Qiu F

References (4)

Title : Phytochemical constituents from Scutellaria baicalensis in soluble epoxide hydrolase inhibition: Kinetics and interaction mechanism merged with simulations - Liu_2019_Int.J.Biol.Macromol_133_1187
Author(s) : Liu ZB , Sun CP , Xu JX , Morisseau C , Hammock BD , Qiu F
Ref : Int J Biol Macromol , 133 :1187 , 2019
Abstract : In our search for soluble epoxide hydrolase (sEH) inhibitors from plants, we found that water extracts of Scutellaria baicalensis Georgi displayed significant inhibitory activity against sEH in vitro. Extracts of S. baicalensiswere separated, resulting in the isolation of thirty compounds (1-30), including six lignins (1-6), sixteen flavones (7-22), and five amides (23-27). Their structures were determined on the basis of(1)H and(13)C NMR and MS spectra. Compounds 1-6 were first reported in the genus Scutellaria. All the isolated compounds were assayed for their inhibitory activities against sEH. Compounds 25-27 showed significant inhibitory activities against sEH with IC50 values of 6.06+/-0.12, 7.83+/-0.52, and 6.32+/-0.31muM, respectively, and compounds 3-6, 12, 18, and 22 displayed moderate inhibitory activities against sEH with IC50 values from 20.82+/-0.78muM to 56.61+/-0.98muM. The inhibition kinetic analysis results indicated that compounds 25-27 were all uncompetitive. Molecular docking studies were performed to get insights into inhibition mechanisms of compounds 25-27 against sEH.
ESTHER : Liu_2019_Int.J.Biol.Macromol_133_1187
PubMedSearch : Liu_2019_Int.J.Biol.Macromol_133_1187
PubMedID: 30980876

Title : Metabolic profiles of corydaline in rats by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry - Chai_2017_Xenobiotica__1
Author(s) : Chai L , Donkor PO , Wang K , Sun Y , Oppong MB , Ding L , Qiu F
Ref : Xenobiotica , :1 , 2017
Abstract : Corydaline, an isoquinoline alkaloid obtained from the rhizomes of Corydalis yanhusuo, exhibits anti-acetylcholinesterase, anti-angiogenic, anti-allergic and gastric emptying activities. In this study, a rapid and reliable ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) method was developed and employed for the comprehensive study of the metabolites of corydaline in rats. Altogether, 43 metabolites were identified in the plasma (11), bile (9), urine (34) and feces (21) of rats after oral administration of corydaline at a dose of 4.5mg/kg. It was demonstrated that demethylation, hydroxylation, sulfation and glucuronidation were the major metabolic transformation pathways. Among these, two metabolites were identified as tetrahydropalmatine and isocorybulbine, and thirty-three (33) phase I and phase II products were inferred to be new metabolites arising from the in vivo metabolism of corydaline. Importantly, this research provides scientific and reliable support for full understanding of the metabolic profiles of corydaline and the results could help to elucidate its safety and efficacy.
ESTHER : Chai_2017_Xenobiotica__1
PubMedSearch : Chai_2017_Xenobiotica__1
PubMedID: 29235899

Title : Genome sequences of wild and domestic bactrian camels - Jirimutu_2012_Nat.Commun_3_1202
Author(s) : Jirimutu , Wang Z , Ding G , Chen G , Sun Y , Sun Z , Zhang H , Wang L , Hasi S , Zhang Y , Li J , Shi Y , Xu Z , He C , Yu S , Li S , Zhang W , Batmunkh M , Ts B , Narenbatu , Unierhu , Bat-Ireedui S , Gao H , Baysgalan B , Li Q , Jia Z , Turigenbayila , Subudenggerile , Narenmanduhu , Wang J , Pan L , Chen Y , Ganerdene Y , Dabxilt , Erdemt , Altansha , Altansukh , Liu T , Cao M , Aruuntsever , Bayart , Hosblig , He F , Zha-ti A , Zheng G , Qiu F , Zhao L , Zhao W , Liu B , Li C , Tang X , Guo C , Liu W , Ming L , Temuulen , Cui A , Li Y , Gao J , Wurentaodi , Niu S , Sun T , Zhai Z , Zhang M , Chen C , Baldan T , Bayaer T , Meng H
Ref : Nat Commun , 3 :1202 , 2012
Abstract : Bactrian camels serve as an important means of transportation in the cold desert regions of China and Mongolia. Here we present a 2.01 Gb draft genome sequence from both a wild and a domestic bactrian camel. We estimate the camel genome to be 2.38 Gb, containing 20,821 protein-coding genes. Our phylogenomics analysis reveals that camels shared common ancestors with other even-toed ungulates about 55-60 million years ago. Rapidly evolving genes in the camel lineage are significantly enriched in metabolic pathways, and these changes may underlie the insulin resistance typically observed in these animals. We estimate the genome-wide heterozygosity rates in both wild and domestic camels to be 1.0 x 10(-3). However, genomic regions with significantly lower heterozygosity are found in the domestic camel, and olfactory receptors are enriched in these regions. Our comparative genomics analyses may also shed light on the genetic basis of the camel's remarkable salt tolerance and unusual immune system.
ESTHER : Jirimutu_2012_Nat.Commun_3_1202
PubMedSearch : Jirimutu_2012_Nat.Commun_3_1202
PubMedID: 23149746
Gene_locus related to this paper: 9ceta-s9yik4 , 9ceta-s9yb99 , 9ceta-s9x0n3 , 9ceta-s9xqa3 , 9ceta-s9xi02 , camfr-s9wiw9 , camfr-s9x3r3 , camfr-s9xce1 , camfr-s9xcr2 , camfr-s9yuz0 , camfr-s9xlc8 , camfr-s9w5f6 , camfr-s9xmm4

Title : The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming - Nygaard_2011_Genome.Res_21_1339
Author(s) : Nygaard S , Zhang G , Schiott M , Li C , Wurm Y , Hu H , Zhou J , Ji L , Qiu F , Rasmussen M , Pan H , Hauser F , Krogh A , Grimmelikhuijzen CJ , Wang J , Boomsma JJ
Ref : Genome Res , 21 :1339 , 2011
Abstract : We present a high-quality (>100x depth) Illumina genome sequence of the leaf-cutting ant Acromyrmex echinatior, a model species for symbiosis and reproductive conflict studies. We compare this genome with three previously sequenced genomes of ants from different subfamilies and focus our analyses on aspects of the genome likely to be associated with known evolutionary changes. The first is the specialized fungal diet of A. echinatior, where we find gene loss in the ant's arginine synthesis pathway, loss of detoxification genes, and expansion of a group of peptidase proteins. One of these is a unique ant-derived contribution to the fecal fluid, which otherwise consists of "garden manuring" fungal enzymes that are unaffected by ant digestion. The second is multiple mating of queens and ejaculate competition, which may be associated with a greatly expanded nardilysin-like peptidase gene family. The third is sex determination, where we could identify only a single homolog of the feminizer gene. As other ants and the honeybee have duplications of this gene, we hypothesize that this may partly explain the frequent production of diploid male larvae in A. echinatior. The fourth is the evolution of eusociality, where we find a highly conserved ant-specific profile of neuropeptide genes that may be related to caste determination. These first analyses of the A. echinatior genome indicate that considerable genetic changes are likely to have accompanied the transition from hunter-gathering to agricultural food production 50 million years ago, and the transition from single to multiple queen mating 10 million years ago.
ESTHER : Nygaard_2011_Genome.Res_21_1339
PubMedSearch : Nygaard_2011_Genome.Res_21_1339
PubMedID: 21719571
Gene_locus related to this paper: acrec-f4we58 , acrec-f4wfr0 , acrec-f4wwr9 , acrec-f4x396 , acrec-f4wlq1 , acrec-f4wk97 , acrec-f4wdb2 , acrec-f4wdb3 , acrec-f4x1t2