Danso D

References (8)

Title : An archaeal lid-containing feruloyl esterase degrades polyethylene terephthalate - Perez-Garcia_2023_Commun.Chem_6_193
Author(s) : Perez-Garcia P , Chow J , Costanzi E , Gurschke M , Dittrich J , Dierkes RF , Molitor R , Applegate V , Feuerriegel G , Tete P , Danso D , Thies S , Schumacher J , Pfleger C , Jaeger KE , Gohlke H , Smits SHJ , Schmitz RA , Streit WR
Ref : Commun Chem , 6 :193 , 2023
Abstract : Polyethylene terephthalate (PET) is a commodity polymer known to globally contaminate marine and terrestrial environments. Today, around 80 bacterial and fungal PET-active enzymes (PETases) are known, originating from four bacterial and two fungal phyla. In contrast, no archaeal enzyme had been identified to degrade PET. Here we report on the structural and biochemical characterization of PET46 (RLI42440.1), an archaeal promiscuous feruloyl esterase exhibiting degradation activity on semi-crystalline PET powder comparable to IsPETase and LCC (wildtypes), and higher activity on bis-, and mono-(2-hydroxyethyl) terephthalate (BHET and MHET). The enzyme, found by a sequence-based metagenome search, is derived from a non-cultivated, deep-sea Candidatus Bathyarchaeota archaeon. Biochemical characterization demonstrated that PET46 is a promiscuous, heat-adapted hydrolase. Its crystal structure was solved at a resolution of 1.71 A. It shares the core alpha/beta-hydrolase fold with bacterial PETases, but contains a unique lid common in feruloyl esterases, which is involved in substrate binding. Thus, our study widens the currently known diversity of PET-hydrolyzing enzymes, by demonstrating PET depolymerization by a plant cell wall-degrading esterase.
ESTHER : Perez-Garcia_2023_Commun.Chem_6_193
PubMedSearch : Perez-Garcia_2023_Commun.Chem_6_193
PubMedID: 37697032
Gene_locus related to this paper: 9arch-PETcan211 , 9cren-PETcan204 , 9arch-PET46

Title : An Ultra-Sensitive Comamonas thiooxidans Biosensor for the Rapid Detection of Enzymatic Polyethylene Terephthalate (PET) Degradation - Dierkes_2022_Appl.Environ.Microbiol__e0160322
Author(s) : Dierkes RF , Wypych A , Perez-Garcia P , Danso D , Chow J , Streit WR
Ref : Applied Environmental Microbiology , :e0160322 , 2022
Abstract : Polyethylene terephthalate (PET) is a prevalent synthetic polymer that is known to contaminate marine and terrestrial environments. Currently, only a limited number of PET-active microorganisms and enzymes (PETases) are known. This is in part linked to the lack of highly sensitive function-based screening assays for PET-active enzymes. Here, we report on the construction of a fluorescent biosensor based on Comamonas thiooxidans strain S23. C. thiooxidans S23 transports and metabolizes TPA, one of the main breakdown products of PET, using a specific tripartite tricarboxylate transporter (TTT) and various mono- and dioxygenases encoded in its genome in a conserved operon ranging from tphC-tphA1. TphR, an IclR-type transcriptional regulator is found upstream of the tphC-tphA1 cluster where TPA induces transcription of tphC-tphA1 up to 88-fold in exponentially growing cells. In the present study, we show that the C. thiooxidans S23 wild-type strain, carrying the sfGFP gene fused to the tphC promoter, senses TPA at concentrations as low as 10 microM. Moreover, a deletion mutant lacking the catabolic genes involved in TPA degradation thphA2-A1 (deltatphA2A3BA1) is up to 10,000-fold more sensitive and detects TPA concentrations in the nanomolar range. This is, to our knowledge, the most sensitive reporter strain for TPA and we demonstrate that it can be used for the detection of enzymatic PET breakdown products. IMPORTANCE Plastics and microplastics accumulate in all ecological niches. The construction of more sensitive biosensors allows to monitor and screen potential PET degradation in natural environments and industrial samples. These strains will also be a valuable tool for functional screenings of novel PETase candidates and variants or monitoring of PET recycling processes using biocatalysts. Thereby they help us to enrich the known biodiversity and efficiency of PET degrading organisms and enzymes and understand their contribution to environmental plastic degradation.
ESTHER : Dierkes_2022_Appl.Environ.Microbiol__e0160322
PubMedSearch : Dierkes_2022_Appl.Environ.Microbiol__e0160322
PubMedID: 36507653

Title : The abundance of mRNA transcripts of bacteroidetal polyethylene terephthalate (PET) esterase genes may indicate a role in marine plastic degradation - Zhang_2021_ResearchSquare__
Author(s) : Zhang H , Dierkes R , Perez-Garcia P , Weigert S , Sternagel S , Hallam S , Schott T , Juergens K , Vollstedt C , Chibani C , Danso D , Buchholz PCF , Pleiss J , Almeida A , Hocker B , Schmitz R , Chow J , Streit WR
Ref : ResearchSquare , : , 2021
Abstract : https://www.researchsquare.com/article/rs-567691/v2 Polyethylene terephthalate (PET) is an important synthetic polymer accumulating in nature 2 and recent studies have identified microorganisms capable of degrading PET. While the majority of 3 known PET hydrolases originate from the Actinobacteria and Proteobacteria, here we describe the 4 first functional PET-active enzymes from the Bacteroidetes phylum. Using a PETase-specific 5 Hidden-Markov-Model (HMM)-based search algorithm we identified two promiscuous and cold6 active esterases derived from Aequorivita sp. (PET27) and Chryseobacterium jeonii (PET30) acting 7 on PET foil and powder. Notably, one of the enzymes (PET30) was able to hydrolyze PET at 8 temperatures between 4 - 30 C with a similar turnover rate compared to the well-known Ideonella 9 sakaiensis enzyme (IsPETase). 10 PET27 and PET30 homologues were detected in metagenomes encompassing a wide range 11 of different global climate zones. Additional transcript abundance mapping of marine samples imply 12 that these promiscuous enzymes and source organisms may play a role in the long-term 13 degradation of microplastic particles and fibers.
ESTHER : Zhang_2021_ResearchSquare__
PubMedSearch : Zhang_2021_ResearchSquare__
Gene_locus related to this paper: flutr-f2ie04 , 9flao-a0a0c1f4u8 , 9flao-kjj39608 , 9flao-a0a1m6f5v0 , 9flao-a0a330mq60

Title : The Bacteroidetes Aequorivita sp. and Kaistella jeonii Produce Promiscuous Esterases With PET-Hydrolyzing Activity - Zhang_2022_Front.Microbiol_12_803896
Author(s) : Zhang H , Perez-Garcia P , Dierkes RF , Applegate V , Schumacher J , Chibani CM , Sternagel S , Preuss L , Weigert S , Schmeisser C , Danso D , Pleiss J , Almeida A , Hocker B , Hallam SJ , Schmitz RA , Smits SHJ , Chow J , Streit WR
Ref : Front Microbiol , 12 :803896 , 2021
Abstract : Certain members of the Actinobacteria and Proteobacteria are known to degrade polyethylene terephthalate (PET). Here, we describe the first functional PET-active enzymes from the Bacteroidetes phylum. Using a PETase-specific Hidden-Markov-Model- (HMM-) based search algorithm, we identified several PETase candidates from Flavobacteriaceae and Porphyromonadaceae. Among them, two promiscuous and cold-active esterases derived from Aequorivita sp. (PET27) and Kaistella jeonii (PET30) showed depolymerizing activity on polycaprolactone (PCL), amorphous PET foil and on the polyester polyurethane Impranil((a)) DLN. PET27 is a 37.8 kDa enzyme that released an average of 174.4 nmol terephthalic acid (TPA) after 120 h at 30 degreesC from a 7 mg PET foil platelet in a 200 microl reaction volume, 38-times more than PET30 (37.4 kDa) released under the same conditions. The crystal structure of PET30 without its C-terminal Por-domain (PET30deltaPorC) was solved at 2.1 A and displays high structural similarity to the IsPETase. PET30 shows a Phe-Met-Tyr substrate binding motif, which seems to be a unique feature, as IsPETase, LCC and PET2 all contain Tyr-Met-Trp binding residues, while PET27 possesses a Phe-Met-Trp motif that is identical to Cut190. Microscopic analyses showed that K. jeonii cells are indeed able to bind on and colonize PET surfaces after a few days of incubation. Homologs of PET27 and PET30 were detected in metagenomes, predominantly aquatic habitats, encompassing a wide range of different global climate zones and suggesting a hitherto unknown influence of this bacterial phylum on man-made polymer degradation.
ESTHER : Zhang_2022_Front.Microbiol_12_803896
PubMedSearch : Zhang_2022_Front.Microbiol_12_803896
PubMedID: 35069509
Gene_locus related to this paper: flutr-f2ie04 , 9flao-a0a0c1f4u8 , 9flao-kjj39608 , 9flao-a0a330mq60

Title : Exploring the global metagenome for plastic-degrading enzymes - Perez-Garcia_2021_Methods.Enzymol_648_137
Author(s) : Perez-Garcia P , Danso D , Zhang H , Chow J , Streit WR
Ref : Methods Enzymol , 648 :137 , 2021
Abstract : Plastics are extensively used in our daily life, but they are also a major pollutant of our biosphere accumulating in both the ocean and the land. In the recent years, few enzymes and microorganisms have been discovered with the ability to degrade even fewer synthetic polymers. Nevertheless, more active species and enzymes need to be discovered and described in order to gain more knowledge about protein adaptation to the degradation of not-naturally-occurring polymers. Within this chapter, we focus on efficient methods to identify novel polyethylene terephthalate-degrading enzymes (PETases) from culturable and non-culturable microorganisms by a combination of sequence- and function-based screening. This protocol can be adapted to discover other plastic hydrolases and in general for other enzymes, for which not many characterized specimens are yet available.
ESTHER : Perez-Garcia_2021_Methods.Enzymol_648_137
PubMedSearch : Perez-Garcia_2021_Methods.Enzymol_648_137
PubMedID: 33579401

Title : Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation - Danso_2019_Appl.Environ.Microbiol_85_e01095
Author(s) : Danso D , Chow J , Streit WR
Ref : Applied Environmental Microbiology , 85 : , 2019
Abstract : Plastics are widely used in the global economy, and each year, at least 350 to 400 million tons are being produced. Due to poor recycling and low circular use, millions of tons accumulate annually in terrestrial or marine environments. Today it has become clear that plastic causes adverse effects in all ecosystems and that microplastics are of particular concern to our health. Therefore, recent microbial research has addressed the question of if and to what extent microorganisms can degrade plastics in the environment. This review summarizes current knowledge on microbial plastic degradation. Enzymes available act mainly on the high-molecular-weight polymers of polyethylene terephthalate (PET) and ester-based polyurethane (PUR). Unfortunately, the best PUR- and PET-active enzymes and microorganisms known still have moderate turnover rates. While many reports describing microbial communities degrading chemical additives have been published, no enzymes acting on the high-molecular-weight polymers polystyrene, polyamide, polyvinylchloride, polypropylene, ether-based polyurethane, and polyethylene are known. Together, these polymers comprise more than 80% of annual plastic production. Thus, further research is needed to significantly increase the diversity of enzymes and microorganisms acting on these polymers. This can be achieved by tapping into the global metagenomes of noncultivated microorganisms and dark matter proteins. Only then can novel biocatalysts and organisms be delivered that allow rapid degradation, recycling, or value-added use of the vast majority of most human-made polymers.
ESTHER : Danso_2019_Appl.Environ.Microbiol_85_e01095
PubMedSearch : Danso_2019_Appl.Environ.Microbiol_85_e01095
PubMedID: 31324632

Title : The Thaumarchaeon N. gargensis carries functional bioABD genes and has a promiscuous E. coli DeltabioH-complementing esterase EstN1 - Chow_2018_Sci.Rep_8_13823
Author(s) : Chow J , Danso D , Ferrer M , Streit WR
Ref : Sci Rep , 8 :13823 , 2018
Abstract : Biotin is an essential cofactor required for carboxylation and decarboxylation reactions in all domains of life. While biotin biosynthesis in most Bacteria and Eukarya is well studied, the complete pathway for this vitamer in Archaea is still not known. Detailed genome searches indicated the presence of possible bio gene clusters only in Methanococcales and Thaumarchaeota. Therefore, we analysed the functionality of the predicted genes bioA, bioB, bioD and bioF in the Thaumarchaeon Nitrososphaera gargensis Ga2.9 which are essential for the later steps of biotin synthesis. In complementation tests, the gene cluster-encoded N. gargensis bioABD genes except bioF restored growth of corresponding E. coli Rosetta-gami 2 (DE3) deletion mutants. To find out how biotin biosynthesis is initiated, we searched the genome for a possible bioH analogue encoding a pimeloyl-ACP-methylester carboxylesterase. The respective amino acid sequence of the ORF estN1 showed weak conserved domain similarity to this class of enzymes (e-value 3.70e(-42)). Remarkably, EstN1 is a promiscuous carboxylesterase that complements E. coli DeltabioH and Mesorhizobium loti DeltabioZ mutants for growth on biotin-free minimal medium. Additional 3D-structural models support the hypothesis that EstN1 is a BioH analogue. Thus, this is the first report providing experimental evidence that Archaea carry functional bio genes.
ESTHER : Chow_2018_Sci.Rep_8_13823
PubMedSearch : Chow_2018_Sci.Rep_8_13823
PubMedID: 30218044

Title : New insights into the function and global distribution of polyethylene terephthalate (PET) degrading bacteria and enzymes in marine and terrestrial metagenomes - Danso_2018_Appl.Environ.Microbiol_84_e2773
Author(s) : Danso D , Schmeisser C , Chow J , Zimmermann W , Wei R , Leggewie C , Li X , Hazen T , Streit WR
Ref : Applied Environmental Microbiology , 84 :e2773 , 2018
Abstract : Polyethylene terephthalate (PET) is one of the most important synthetic polymers used nowadays. Unfortunately, the polymers accumulate in nature and until now, no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly alpha/beta-hydrolases like cutinases and related enzymes (E.C. 3.1.-). Currently, only a small number of such enzymes are well characterized. Within this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 GB of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the IMG data base detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. Thereby, two novel and thermostable enzymes with high potential for downstream application were in part characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phylum of Actinobacteria, Proteobacteria and Bacteroidetes Within the Proteobacteria, the Beta-, Delta- and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum of the Bacteroidetes appear to be the main host of PET hydrolase genes rather than Actinobacteria or Proteobacteria as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in a sample site containing crude oil.IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although few PET hydrolases are already known it is still unknown how frequent they appear and which main bacterial phyla they are affiliated with. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed are occurring at very low frequencies in the environment. Further it was possible to link them to phyla which were previously unknown to harbor such enzymes. This work contributes novel knowledge to the phylogenetic relationship, the recent evolution and the global distribution of PET hydrolases. Finally, we describe biochemical traits of four novel PET hydrolases.
ESTHER : Danso_2018_Appl.Environ.Microbiol_84_e2773
PubMedSearch : Danso_2018_Appl.Environ.Microbiol_84_e2773
PubMedID: 29427431
Gene_locus related to this paper: 9burk-PET10 , 9burk-PET11 , 9gamm-a0a0d4l7e6 , 9alte-n6vy44 , 9zzzz-a0a0f9x315 , deiml-e8u721 , olean-r4ykl9 , vibga-a0a1z2siq1 , 9burk-a0a0g3bi90 , 9bact-c3ryl0 , 9actn-h6wx58 , idesa-peth , 9bact-g9by57 , acide-PBSA , morsp-lip1