel drug candidate for AD treatment.
ESTHER : Liu_2022_Bioorg.Med.Chem_58_116660
PubMedSearch : Liu_2022_Bioorg.Med.Chem_58_116660
PubMedID: 35183029

Title : ACOT4 accumulation via AKT-mediated phosphorylation promotes pancreatic tumourigenesis - Ni_2021_Cancer.Lett_498_19
Author(s) : Ni C , Zheng K , Gao Y , Chen Y , Shi K , Jin G , Yu G
Ref : Cancer Letters , 498 :19 , 2021
Abstract : The acyl-CoA thioesterase (ACOT) family catalyses the hydrolysis of acyl-CoA thioesters to their corresponding non-esterified fatty acid and coenzyme A (CoA). Increasing evidence suggests that cancer cells generally have altered lipid metabolism in different aspects. However, the roles of the ACOT family in cancer, especially in pancreatic ductal carcinoma (PDAC), are largely unknown. In the present study, we mined data to determine the clinical significance of all eleven ACOT genes among nine major solid tumour types from TCGA database and found that the expression of ACOT4 in PDAC was negatively correlated with patient survival, establishing ACOT4 as a potential biomarker of PDAC. Depletion of ACOT4 attenuated the proliferation and tumour formation of PDAC cells. Using mass spectrometry, HSPA1A was found to associate with ACOT4. Furthermore, we found that phosphorylation of ACOT4 at S392 by AKT decreased the binding of ACOT4 to HSPA1A, resulting in ACOT4 accumulation. The ACOT4 elevation promotes pancreatic tumourigenesis by producing excessive CoA to support tumour cell metabolism. Thus, our study expands the relationship between AKT signalling and lipid metabolism and establishes a functional role of ACOT4 in PDAC.
ESTHER : Ni_2021_Cancer.Lett_498_19
PubMedSearch : Ni_2021_Cancer.Lett_498_19
PubMedID: 33148467

Title : Design, synthesis, and in vitro evaluation of 4-aminoalkyl-1(2H)-phthalazinones as potential multifunctional anti-Alzheimer's disease agents - Ye_2021_Bioorg.Chem_111_104895
Author(s) : Ye C , Xu R , Cao Z , Song Q , Yu G , Shi Y , Liu Z , Liu X , Deng Y
Ref : Bioorg Chem , 111 :104895 , 2021
Abstract : A series of 4-aminoalkyl-1(2H)-phthalazinone derivatives was designed and synthesized as potential multifunctional agents for Alzheimer's disease (AD) treatment. In vitro biological assay results demonstrated that most synthesized compounds exhibited significant AChE inhibition, moderate to high MAOs inhibitory potencies and good anti-platelet aggregation abilities. Among them, compound 15b exhibited the highest inhibitory potencies towards MAO-B and MAO-A (IC(50) = 0.7 microM and 6.4 microM respectively), moderate inhibition towards AChE (IC(50) = 8.2 microM), and good activities against self- and Cu(2+)-induced Abeta(1-42) aggregation and platelet aggregation. Moreover, 15b also displayed antioxidant capacity, neuroprotective potency, anti-neuroinflammation and BBB permeability. These excellent results indicated that compound 15b could be worthy of further studies to be considered as a promising multifunctional candidate for the treatment of AD.
ESTHER : Ye_2021_Bioorg.Chem_111_104895
PubMedSearch : Ye_2021_Bioorg.Chem_111_104895
PubMedID: 33887586

Title : Phthalimide-(N-alkylbenzylamine) cysteamide hybrids as multifunctional agents against Alzheimer's disease: Design, synthesis and biological evaluation - Zhang_2021_Chem.Biol.Drug.Des__
Author(s) : Zhang H , Song Q , Yu G , Cao Z , Qiang X , Liu X , Deng Y
Ref : Chemical Biology Drug Des , : , 2021
Abstract : The complex pathogenesis of Alzheimer's disease (AD) calls for multi-target approach for disease treatment. Herein, based on the MTDLs strategy, a series of phthalimide-(N-alkylbenzylamine) cysteamide hybrids were designed, synthesized and investigated in vitro for the purpose. Most of the target compounds were found to be potential multi-target agents. In vitro results showed that compound 9e was the representative compound in this series, endowed with high EeAChE and HuAChE inhibitory potency (IC(50) = 1.55microM and 2.23 microM, respectively), good inhibitory activity against self-induced Abeta(1-42) aggregation (36.08% at 25 microM) and moderate antioxidant capacity (ORAC-FL value was 0.68 Trolox equivalents). Molecular docking studies rationalized the binding mode of 9e in both PAS and CAS of AChE. Moreover, 9e displayed excellent ability to against H(2) O(2) -induced PC12 cell injury and penetrate BBB. Overall, these results highlighted that compound 9e was an effective and promising multi-target agent for further anti-AD drug development.
ESTHER : Zhang_2021_Chem.Biol.Drug.Des__
PubMedSearch : Zhang_2021_Chem.Biol.Drug.Des__
PubMedID: 34143938

Title : Novel 3-benzylidene\/benzylphthalide Mannich base derivatives as potential multifunctional agents for the treatment of Alzheimer's disease - Cao_2021_Bioorg.Med.Chem_35_116074
Author(s) : Cao Z , Song Q , Yu G , Liu Z , Cong S , Tan Z , Deng Y
Ref : Bioorganic & Medicinal Chemistry , 35 :116074 , 2021
Abstract : To discover novel multifunctional agents for the treatment of Alzheimer's disease, a series of 3-benzylidene/benzylphthalide Mannich base derivatives were designed, synthesized and evaluated. The biological screening results indicated that most of these derivatives exhibited good multifunctional activities. Among them, compound (Z)-13c raised particular interest because of its excellent multifunctional bioactivities. It displayed excellent EeAChE and HuAChE inhibition (IC(50) = 9.18 x 10(-5) and 6.16 x 10(-4) microM, respectively), good MAO-B inhibitory activity (IC(50) = 5.88 microM) and high antioxidant activity (ORAC =2.05 Trolox equivalents). Additionally, it also exhibited good antiplatelet aggregation activity, moderate self- and Cu(2+)-induced Abeta(1-42) aggregation inhibitory potency, disaggregation ability on Abeta(1-42) fibrils, biometal chelating ability, appropriate BBB permeability and significant neuroprotective effect. Furthermore, (Z)-13c can also ameliorate the learning and memory impairment induced by scopolamine in mice. These multifunctional properties highlight compound (Z)-13c as a promising candidate for further development of multifunctional drug against AD.
ESTHER : Cao_2021_Bioorg.Med.Chem_35_116074
PubMedSearch : Cao_2021_Bioorg.Med.Chem_35_116074
PubMedID: 33640707

Title : Bioactive Compounds Isolated from Marine Bacterium Vibrio neocaledonicus and Their Enzyme Inhibitory Activities - Gomez-Betancur_2019_Mar.Drugs_17_
Author(s) : Gomez-Betancur I , Zhao J , Tan L , Chen C , Yu G , Rey-Suarez P , Preciado L
Ref : Mar Drugs , 17 : , 2019
Abstract : Marine organisms are recognized as a source of compounds with interesting biological activities. Vibrio neocaledonicus has been reported on for its high effectiveness against corrosion in metals but it has been little studied for its chemical and biological activities. In this study, four compounds were isolated from V. neocaledonicus: indole (1); 1H-indole-3-carboxaldehyde (2); 4-hydroxybenzaldehyde (3) and Cyclo (-Pro-Tyr) (4); using a bioassay-guided method, since in a previous study it was found that the ethyl acetate extract was active on the enzymes acetylcholinesterase (AChE), alpha-glucosidase (AG) and xanthine oxidase (XO). The inhibitory activities of the three compounds against AChE, AG and XO was also evaluated. In addition, the enzymatic inhibitory activity of indole to the toxins from the venom of Bothrops asper was tested. Results showed that indole exhibited strong inhibitory activity to AG (IC50 = 18.65 +/- 1.1 muM), to AChE, and XO (51.3% and 44.3% at 50 mug/mL, respectively). 1H-indole-3-carboxaldehyde displayed strong activity to XO (IC50 = 13.36 +/- 0.39 muM). 4-hydroxybenzaldehyde showed moderate activity to XO (50.75% at 50 mug/mL) and weak activity to AChE (25.7% at 50 mug/mL). Furthermore, indole showed a significant in vitro inhibition to the coagulant effect induced by 1.0 mug of venom. The findings were supported by molecular docking. This is the first comprehensive report on the chemistry of V. neocaledonicus and the bioactivity of its metabolites.
ESTHER : Gomez-Betancur_2019_Mar.Drugs_17_
PubMedSearch : Gomez-Betancur_2019_Mar.Drugs_17_
PubMedID: 31288374

Title : Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes - Sun_2018_Nat.Genet_50_1289
Author(s) : Sun S , Zhou Y , Chen J , Shi J , Zhao H , Song W , Zhang M , Cui Y , Dong X , Liu H , Ma X , Jiao Y , Wang B , Wei X , Stein JC , Glaubitz JC , Lu F , Yu G , Liang C , Fengler K , Li B , Rafalski A , Schnable PS , Ware DH , Buckler ES , Lai J
Ref : Nat Genet , 50 :1289 , 2018
Abstract : Maize is an important crop with a high level of genome diversity and heterosis. The genome sequence of a typical female line, B73, was previously released. Here, we report a de novo genome assembly of a corresponding male representative line, Mo17. More than 96.4% of the 2,183 Mb assembled genome can be accounted for by 362 scaffolds in ten pseudochromosomes with 38,620 annotated protein-coding genes. Comparative analysis revealed large gene-order and gene structural variations: approximately 10% of the annotated genes were mutually nonsyntenic, and more than 20% of the predicted genes had either large-effect mutations or large structural variations, which might cause considerable protein divergence between the two inbred lines. Our study provides a high-quality reference-genome sequence of an important maize germplasm, and the intraspecific gene order and gene structural variations identified should have implications for heterosis and genome evolution.
ESTHER : Sun_2018_Nat.Genet_50_1289
PubMedSearch : Sun_2018_Nat.Genet_50_1289
PubMedID: 30061735
Gene_locus related to this paper: maize-a0a1d6kqc9 , maize-k7v3i9 , maize-b6u9v9 , maize-a0a3l6e780 , maize-b4fv80 , maize-a0a3l6d913

Title : Correlation Between Liver Stiffness Measured by Shear Wave Elastography and Child-Pugh Classification - Wang_2018_J.Ultrasound.Med_37_2191
Author(s) : Wang J , Wang Q , Yu G , She Q , Zhang W , Zhang J
Ref : Journal of Ultrasound in Medicine , 37 :2191 , 2018
Abstract : OBJECTIVES: To explore the association between liver stiffness and the Child-Pugh classification of liver function by shear wave elastography (SWE). METHODS: A total of 116 patients with liver cirrhosis were divided into 3 groups according to the Child-Pugh classification prospectively. Conventional ultrasound imaging and SWE were performed for all patients. The associations of liver stiffness measured by SWE with ultrasound measurements, serum biochemical indicators, and the Child-Pugh classification were analyzed. Receiver operating characteristic curves were analyzed and compared to determine the ability of liver stiffness to diagnose cirrhosis. RESULTS: Liver stiffness measured by SWE increased with an increasing Child-Pugh classification, internal diameter of the hepatic portal and splenic veins, spleen thickness, spleen length, total bilirubin level, and prothrombin time, which were positively correlated with the Child-Pugh classification (all P < .05). The albumin level and liver stiffness showed higher areas under the curve in comparison with other parameters for evaluating the Child-Pugh classification. Albumin and cholinesterase levels were negatively correlated with the Child-Pugh classification (P < .05). All of these indicators were significantly different between each pair of groups (all P < .05), except for the internal diameter of the hepatic portal vein, prothrombin time, and total bilirubin, and cholinesterase levels between groups B and C (P > 0.05) and the thickness and length of spleen and internal diameter of the splenic vein between groups A and B (P > 0.05). There were no differences among the groups for alanine aminotransferase, aspartate aminotransferase, and globulin levels. CONCLUSIONS: Liver stiffness measured by SWE was correlated with the Child-Pugh classification, and it may be able to help evaluate liver function in patients with cirrhosis.
ESTHER : Wang_2018_J.Ultrasound.Med_37_2191
PubMedSearch : Wang_2018_J.Ultrasound.Med_37_2191
PubMedID: 29476558

Title : Cigarette Smoke-Induced Pulmonary Inflammation and Autophagy Are Attenuated in Ephx2-Deficient Mice - Li_2017_Inflammation_40_497
Author(s) : Li Y , Yu G , Yuan S , Tan C , Lian P , Fu L , Hou Q , Xu B , Wang H
Ref : Inflammation , 40 :497 , 2017
Abstract : Cigarette smoke (CS) increases the risk of chronic obstructive pulmonary disease (COPD) by causing inflammation, emphysema, and reduced lung function. Additionally, CS can induce autophagy which contributes to COPD. Arachidonic acid-derived epoxyeicosatrienoic acids (EETs) have promising anti-inflammatory properties that may protect the heart and liver by regulating autophagy. For this reason, the effect of decreased soluble epoxide hydrolase (sEH, Ephx2)-mediated EET hydrolysis on inflammation, emphysema, lung function, and autophagy was here studied in CS-induced COPD in vivo. Adult male wild-type (WT) C57BL/6J and Ephx2-/- mice were exposed to air or CS for 12 weeks, and lung inflammatory responses, air space enlargement (emphysema), lung function, and autophagy were assessed. Lungs of Ephx2-/- mice had a less pronounced inflammatory response and less autophagy with mild distal airspace enlargement accompanied by restored lung function and steady weight gain. These findings support the idea that Ephx2 may hold promise as a therapeutic target for COPD induced by CS, and it may be protective property by inhibiting autophagy.
ESTHER : Li_2017_Inflammation_40_497
PubMedSearch : Li_2017_Inflammation_40_497
PubMedID: 28028752

Title : Palladium-copper nanowires-based biosensor for the ultrasensitive detection of organophosphate pesticides - Song_2017_Anal.Chim.Acta_982_168
Author(s) : Song D , Li Y , Lu X , Sun M , Liu H , Yu G , Gao F
Ref : Anal Chim Acta , 982 :168 , 2017
Abstract : A highly sensitive acetylcholinesterase (AChE) electrochemical biosensor for the quantitative determination of organophosphate pesticides (OPs) in vegetables and fruits based on palladium-copper nanowires (Pd-Cu NWs) was reported. AChE immobilized on the modified electrode could catalyze hydrolysis of acetylthiocholine chloride (ATCl), generating an irreversible oxidation peak. When exposed to the OPs, the activity of the AChE was inhibited and the current significantly decreased. The detection mechanism is based on the inhibition of AChE. The Pd-Cu NWs not only provide a large active surface area (0.268 +/- 0.01) cm2 for the immobilization of AChE, which was approximately 3.8 times higher than the bare glass carbon electrode, but also exhibit excellent electro-catalytic activity and remarkable electron mobility. The biosensor modified with Pd-Cu NWs displayed a good affinity to ATCl and catalyzed hydrolysis of ATCl, with a low Michaelis-Menten constant (KM) of 50.56 muM. Under optimized conditions, the AChE-Cs/Pd-Cu NWs/GCE biosensor detected malathion with wide linear ranges of 5-1000 ppt and 500-3000 ppb, and the low detection limit was 1.5 ppt (4.5 pM). In addition, the OPs biosensor has been applied to the analysis of malathion in commercial vegetable and fruit samples, with excellent recoveries in the range of 98.5%-113.5%. This work provides a simple, sensitive and effective platform for biosensors and exhibits future potential in practical application for the OPs assay.
ESTHER : Song_2017_Anal.Chim.Acta_982_168
PubMedSearch : Song_2017_Anal.Chim.Acta_982_168
PubMedID: 28734356

Title : Molecular Simulation Study of Feruloyl Esterase Adsorption on Charged Surfaces: Effects of Surface Charge Density and Ionic Strength - Liu_2015_Langmuir_31_10751
Author(s) : Liu J , Peng C , Yu G , Zhou J
Ref : Langmuir , 31 :10751 , 2015
Abstract : The surrounding conditions, such as surface charge density and ionic strength, play an important role in enzyme adsorption. The adsorption of a nonmodular type-A feruloyl esterase from Aspergillus niger (AnFaeA) on charged surfaces was investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics (AAMD) simulations at different surface charge densities (+/-0.05 and +/-0.16 C.m(-2)) and ionic strengths (0.007 and 0.154 M). The adsorption energy, orientation, and conformational changes were analyzed. Simulation results show that whether AnFaeA can adsorb onto a charged surface is mainly controlled by electrostatic interactions between AnFaeA and the charged surface. The electrostatic interactions between AnFaeA and charged surfaces are weakened when the ionic strength increases. The positively charged surface at low surface charge density and high ionic strength conditions can maximize the utilization of the immobilized AnFaeA. The counterion layer plays a key role in the adsorption of AnFaeA on the negatively charged COOH-SAM. The native conformation of AnFaeA is well preserved under all of these conditions. The results of this work can be used for the controlled immobilization of AnFaeA.
ESTHER : Liu_2015_Langmuir_31_10751
PubMedSearch : Liu_2015_Langmuir_31_10751
PubMedID: 26379082

Title : Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors - Yu_2015_Biosens.Bioelectron_68C_288
Author(s) : Yu G , Wu W , Zhao Q , Wei X , Lu Q
Ref : Biosensors & Bioelectronics , 68C :288 , 2015
Abstract : This work introduced an efficient immobilization of acetylcholinesterase (AChE) onto amino functionalized carbon nanotubes (CNT-NH2), in order to fabricate high sensitive and practical organophosphorus pesticide (OPs) biosensors. Compared with the pristine, -COOH and -OH decorated CNTs, there were larger amount of enzymes adsorbed on the surface of CNT-NH2 with a favorable orientation and the best amperometric response was obtained on the AChE/CNT-NH2/GC electrode. Furthermore, the biosensor modified with CNT-NH2 showed a high affinity to acetylthiocholine chloride (ATCh) and could catalyze the hydrolysis of ATCh with an apparent Michaelis-Menten constant (Km) value of 67.4microM. Using paraoxon as a model compound, wide linear ranges from 0.2nM to 1nM and 1nM to 30nM, and a low detection limit of 0.08nM were obtained with satisfactory reproducibility and stability. Moreover, the biosensor had also been successfully employed for the determination of low concentrations of pesticides in real vegetable samples. This method could be extended to other functionalized nano-materials for their application in constructing biosensors.
ESTHER : Yu_2015_Biosens.Bioelectron_68C_288
PubMedSearch : Yu_2015_Biosens.Bioelectron_68C_288
PubMedID: 25594160

Title : 4-Substituted boro-proline dipeptides: synthesis, characterization, and dipeptidyl peptidase IV, 8, and 9 activities - Wu_2012_Bioorg.Med.Chem.Lett_22_5536
Author(s) : Wu W , Liu Y , Milo LJ, Jr. , Shu Y , Zhao P , Li Y , Woznica I , Yu G , Sanford DG , Zhou Y , Poplawski SE , Connolly BA , Sudmeier JL , Bachovchin WW , Lai JH
Ref : Bioorganic & Medicinal Chemistry Lett , 22 :5536 , 2012
Abstract : The boroProline-based dipeptidyl boronic acids were among the first DPP-IV inhibitors identified, and remain the most potent known. We introduced various substitutions at the 4-position of the boroProline ring regioselectively and stereoselectively, and incorporated these aminoboronic acids into a series of 4-substituted boroPro-based dipeptides. Among these dipeptidyl boronic acids, Arg-(4S)-boroHyp (4q) was the most potent inhibitor of DPP-IV, DPP8 and DPP9, while (4S)-Hyp-(4R)-boroHyp (4o) exhibited the most selectivity for DPP-IV over DPP8 and DPP9.
ESTHER : Wu_2012_Bioorg.Med.Chem.Lett_22_5536
PubMedSearch : Wu_2012_Bioorg.Med.Chem.Lett_22_5536
PubMedID: 22853995

Title : Enzymatic functions of wild tomato methylketone synthases 1 and 2 - Yu_2010_Plant.Physiol_154_67
Author(s) : Yu G , Nguyen TT , Guo Y , Schauvinhold I , Auldridge ME , Bhuiyan N , Ben-Israel I , Iijima Y , Fridman E , Noel JP , Pichersky E
Ref : Plant Physiol , 154 :67 , 2010
Abstract : The trichomes of the wild tomato species Solanum habrochaites subsp. glabratum synthesize and store high levels of methylketones, primarily 2-tridecanone and 2-undecanone, that protect the plants against various herbivorous insects. Previously, we identified cDNAs encoding two proteins necessary for methylketone biosynthesis, designated methylketone synthase 1 (ShMKS1) and ShMKS2. Here, we report the isolation of genomic sequences encoding ShMKS1 and ShMKS2 as well as the homologous genes from the cultivated tomato, Solanum lycopersicum. We show that a full-length transcript of ShMKS2 encodes a protein that is localized in the plastids. By expressing ShMKS1 and ShMKS2 in Escherichia coli and analyzing the products formed, as well as by performing in vitro assays with both ShMKS1and ShMKS2, we conclude that ShMKS2 acts as a thioesterase hydrolyzing 3-ketoacyl-acyl carrier proteins (plastid-localized intermediates of fatty acid biosynthesis) to release 3-ketoacids and that ShMKS1 subsequently catalyzes the decarboxylation of these liberated 3-ketoacids, forming the methylketone products. Genes encoding proteins with high similarity to ShMKS2, a member of the "hot-dog fold" protein family that is known to include other thioesterases in nonplant organisms, are present in plant species outside the genus Solanum. We show that a related enzyme from Arabidopsis (Arabidopsis thaliana) also produces 3-ketoacids when recombinantly expressed in E. coli. Thus, the thioesterase activity of proteins in this family appears to be ancient. In contrast, the 3-ketoacid decarboxylase activity of ShMKS1, which belongs to the alpha/beta-hydrolase fold superfamily, appears to have emerged more recently, possibly within the genus Solanum.
ESTHER : Yu_2010_Plant.Physiol_154_67
PubMedSearch : Yu_2010_Plant.Physiol_154_67
PubMedID: 20605911
Gene_locus related to this paper: solha-e0ycs2 , sollc-e0ycs4 , sollc-e0ycs5 , sollc-e0ycs6 , sollc-e0ycs7

Title : Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes - Crasta_2008_PLoS.One_3_e2193
Author(s) : Crasta OR , Folkerts O , Fei Z , Mane SP , Evans C , Martino-Catt S , Bricker B , Yu G , Du L , Sobral BW
Ref : PLoS ONE , 3 :e2193 , 2008
Abstract : The Brucella abortus strain S19, a spontaneously attenuated strain, has been used as a vaccine strain in vaccination of cattle against brucellosis for six decades. Despite many studies, the physiological and molecular mechanisms causing the attenuation are not known. We have applied pyrosequencing technology together with conventional sequencing to rapidly and comprehensively determine the complete genome sequence of the attenuated Brucella abortus vaccine strain S19. The main goal of this study is to identify candidate virulence genes by systematic comparative analysis of the attenuated strain with the published genome sequences of two virulent and closely related strains of B. abortus, 9-941 and 2308. The two S19 chromosomes are 2,122,487 and 1,161,449 bp in length. A total of 3062 genes were identified and annotated. Pairwise and reciprocal genome comparisons resulted in a total of 263 genes that were non-identical between the S19 genome and any of the two virulent strains. Amongst these, 45 genes were consistently different between the attenuated strain and the two virulent strains but were identical amongst the virulent strains, which included only two of the 236 genes that have been implicated as virulence factors in literature. The functional analyses of the differences have revealed a total of 24 genes that may be associated with the loss of virulence in S19. Of particular relevance are four genes with more than 60 bp consistent difference in S19 compared to both the virulent strains, which, in the virulent strains, encode an outer membrane protein and three proteins involved in erythritol uptake or metabolism.
ESTHER : Crasta_2008_PLoS.One_3_e2193
PubMedSearch : Crasta_2008_PLoS.One_3_e2193
PubMedID: 18478107
Gene_locus related to this paper: brume-BMEI0552 , brume-BMEI1594 , brume-BMEI1822 , brume-BMEII0047 , brume-dhE2 , brume-PCAD , brusu-BR0288

Title : Stability and activity of lipase in subcritical 1,1,1,2-tetrafluoroethane (R134a) - Yu_2007_J.Ind.Microbiol.Biotechnol_34_793
Author(s) : Yu G , Xue Y , Xu W , Zhang J , Xue CH
Ref : J Ind Microbiol Biotechnol , 34 :793 , 2007
Abstract : The stability and activity of commercial immobilized lipase from Candida antarctica (Novozym 435) in subcritical 1,1,1,2-tetrafluoroethane (R134a) was investigated. The esterification of oleic acid with glycerol was studied as a model reaction in subcritical R134a and in solvent-free conditions. The results indicated that subcritical R134a treatment led to significant increase of activity of Novozym 435, and a maximum residual activity of 300% was measured at 4 MPa, 30 degrees C after 7 h incubation. No deactivation of Novozym 435 treated with subcritical R134a under different operation factors (pressure 2-8 MPa, temperature 30-60 degrees C, incubation time 1-12 h, water content 1:1, 1:2, 1:5 enzyme/water, depressurization rate 4 MPa/1 min, 4 MPa/30 min, 4 MPa/90 min) was observed. While the initial reaction rate was high in subcritical R134a, higher conversion was obtained in solvent-free conditions. Though the apparent conversion of the reaction is lower in subcritical R134a, it is more practicable, especially at low enzyme concentrations desired at commercial scales.
ESTHER : Yu_2007_J.Ind.Microbiol.Biotechnol_34_793
PubMedSearch : Yu_2007_J.Ind.Microbiol.Biotechnol_34_793
PubMedID: 17909872

Title : Empirical analysis of transcriptional activity in the Arabidopsis genome - Yamada_2003_Science_302_842
Author(s) : Yamada K , Lim J , Dale JM , Chen H , Shinn P , Palm CJ , Southwick AM , Wu HC , Kim C , Nguyen M , Pham P , Cheuk R , Karlin-Newmann G , Liu SX , Lam B , Sakano H , Wu T , Yu G , Miranda M , Quach HL , Tripp M , Chang CH , Lee JM , Toriumi M , Chan MM , Tang CC , Onodera CS , Deng JM , Akiyama K , Ansari Y , Arakawa T , Banh J , Banno F , Bowser L , Brooks S , Carninci P , Chao Q , Choy N , Enju A , Goldsmith AD , Gurjal M , Hansen NF , Hayashizaki Y , Johnson-Hopson C , Hsuan VW , Iida K , Karnes M , Khan S , Koesema E , Ishida J , Jiang PX , Jones T , Kawai J , Kamiya A , Meyers C , Nakajima M , Narusaka M , Seki M , Sakurai T , Satou M , Tamse R , Vaysberg M , Wallender EK , Wong C , Yamamura Y , Yuan S , Shinozaki K , Davis RW , Theologis A , Ecker JR
Ref : Science , 302 :842 , 2003
Abstract : Functional analysis of a genome requires accurate gene structure information and a complete gene inventory. A dual experimental strategy was used to verify and correct the initial genome sequence annotation of the reference plant Arabidopsis. Sequencing full-length cDNAs and hybridizations using RNA populations from various tissues to a set of high-density oligonucleotide arrays spanning the entire genome allowed the accurate annotation of thousands of gene structures. We identified 5817 novel transcription units, including a substantial amount of antisense gene transcription, and 40 genes within the genetically defined centromeres. This approach resulted in completion of approximately 30% of the Arabidopsis ORFeome as a resource for global functional experimentation of the plant proteome.
ESTHER : Yamada_2003_Science_302_842
PubMedSearch : Yamada_2003_Science_302_842
PubMedID: 14593172
Gene_locus related to this paper: arath-AT2G42690 , arath-AT4g30610 , arath-At5g13640 , arath-AT5G20520 , arath-AT5G27320 , arath-CGEP , arath-clh1 , arath-clh2 , arath-CXE12 , arath-CXE15 , arath-SCP25 , arath-F14F8.240 , arath-MES6 , arath-LCAT1 , arath-PLA11 , arath-PLA15 , arath-PLA16 , arath-PLA17 , arath-SCP8 , arath-SCP11 , arath-SCP40 , arath-MES14 , arath-AXR4 , arath-SFGH , arath-B9DFR3 , arath-pae2

Title : The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment - Clark_2003_Genome.Res_13_2265
Author(s) : Clark HF , Gurney AL , Abaya E , Baker K , Baldwin D , Brush J , Chen J , Chow B , Chui C , Crowley C , Currell B , Deuel B , Dowd P , Eaton D , Foster J , Grimaldi C , Gu Q , Hass PE , Heldens S , Huang A , Kim HS , Klimowski L , Jin Y , Johnson S , Lee J , Lewis L , Liao D , Mark M , Robbie E , Sanchez C , Schoenfeld J , Seshagiri S , Simmons L , Singh J , Smith V , Stinson J , Vagts A , Vandlen R , Watanabe C , Wieand D , Woods K , Xie MH , Yansura D , Yi S , Yu G , Yuan J , Zhang M , Zhang Z , Goddard A , Wood WI , Godowski P , Gray A
Ref : Genome Res , 13 :2265 , 2003
Abstract : A large-scale effort, termed the Secreted Protein Discovery Initiative (SPDI), was undertaken to identify novel secreted and transmembrane proteins. In the first of several approaches, a biological signal sequence trap in yeast cells was utilized to identify cDNA clones encoding putative secreted proteins. A second strategy utilized various algorithms that recognize features such as the hydrophobic properties of signal sequences to identify putative proteins encoded by expressed sequence tags (ESTs) from human cDNA libraries. A third approach surveyed ESTs for protein sequence similarity to a set of known receptors and their ligands with the BLAST algorithm. Finally, both signal-sequence prediction algorithms and BLAST were used to identify single exons of potential genes from within human genomic sequence. The isolation of full-length cDNA clones for each of these candidate genes resulted in the identification of >1000 novel proteins. A total of 256 of these cDNAs are still novel, including variants and novel genes, per the most recent GenBank release version. The success of this large-scale effort was assessed by a bioinformatics analysis of the proteins through predictions of protein domains, subcellular localizations, and possible functional roles. The SPDI collection should facilitate efforts to better understand intercellular communication, may lead to new understandings of human diseases, and provides potential opportunities for the development of therapeutics.
ESTHER : Clark_2003_Genome.Res_13_2265
PubMedSearch : Clark_2003_Genome.Res_13_2265
PubMedID: 12975309
Gene_locus related to this paper: human-CES3 , human-CES4A

Title : Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana - Theologis_2000_Nature_408_816
Author(s) : Theologis A , Ecker JR , Palm CJ , Federspiel NA , Kaul S , White O , Alonso J , Altafi H , Araujo R , Bowman CL , Brooks SY , Buehler E , Chan A , Chao Q , Chen H , Cheuk RF , Chin CW , Chung MK , Conn L , Conway AB , Conway AR , Creasy TH , Dewar K , Dunn P , Etgu P , Feldblyum TV , Feng J , Fong B , Fujii CY , Gill JE , Goldsmith AD , Haas B , Hansen NF , Hughes B , Huizar L , Hunter JL , Jenkins J , Johnson-Hopson C , Khan S , Khaykin E , Kim CJ , Koo HL , Kremenetskaia I , Kurtz DB , Kwan A , Lam B , Langin-Hooper S , Lee A , Lee JM , Lenz CA , Li JH , Li Y , Lin X , Liu SX , Liu ZA , Luros JS , Maiti R , Marziali A , Militscher J , Miranda M , Nguyen M , Nierman WC , Osborne BI , Pai G , Peterson J , Pham PK , Rizzo M , Rooney T , Rowley D , Sakano H , Salzberg SL , Schwartz JR , Shinn P , Southwick AM , Sun H , Tallon LJ , Tambunga G , Toriumi MJ , Town CD , Utterback T , Van Aken S , Vaysberg M , Vysotskaia VS , Walker M , Wu D , Yu G , Fraser CM , Venter JC , Davis RW
Ref : Nature , 408 :816 , 2000
Abstract : The genome of the flowering plant Arabidopsis thaliana has five chromosomes. Here we report the sequence of the largest, chromosome 1, in two contigs of around 14.2 and 14.6 megabases. The contigs extend from the telomeres to the centromeric borders, regions rich in transposons, retrotransposons and repetitive elements such as the 180-base-pair repeat. The chromosome represents 25% of the genome and contains about 6,850 open reading frames, 236 transfer RNAs (tRNAs) and 12 small nuclear RNAs. There are two clusters of tRNA genes at different places on the chromosome. One consists of 27 tRNA(Pro) genes and the other contains 27 tandem repeats of tRNA(Tyr)-tRNA(Tyr)-tRNA(Ser) genes. Chromosome 1 contains about 300 gene families with clustered duplications. There are also many repeat elements, representing 8% of the sequence.
ESTHER : Theologis_2000_Nature_408_816
PubMedSearch : Theologis_2000_Nature_408_816
PubMedID: 11130712
Gene_locus related to this paper: arath-At1g05790 , arath-At1g09280 , arath-At1g09980 , arath-AT1G29120 , arath-AT1G52695 , arath-AT1G66900 , arath-At1g73750 , arath-AT1G73920 , arath-AT1G74640 , arath-AT1G76140 , arath-AT1G78210 , arath-clh1 , arath-F1O17.3 , arath-F1O17.4 , arath-F1O17.5 , arath-F5I6.3 , arath-At1g52700 , arath-F6D8.27 , arath-F6D8.32 , arath-F9L1.44 , arath-F9P14.11 , arath-F12A4.4 , arath-MES11 , arath-F14G24.2 , arath-F14G24.3 , arath-F14I3.4 , arath-F14O10.2 , arath-F16N3.25 , arath-LCAT2 , arath-At1g34340 , arath-MES15 , arath-CXE6 , arath-ICML1 , arath-At1g72620 , arath-LCAT1 , arath-PLA12 , arath-PLA15 , arath-PLA17 , arath-Q8L7S1 , arath-At1g15070 , arath-SCP2 , arath-SCP4 , arath-SCP5 , arath-SCP18 , arath-SCP32 , arath-SCP44 , arath-SCP45 , arath-SCPL6 , arath-F4IE65 , arath-At1g30370 , arath-T6L1.8 , arath-T6L1.20 , arath-T14P4.6 , arath-MES14 , arath-SCP3 , arath-AXR4 , arath-At1g10040 , arath-ZW18 , arath-pae2 , arath-pae1 , arath-a0a1p8awg3

Title : Analysis of the butyrylcholinesterase gene and nearby chromosome 3 markers in alzheimer disease - Brindle_1998_Hum.Mol.Genet_7_933
Author(s) : Brindle N , Song Y , Rogaeva E , Premkumar S , Levesque G , Yu G , Ikeda M , Nishimura M , Paterson A , Sorbi S , Duara R , Farrer L , St George-Hyslop P
Ref : Hum Mol Genet , 7 :933 , 1998
Abstract : The K-variant of butyrylcholinesterase (BCHE-K) recently has been reported to be associated with Alzheimer disease (AD) in carriers of the epsilon4 allele of the apolipoprotein E (APOE) gene. We have re-examined the frequency of the BCHE-K allele in a large data set of both sporadic and familial cases of AD disease, and we have also examined the segregation of three genetic markers on chromosome 3 near BCHE . Our data neither support an association of BCHE-K with sporadic or familial AD, nor do they suggest the existence of another gene nearby on chromosome 3 as a common cause of familial AD.
ESTHER : Brindle_1998_Hum.Mol.Genet_7_933
PubMedSearch : Brindle_1998_Hum.Mol.Genet_7_933
PubMedID: 9536099