(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Eukaryota: NE > Opisthokonta: NE > Metazoa: NE > Eumetazoa: NE > Bilateria: NE > Deuterostomia: NE > Chordata: NE > Craniata: NE > Vertebrata: NE > Gnathostomata: NE > Teleostomi: NE > Euteleostomi: NE > Sarcopterygii: NE > Dipnotetrapodomorpha: NE > Tetrapoda: NE > Amniota: NE > Mammalia: NE > Theria: NE > Eutheria: NE > Boreoeutheria: NE > Euarchontoglires: NE > Primates: NE > Haplorrhini: NE > Simiiformes: NE > Catarrhini: NE > Cercopithecoidea: NE > Cercopithecidae: NE > Cercopithecinae: NE > Macaca: NE > Macaca fascicularis: NE
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MAKLLSCVLGPRLYKIYRERDSERAPASVPETPTAVTAPHSSSWDTYYQP RALEKHADSILALASVFWSISYYSSPFAFFYLYRKGYLSLSKVVPFSHYA GTLLLLLAGVACLRGIGRWTNPQYRQFITILEATHRNQSSENKRQLANYN FDFRSWPVDFHWEEPSSRKESRGGPSRRGVALLRPEPLHRGTADTLLNRV KKLPCQITSYLVAHTLGRRMLYPGSVYLLQKALMPVLLQGQARLVEECNG RRAKLLACDGNEIDTMFVDRRGTAQPQGQKLVICCEGNAGFYEVGCISTP LEAGYSVLGWNHPGFAGSTGVPFPQNEANAMDVVVQFAIHRLGFQPQDII IYAWSIGGFTATWAAMSYPDVSAVILDASFDDLVPLALKVMPDSWRGLVT RTVRQHLNLNNAEQLCRYLGPVLLIRRTKDEIITTTVPEDIMSNRGNDLL LKLLQHRYPRVMAEEGLQVVRQWLEASSQLEEASIYSRWEVEEDWCLSVL RSYQAEHGPDFPWSVGEDMSADGRRQLALFLARKHLHNFEATHCTPLPAQ NFQMPWHL
The nonhuman primates most commonly used in medical research are from the genus Macaca. To better understand the genetic differences between these animal models, we present high-quality draft genome sequences from two macaque species, the cynomolgus/crab-eating macaque and the Chinese rhesus macaque. Comparison with the previously sequenced Indian rhesus macaque reveals that all three macaques maintain abundant genetic heterogeneity, including millions of single-nucleotide substitutions and many insertions, deletions and gross chromosomal rearrangements. By assessing genetic regions with reduced variability, we identify genes in each macaque species that may have experienced positive selection. Genetic divergence patterns suggest that the cynomolgus macaque genome has been shaped by introgression after hybridization with the Chinese rhesus macaque. Macaque genes display a high degree of sequence similarity with human disease gene orthologs and drug targets. However, we identify several putatively dysfunctional genetic differences between the three macaque species, which may explain functional differences between them previously observed in clinical studies.
The substitution rate and structural divergence in the 5'-untranslated region (UTR) were investigated by using human and cynomolgus monkey cDNA sequences. Due to the weaker functional constraint in the UTR than in the coding sequence, the divergence between humans and macaques would provide a good estimate of the nucleotide substitution rate and structural divergence in the 5'UTR. We found that the substitution rate in the 5'UTR (K5UTR) averaged approximately 10%-20% lower than the synonymous substitution rate (Ks). However, both the K5UTR and nonsynonymous substitution rate (Ka) were significantly higher in the testicular cDNAs than in the brain cDNAs, whereas the Ks did not differ. Further, an in silico analysis revealed that 27% (169/622) of macaque testicular cDNAs had an altered exon-intron structure in the 5'UTR compared with the human cDNAs. The fraction of cDNAs with an exon alteration was significantly higher in the testicular cDNAs than in the brain cDNAs. We confirmed by using reverse transcriptase-polymerase chain reaction that about one-third (6/16) of in silico "macaque-specific" exons in the 5'UTR were actually macaque specific in the testis. The results imply that positive selection increased K5UTR and structural alteration rate of a certain fraction of genes as well as Ka. We found that both positive and negative selection can act on the 5'UTR sequences.