Rey MW

References (2)

Title : Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris - Berka_2011_Nat.Biotechnol_29_922
Author(s) : Berka RM , Grigoriev IV , Otillar R , Salamov A , Grimwood J , Reid I , Ishmael N , John T , Darmond C , Moisan MC , Henrissat B , Coutinho PM , Lombard V , Natvig DO , Lindquist E , Schmutz J , Lucas S , Harris P , Powlowski J , Bellemare A , Taylor D , Butler G , de Vries RP , Allijn IE , van den Brink J , Ushinsky S , Storms R , Powell AJ , Paulsen IT , Elbourne LD , Baker SE , Magnuson J , Laboissiere S , Clutterbuck AJ , Martinez D , Wogulis M , de Leon AL , Rey MW , Tsang A
Ref : Nat Biotechnol , 29 :922 , 2011
Abstract : Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.
ESTHER : Berka_2011_Nat.Biotechnol_29_922
PubMedSearch : Berka_2011_Nat.Biotechnol_29_922
PubMedID: 21964414
Gene_locus related to this paper: thiha-cip2 , thite-g2r8b5 , thite-g2rcm8 , thite-g2r192 , thiha-g2qdy2 , thiha-g2qh51 , thite-g2rae6 , thite-g2r5h0 , thiha-g2qj94 , thiha-g2qnb2 , thite-g2rg14 , myctt-g2q973 , thite-g2qtu3 , myctt-g2qpr0 , thite-g2rhm0 , 9pezi-a0a3s4b069 , myctt-g2qmb4 , thett-g2qur2

Title : Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species - Rey_2004_Genome.Biol_5_R77
Author(s) : Rey MW , Ramaiya P , Nelson BA , Brody-Karpin SD , Zaretsky EJ , Tang M , Lopez de Leon A , Xiang H , Gusti V , Clausen IG , Olsen PB , Rasmussen MD , Andersen JT , Jorgensen PL , Larsen TS , Sorokin A , Bolotin A , Lapidus A , Galleron N , Ehrlich SD , Berka RM
Ref : Genome Biol , 5 :R77 , 2004
Abstract : BACKGROUND: Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature.
RESULTS: We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs.
CONCLUSIONS: Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae.
ESTHER : Rey_2004_Genome.Biol_5_R77
PubMedSearch : Rey_2004_Genome.Biol_5_R77
PubMedID: 15461803
Gene_locus related to this paper: bacld-q62u01 , bacld-Q65L73 , bacld-q62yz9 , bacld-q65dz7 , bacld-q65e02 , bacld-q65eq1 , bacld-q65fc5 , bacld-q65fg2 , bacld-q65fg3 , bacld-q65fk9 , bacld-q65ft3 , bacld-q65fw3 , bacld-q65fy2 , bacld-q65gx2 , bacld-q65hn8 , bacld-q65hr4 , bacld-q65if8 , bacld-q65iy4 , bacld-q65j72 , bacld-q65le0 , bacld-q65ly2 , bacld-q65m29 , bacld-q65mg8 , bacld-q65my7 , bacld-q65n63 , bacld-q65nk2 , bacld-q65nm7 , bacli-LICC