Grigoriev IV

References (85)

Title : Identification and recombinant expression of a cutinase from Papiliotrema laurentii that hydrolyzes natural and synthetic polyesters - Roman_2024_Appl.Environ.Microbiol__e0169423
Author(s) : Roman VA , Crable BR , Wagner DN , Gryganskyi A , Zelik S , Cummings L , Hung CS , Nadeau LJ , Schratz L , Haridas S , Pangilinan J , Lipzen A , Na H , Yan M , Ng V , Grigoriev IV , Barlow D , Biffinger J , Kelley-Loughnane N , Crookes-Goodson WJ , Stamps B , Varaljay VA
Ref : Applied Environmental Microbiology , :e0169423 , 2024
Abstract : Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials. Here, we describe the isolation and characterization of the Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester polyurethane, in agar plates. To test whether the fungal factor involved in this clearing was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, which was excised and subjected to peptide sequencing. Homology searches using the peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays similarities to serine esterase and cutinase family of proteins. Biochemical assays using recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the Plcut1 in culture supernatants using a custom antibody that specifically recognizes this protein. The work shown here supports a major role for the Plcut1 in the fungal degradation of natural polyesters and xenobiotic polymer surfaces.IMPORTANCEFungi play a vital role in the execution of a broad range of biological processes that drive ecosystem function through production of a diverse arsenal of enzymes. However, the universal reactivity of these enzymes is a current problem for the built environment and the undesired degradation of polymeric materials in protective coatings. Here, we report the identification and characterization of a hydrolase from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase capable of hydrolyzing soluble esters as well as ester-based compounds forming solid surface coatings. These findings indicate that this fungus plays a significant role in biodeterioration through the production of a cutinase adept at degrading ester-based polymers, some of which form the backbone of protective surface coatings. The work shown here provides insights into the mechanisms employed by fungi to degrade xenobiotic polymers.
ESTHER : Roman_2024_Appl.Environ.Microbiol__e0169423
PubMedSearch : Roman_2024_Appl.Environ.Microbiol__e0169423
PubMedID: 38624219
Gene_locus related to this paper: papla-Plcut1

Title : Salinity tolerance mechanisms of an Arctic Pelagophyte using comparative transcriptomic and gene expression analysis - Freyria_2022_Commun.Biol_5_500
Author(s) : Freyria NJ , Kuo A , Chovatia M , Johnson J , Lipzen A , Barry KW , Grigoriev IV , Lovejoy C
Ref : Commun Biol , 5 :500 , 2022
Abstract : Little is known at the transcriptional level about microbial eukaryotic adaptations to short-term salinity change. Arctic microalgae are exposed to low salinity due to sea-ice melt and higher salinity with brine channel formation during freeze-up. Here, we investigate the transcriptional response of an ice-associated microalgae over salinities from 45 to 8. Our results show a bracketed response of differential gene expression when the cultures were exposed to progressively decreasing salinity. Key genes associated with salinity changes were involved in specific metabolic pathways, transcription factors and regulators, protein kinases, carbohydrate active enzymes, and inorganic ion transporters. The pelagophyte seemed to use a strategy involving overexpression of Na(+)-H(+) antiporters and Na(+) -Pi symporters as salinity decreases, but the K(+) channel complex at higher salinities. Specific adaptation to cold saline arctic conditions was seen with differential expression of several antifreeze proteins, an ice-binding protein and an acyl-esterase involved in cold adaptation.
ESTHER : Freyria_2022_Commun.Biol_5_500
PubMedSearch : Freyria_2022_Commun.Biol_5_500
PubMedID: 35614207

Title : Genome Sequence of the Chestnut Blight Fungus Cryphonectria parasitica EP155: A Fundamental Resource for an Archetypical Invasive Plant Pathogen - Crouch_2020_Phytopathology_110_1180
Author(s) : Crouch JA , Dawe A , Aerts A , Barry K , Churchill ACL , Grimwood J , Hillman BI , Milgroom MG , Pangilinan J , Smith M , Salamov A , Schmutz J , Yadav JS , Grigoriev IV , Nuss DL
Ref : Phytopathology , 110 :1180 , 2020
Abstract : Cryphonectria parasitica is the causal agent of chestnut blight, a fungal disease that almost entirely eliminated mature American chestnut from North America over a 50-year period. Here, we formally report the genome of C. parasitica EP155 using a Sanger shotgun sequencing approach. After finishing and integration with simple-sequence repeat markers, the assembly was 43.8 Mb in 26 scaffolds (L(50) = 5; N(50) = 4.0Mb). Eight chromosomes are predicted: five scaffolds have two telomeres and six scaffolds have one telomere sequence. In total, 11,609 gene models were predicted, of which 85% show similarities to other proteins. This genome resource has already increased the utility of a fundamental plant pathogen experimental system through new understanding of the fungal vegetative incompatibility system, with significant implications for enhancing mycovirus-based biological control.
ESTHER : Crouch_2020_Phytopathology_110_1180
PubMedSearch : Crouch_2020_Phytopathology_110_1180
PubMedID: 32207662
Gene_locus related to this paper: crypa-a0a9p5chw8

Title : Genome expansion by allopolyploidization in the fungal strain Coniochaeta 2T2.1 and its exceptional lignocellulolytic machinery - Mondo_2019_Biotechnol.Biofuels_12_229
Author(s) : Mondo SJ , Jimenez DJ , Hector RE , Lipzen A , Yan M , LaButti K , Barry K , van Elsas JD , Grigoriev IV , Nichols NN
Ref : Biotechnol Biofuels , 12 :229 , 2019
Abstract : BACKGROUND: Particular species of the genus Coniochaeta (Sordariomycetes) exhibit great potential for bioabatement of furanic compounds and have been identified as an underexplored source of novel lignocellulolytic enzymes, especially Coniochaeta ligniaria. However, there is a lack of information about their genomic features and metabolic capabilities. Here, we report the first in-depth genome/transcriptome survey of a Coniochaeta species (strain 2T2.1). RESULTS: The genome of Coniochaeta sp. strain 2T2.1 has a size of 74.53 Mbp and contains 24,735 protein-encoding genes. Interestingly, we detected a genome expansion event, resulting ~ 98% of the assembly being duplicated with 91.9% average nucleotide identity between the duplicated regions. The lack of gene loss, as well as the high divergence and strong genome-wide signatures of purifying selection between copies indicates that this is likely a recent duplication, which arose through hybridization between two related Coniochaeta-like species (allopolyploidization). Phylogenomic analysis revealed that 2T2.1 is related Coniochaeta sp. PMI546 and Lecythophora sp. AK0013, which both occur endophytically. Based on carbohydrate-active enzyme (CAZy) annotation, we observed that even after in silico removal of its duplicated content, the 2T2.1 genome contains exceptional lignocellulolytic machinery. Moreover, transcriptomic data reveal the overexpression of proteins affiliated to CAZy families GH11, GH10 (endoxylanases), CE5, CE1 (xylan esterases), GH62, GH51 (alpha-l-arabinofuranosidases), GH12, GH7 (cellulases), and AA9 (lytic polysaccharide monoxygenases) when the fungus was grown on wheat straw compared with glucose as the sole carbon source. CONCLUSIONS: We provide data that suggest that a recent hybridization between the genomes of related species may have given rise to Coniochaeta sp. 2T2.1. Moreover, our results reveal that the degradation of arabinoxylan, xyloglucan and cellulose are key metabolic processes in strain 2T2.1 growing on wheat straw. Different genes for key lignocellulolytic enzymes were identified, which can be starting points for production, characterization and/or supplementation of enzyme cocktails used in saccharification of agricultural residues. Our findings represent first steps that enable a better understanding of the reticulate evolution and "eco-enzymology" of lignocellulolytic Coniochaeta species.
ESTHER : Mondo_2019_Biotechnol.Biofuels_12_229
PubMedSearch : Mondo_2019_Biotechnol.Biofuels_12_229
PubMedID: 31572496
Gene_locus related to this paper: 9pezi-a0a5n5p0y9 , 9pezi-a0a5n5pg71 , 9pezi-a0a5n5ld08

Title : Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613 - Park_2019_Appl.Microbiol.Biotechnol_103_8145
Author(s) : Park H , Min B , Jang Y , Kim J , Lipzen A , Sharma A , Andreopoulos B , Johnson J , Riley R , Spatafora JW , Henrissat B , Kim KH , Grigoriev IV , Kim JJ , Choi IG
Ref : Applied Microbiology & Biotechnology , 103 :8145 , 2019
Abstract : The environmental accumulation of polycyclic aromatic hydrocarbons (PAHs) is of great concern due to potential carcinogenic and mutagenic risks, as well as their resistance to remediation. While many fungi have been reported to break down PAHs in environments, the details of gene-based metabolic pathways are not yet comprehensively understood. Specifically, the genome-scale transcriptional responses of fungal PAH degradation have rarely been reported. In this study, we report the genomic and transcriptomic basis of PAH bioremediation by a potent fungal degrader, Dentipellis sp. KUC8613. The genome size of this fungus was 36.71 Mbp long encoding 14,320 putative protein-coding genes. The strain efficiently removed more than 90% of 100 mg/l concentration of PAHs within 10 days. The genomic and transcriptomic analysis of this white rot fungus highlights that the strain primarily utilized non-ligninolytic enzymes to remove various PAHs, rather than typical ligninolytic enzymes known for playing important roles in PAH degradation. PAH removal by non-ligninolytic enzymes was initiated by both different PAH-specific and common upregulation of P450s, followed by downstream PAH-transforming enzymes such as epoxide hydrolases, dehydrogenases, FAD-dependent monooxygenases, dioxygenases, and glycosyl- or glutathione transferases. Among the various PAHs, phenanthrene induced a more dynamic transcriptomic response possibly due to its greater cytotoxicity, leading to highly upregulated genes involved in the translocation of PAHs, a defense system against reactive oxygen species, and ATP synthesis. Our genomic and transcriptomic data provide a foundation of understanding regarding the mycoremediation of PAHs and the application of this strain for polluted environments.
ESTHER : Park_2019_Appl.Microbiol.Biotechnol_103_8145
PubMedSearch : Park_2019_Appl.Microbiol.Biotechnol_103_8145
PubMedID: 31482283
Gene_locus related to this paper: 9agam-a0a5b1qnb8 , 9agam-a0a5b1qwq3 , 9agam-a0a5b1qh04 , 9agam-a0a5b1qyk1 , 9agam-a0a5b1qmi3 , 9agam-a0a5b1qi91 , 9agam-a0a5b1qhi2

Title : Megaphylogeny resolves global patterns of mushroom evolution - Varga_2019_Nat.Ecol.Evol_3_668
Author(s) : Varga T , Krizsan K , Foldi C , Dima B , Sanchez-Garcia M , Sanchez-Ramirez S , Szollosi GJ , Szarkandi JG , Papp V , Albert L , Andreopoulos W , Angelini C , Antonin V , Barry KW , Bougher NL , Buchanan P , Buyck B , Bense V , Catcheside P , Chovatia M , Cooper J , Damon W , Desjardin D , Finy P , Geml J , Haridas S , Hughes K , Justo A , Karasinski D , Kautmanova I , Kiss B , Kocsube S , Kotiranta H , LaButti KM , Lechner BE , Liimatainen K , Lipzen A , Lukacs Z , Mihaltcheva S , Morgado LN , Niskanen T , Noordeloos ME , Ohm RA , Ortiz-Santana B , Ovrebo C , Racz N , Riley R , Savchenko A , Shiryaev A , Soop K , Spirin V , Szebenyi C , Tomsovsky M , Tulloss RE , Uehling J , Grigoriev IV , Vagvolgyi C , Papp T , Martin FM , Miettinen O , Hibbett DS , Nagy LG
Ref : Nat Ecol Evol , 3 :668 , 2019
Abstract : Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of any group of fungi. They have radiated into most niches and fulfil diverse roles in the ecosystem, including wood decomposers, pathogens or mycorrhizal mutualists. Despite the importance of mushroom-forming fungi, large-scale patterns of their evolutionary history are poorly known, in part due to the lack of a comprehensive and dated molecular phylogeny. Here, using multigene and genome-based data, we assemble a 5,284-species phylogenetic tree and infer ages and broad patterns of speciation/extinction and morphological innovation in mushroom-forming fungi. Agaricomycetes started a rapid class-wide radiation in the Jurassic, coinciding with the spread of (sub)tropical coniferous forests and a warming climate. A possible mass extinction, several clade-specific adaptive radiations and morphological diversification of fruiting bodies followed during the Cretaceous and the Paleogene, convergently giving rise to the classic toadstool morphology, with a cap, stalk and gills (pileate-stipitate morphology). This morphology is associated with increased rates of lineage diversification, suggesting it represents a key innovation in the evolution of mushroom-forming fungi. The increase in mushroom diversity started during the Mesozoic-Cenozoic radiation event, an era of humid climate when terrestrial communities dominated by gymnosperms and reptiles were also expanding.
ESTHER : Varga_2019_Nat.Ecol.Evol_3_668
PubMedSearch : Varga_2019_Nat.Ecol.Evol_3_668
PubMedID: 30886374
Gene_locus related to this paper: 9aphy-a0a5c3ppg9 , 9aphy-a0a371d1b5 , 9agam-a0a5c3ngv5 , 9aphy-a0a5c3nsu3 , 9agar-a0a4s8mrh7 , 9agar-a0a4s8mil0

Title : Genomic and Genetic Insights Into a Cosmopolitan Fungus, Paecilomyces variotii (Eurotiales) - Urquhart_2018_Front.Microbiol_9_3058
Author(s) : Urquhart AS , Mondo SJ , Makela MR , Hane JK , Wiebenga A , He G , Mihaltcheva S , Pangilinan J , Lipzen A , Barry K , de Vries RP , Grigoriev IV , Idnurm A
Ref : Front Microbiol , 9 :3058 , 2018
Abstract : Species in the genus Paecilomyces, a member of the fungal order Eurotiales, are ubiquitous in nature and impact a variety of human endeavors. Here, the biology of one common species, Paecilomyces variotii, was explored using genomics and functional genetics. Sequencing the genome of two isolates revealed key genome and gene features in this species. A striking feature of the genome was the two-part nature, featuring large stretches of DNA with normal GC content separated by AT-rich regions, a hallmark of many plant-pathogenic fungal genomes. These AT-rich regions appeared to have been mutated by repeat-induced point (RIP) mutations. We developed methods for genetic transformation of P. variotii, including forward and reverse genetics as well as crossing techniques. Using transformation and crossing, RIP activity was identified, demonstrating for the first time that RIP is an active process within the order Eurotiales. A consequence of RIP is likely reflected by a reduction in numbers of genes within gene families, such as in cell wall degradation, and reflected by growth limitations on P. variotii on diverse carbon sources. Furthermore, using these transformation tools we characterized a conserved protein containing a domain of unknown function (DUF1212) and discovered it is involved in pigmentation.
ESTHER : Urquhart_2018_Front.Microbiol_9_3058
PubMedSearch : Urquhart_2018_Front.Microbiol_9_3058
PubMedID: 30619145
Gene_locus related to this paper: byssp-a0a443i770 , byssp-a0a443i5x3 , byssp-vdta1

Title : Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi - Knapp_2018_Sci.Rep_8_6321
Author(s) : Knapp DG , Nemeth JB , Barry K , Hainaut M , Henrissat B , Johnson J , Kuo A , Lim JHP , Lipzen A , Nolan M , Ohm RA , Tamas L , Grigoriev IV , Spatafora JW , Nagy LG , Kovacs GM
Ref : Sci Rep , 8 :6321 , 2018
Abstract : Dark septate endophytes (DSE) are a form-group of root endophytic fungi with elusive functions. Here, the genomes of two common DSE of semiarid areas, Cadophora sp. and Periconia macrospinosa were sequenced and analyzed with another 32 ascomycetes of different lifestyles. Cadophora sp. (Helotiales) and P. macrospinosa (Pleosporales) have genomes of 70.46 Mb and 54.99 Mb with 22,766 and 18,750 gene models, respectively. The majority of DSE-specific protein clusters lack functional annotation with no similarity to characterized proteins, implying that they have evolved unique genetic innovations. Both DSE possess an expanded number of carbohydrate active enzymes (CAZymes), including plant cell wall degrading enzymes (PCWDEs). Those were similar in three other DSE, and contributed a signal for the separation of root endophytes in principal component analyses of CAZymes, indicating shared genomic traits of DSE fungi. Number of secreted proteases and lipases, aquaporins, and genes linked to melanin synthesis were also relatively high in our fungi. In spite of certain similarities between our two DSE, we observed low levels of convergence in their gene family evolution. This suggests that, despite originating from the same habitat, these two fungi evolved along different evolutionary trajectories and display considerable functional differences within the endophytic lifestyle.
ESTHER : Knapp_2018_Sci.Rep_8_6321
PubMedSearch : Knapp_2018_Sci.Rep_8_6321
PubMedID: 29679020
Gene_locus related to this paper: 9pleo-a0a2v1dn29 , 9helo-a0a2v1c5l1 , 9pleo-a0a2v1dti3 , 9helo-a0a2v1bts1 , 9helo-a0a2v1cbe5 , 9pleo-a0a2v1cxz2 , 9pleo-a0a2v1d1n3 , 9pleo-a0a2v1db80 , 9pleo-a0a2v1ddg5 , 9pleo-a0a2v1dij1 , 9pleo-a0a2v1dp20 , 9pleo-a0a2v1e6x2 , 9pleo-a0a2v1ee64 , 9helo-a0a2v1cbn2 , 9helo-a0a2v1b581 , 9pleo-a0a2v1e5g2 , corcc-a0a2t2nt04 , 9helo-a0a2v1buk5

Title : The obligate alkalophilic soda-lake fungus Sodiomyces alkalinus has shifted to a protein diet - Grum-Grzhimaylo_2018_Mol.Ecol_27_4808
Author(s) : Grum-Grzhimaylo AA , Falkoski DL , van den Heuvel J , Valero-Jimenez CA , Min B , Choi IG , Lipzen A , Daum CG , Aanen DK , Tsang A , Henrissat B , Bilanenko EN , de Vries RP , van Kan JAL , Grigoriev IV , Debets AJM
Ref : Mol Ecol , 27 :4808 , 2018
Abstract : Sodiomyces alkalinus is one of the very few alkalophilic fungi, adapted to grow optimally at high pH. It is widely distributed at the plant-deprived edges of extremely alkaline lakes and locally abundant. We sequenced the genome of S. alkalinus and reconstructed evolution of catabolic enzymes, using a phylogenomic comparison. We found that the genome of S. alkalinus is larger, but its predicted proteome is smaller and heavily depleted of both plant-degrading enzymes and proteinases, when compared to its closest plant-pathogenic relatives. Interestingly, despite overall losses, S. alkalinus has retained many proteinases families and acquired bacterial cell wall-degrading enzymes, some of them via horizontal gene transfer from bacteria. This fungus has very potent proteolytic activity at high pH values, but slowly induced low activity of cellulases and hemicellulases. Our experimental and in silico data suggest that plant biomass, a common food source for most fungi, is not a preferred substrate for S. alkalinus in its natural environment. We conclude that the fungus has abandoned the ancestral plant-based diet and has become specialized in a more protein-rich food, abundantly available in soda lakes in the form of prokaryotes and small crustaceans.
ESTHER : Grum-Grzhimaylo_2018_Mol.Ecol_27_4808
PubMedSearch : Grum-Grzhimaylo_2018_Mol.Ecol_27_4808
PubMedID: 30368956
Gene_locus related to this paper: 9pezi-a0a3n2q0e7 , 9pezi-a0a3n2pu70 , 9pezi-a0a3n2puy7

Title : Coniella lustricola, a new species from submerged detritus - Raudabaugh_2018_Mycol.Prog_17_191
Author(s) : Raudabaugh DB , Iturriaga T , Carver A , Mondo S , Pangilinan J , Lipzen A , He G , Amirebrahimi M , Grigoriev IV , Miller AN
Ref : Mycol Prog , 17 :191 , 2018
Abstract : The draft genome, morphological description, and phylogenetic placement of Coniella lustricola sp. nov.(Schizoparmeaceae) are provided. The species was isolated from submerged detritus in a fen at Black Moshannon State Park, Pennsylvania, USA and differs from all other Coniella species by having ellipsoid to fusoid, inequilateral conidia that are rounded on one end and truncate or obtuse on the other end, with a length to width ratio of 2.8. The draft genome is 36.56 Mbp and consists of 870 contigs on 634 scaffolds (L50 = 0.14 Mb, N50 = 76 scaffolds), with 0.5% of the scaffold length in gaps. It contains 11,317 predicted gene models,including predicted genes for cellulose, hemicellulose, and xylan degradation, as well as predicted regions encoding for amylase, laccase, and tannase enzymes. Many members of the Schizoparmeaceae are plant pathogens of agricultural crops. This draft genome represents the first sequenced Coniella genome and will be a valuable tool for comparisons among pathogenic Coniella species.
ESTHER : Raudabaugh_2018_Mycol.Prog_17_191
PubMedSearch : Raudabaugh_2018_Mycol.Prog_17_191
Gene_locus related to this paper: 9pezi-a0a2t3a098 , 9pezi-a0a2t2zy46 , 9pezi-a0a2t3akb4 , 9pezi-a0a2t3a2p2

Title : Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists - Martino_2018_New.Phytol_217_1213
Author(s) : Martino E , Morin E , Grelet GA , Kuo A , Kohler A , Daghino S , Barry KW , Cichocki N , Clum A , Dockter RB , Hainaut M , Kuo RC , LaButti K , Lindahl BD , Lindquist EA , Lipzen A , Khouja HR , Magnuson J , Murat C , Ohm RA , Singer SW , Spatafora JW , Wang M , Veneault-Fourrey C , Henrissat B , Grigoriev IV , Martin FM , Perotto S
Ref : New Phytol , 217 :1213 , 2018
Abstract : Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes.
ESTHER : Martino_2018_New.Phytol_217_1213
PubMedSearch : Martino_2018_New.Phytol_217_1213
PubMedID: 29315638
Gene_locus related to this paper: amore-a0a2t3axk4 , amore-a0a2t3avs4 , amore-a0a2t3ay04 , amore-a0a2t3aph0

Title : Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors - Lopez_2018_Front.Microbiol_9_276
Author(s) : Lopez D , Ribeiro S , Label P , Fumanal B , Venisse JS , Kohler A , de Oliveira RR , LaButti K , Lipzen A , Lail K , Bauer D , Ohm RA , Barry KW , Spatafora J , Grigoriev IV , Martin FM , Pujade-Renaud V
Ref : Front Microbiol , 9 :276 , 2018
Abstract : Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector-based classification was found to be highly consistent with the phylogenomic trees. Identification of lineage-specific effectors is a key step toward understanding C. cassiicola virulence and host specialization mechanisms.
ESTHER : Lopez_2018_Front.Microbiol_9_276
PubMedSearch : Lopez_2018_Front.Microbiol_9_276
PubMedID: 29551995
Gene_locus related to this paper: corcc-a0a2t2nss3 , corcc-a0a2t2n5c6 , corcc-a0a2t2n3a1 , corcc-a0a2t2p617 , corcc-a0a2t2nt04 , corcc-a0a2t2n262

Title : Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species - Kjaerbolling_2018_Proc.Natl.Acad.Sci.U.S.A_115_E753
Author(s) : Kjaerbolling I , Vesth TC , Frisvad JC , Nybo JL , Theobald S , Kuo A , Bowyer P , Matsuda Y , Mondo S , Lyhne EK , Kogle ME , Clum A , Lipzen A , Salamov A , Ngan CY , Daum C , Chiniquy J , Barry K , LaButti K , Haridas S , Simmons BA , Magnuson JK , Mortensen UH , Larsen TO , Grigoriev IV , Baker SE , Andersen MR
Ref : Proc Natl Acad Sci U S A , 115 :E753 , 2018
Abstract : The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories, model organisms, and human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus, and A. steynii) have been whole-genome PacBio sequenced to provide genetic references in three Aspergillus sections. A. taichungensis and A. candidus also were sequenced for SM elucidation. Thirteen Aspergillus genomes were analyzed with comparative genomics to determine phylogeny and genetic diversity, showing that each presented genome contains 15-27% genes not found in other sequenced Aspergilli. In particular, A. novofumigatus was compared with the pathogenic species A. fumigatus This suggests that A. novofumigatus can produce most of the same allergens, virulence, and pathogenicity factors as A. fumigatus, suggesting that A. novofumigatus could be as pathogenic as A. fumigatus Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences, and predictive algorithms. We thus identify putative SM clusters for aflatoxin, chlorflavonin, and ochrindol in A. ochraceoroseus, A. campestris, and A. steynii, respectively, and novofumigatonin, ent-cycloechinulin, and epi-aszonalenins in A. novofumigatus Our study delivers six fungal genomes, showing the large diversity found in the Aspergillus genus; highlights the potential for discovery of beneficial or harmful SMs; and supports reports of A. novofumigatus pathogenicity. It also shows how biological, biochemical, and genomic information can be combined to identify genes involved in the biosynthesis of specific SMs.
ESTHER : Kjaerbolling_2018_Proc.Natl.Acad.Sci.U.S.A_115_E753
PubMedSearch : Kjaerbolling_2018_Proc.Natl.Acad.Sci.U.S.A_115_E753
PubMedID: 29317534
Gene_locus related to this paper: 9euro-a0a0f8xhh7 , 9euro-a0a2t5ll04 , aspn1-nvfd

Title : Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle - Murat_2018_Nat.Ecol.Evol_2_1956
Author(s) : Murat C , Payen T , Noel B , Kuo A , Morin E , Chen J , Kohler A , Krizsan K , Balestrini R , Da Silva C , Montanini B , Hainaut M , Levati E , Barry KW , Belfiori B , Cichocki N , Clum A , Dockter RB , Fauchery L , Guy J , Iotti M , Le Tacon F , Lindquist EA , Lipzen A , Malagnac F , Mello A , Molinier V , Miyauchi S , Poulain J , Riccioni C , Rubini A , Sitrit Y , Splivallo R , Traeger S , Wang M , Zifcakova L , Wipf D , Zambonelli A , Paolocci F , Nowrousian M , Ottonello S , Baldrian P , Spatafora JW , Henrissat B , Nagy LG , Aury JM , Wincker P , Grigoriev IV , Bonfante P , Martin FM
Ref : Nat Ecol Evol , 2 :1956 , 2018
Abstract : Tuberaceae is one of the most diverse lineages of symbiotic truffle-forming fungi. To understand the molecular underpinning of the ectomycorrhizal truffle lifestyle, we compared the genomes of Piedmont white truffle (Tuber magnatum), Perigord black truffle (Tuber melanosporum), Burgundy truffle (Tuber aestivum), pig truffle (Choiromyces venosus) and desert truffle (Terfezia boudieri) to saprotrophic Pezizomycetes. Reconstructed gene duplication/loss histories along a time-calibrated phylogeny of Ascomycetes revealed that Tuberaceae-specific traits may be related to a higher gene diversification rate. Genomic features in Tuber species appear to be very similar, with high transposon content, few genes coding lignocellulose-degrading enzymes, a substantial set of lineage-specific fruiting-body-upregulated genes and high expression of genes involved in volatile organic compound metabolism. Developmental and metabolic pathways expressed in ectomycorrhizae and fruiting bodies of T. magnatum and T. melanosporum are unexpectedly very similar, owing to the fact that they diverged ~100 Ma. Volatile organic compounds from pungent truffle odours are not the products of Tuber-specific gene innovations, but rely on the differential expression of an existing gene repertoire. These genomic resources will help to address fundamental questions in the evolution of the truffle lifestyle and the ecology of fungi that have been praised as food delicacies for centuries.
ESTHER : Murat_2018_Nat.Ecol.Evol_2_1956
PubMedSearch : Murat_2018_Nat.Ecol.Evol_2_1956
PubMedID: 30420746
Gene_locus related to this paper: 9pezi-a0a3n4l4q5 , 9pezi-a0a3n4lpg7

Title : High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis - Chen_2018_New.Phytol_220_1161
Author(s) : Chen ECH , Morin E , Beaudet D , Noel J , Yildirir G , Ndikumana S , Charron P , St-Onge C , Giorgi J , Kruger M , Marton T , Ropars J , Grigoriev IV , Hainaut M , Henrissat B , Roux C , Martin F , Corradi N
Ref : New Phytol , 220 :1161 , 2018
Abstract : Arbuscular mycorrhizal fungi (AMF) are known to improve plant fitness through the establishment of mycorrhizal symbioses. Genetic and phenotypic variations among closely related AMF isolates can significantly affect plant growth, but the genomic changes underlying this variability are unclear. To address this issue, we improved the genome assembly and gene annotation of the model strain Rhizophagus irregularis DAOM197198, and compared its gene content with five isolates of R. irregularis sampled in the same field. All isolates harbor striking genome variations, with large numbers of isolate-specific genes, gene family expansions, and evidence of interisolate genetic exchange. The observed variability affects all gene ontology terms and PFAM protein domains, as well as putative mycorrhiza-induced small secreted effector-like proteins and other symbiosis differentially expressed genes. High variability is also found in active transposable elements. Overall, these findings indicate a substantial divergence in the functioning capacity of isolates harvested from the same field, and thus their genetic potential for adaptation to biotic and abiotic changes. Our data also provide a first glimpse into the genome diversity that resides within natural populations of these symbionts, and open avenues for future analyses of plant-AMF interactions that link AMF genome variation with plant phenotype and fitness.
ESTHER : Chen_2018_New.Phytol_220_1161
PubMedSearch : Chen_2018_New.Phytol_220_1161
PubMedID: 29355972
Gene_locus related to this paper: rhiid-u9ttu4

Title : Genomics and Development of Lentinus tigrinus: A White-Rot Wood-Decaying Mushroom with Dimorphic Fruiting Bodies - Wu_2018_Genome.Biol.Evol_10_3250
Author(s) : Wu B , Xu Z , Knudson A , Carlson A , Chen N , Kovaka S , LaButti K , Lipzen A , Pennachio C , Riley R , Schakwitz W , Umezawa K , Ohm RA , Grigoriev IV , Nagy LG , Gibbons J , Hibbett D
Ref : Genome Biol Evol , 10 :3250 , 2018
Abstract : Lentinus tigrinus is a species of wood-decaying fungi (Polyporales) that has an agaricoid form (a gilled mushroom) and a secotioid form (puffball-like, with enclosed spore-bearing structures). Previous studies suggested that the secotioid form is conferred by a recessive allele of a single locus. We sequenced the genomes of one agaricoid (Aga) strain and one secotioid (Sec) strain (39.53-39.88 Mb, with 15,581-15,380 genes, respectively). We mated the Sec and Aga monokaryons, genotyped the progeny, and performed bulked segregant analysis (BSA). We also fruited three Sec/Sec and three Aga/Aga dikaryons, and sampled transcriptomes at four developmental stages. Using BSA, we identified 105 top candidate genes with nonsynonymous SNPs that cosegregate with fruiting body phenotype. Transcriptome analyses of Sec/Sec versus Aga/Aga dikaryons identified 907 differentially expressed genes (DEGs) along four developmental stages. On the basis of BSA and DEGs, the top 25 candidate genes related to fruiting body development span 1.5 Mb (4% of the genome), possibly on a single chromosome, although the precise locus that controls the secotioid phenotype is unresolved. The top candidates include genes encoding a cytochrome P450 and an ATP-dependent RNA helicase, which may play a role in development, based on studies in other fungi.
ESTHER : Wu_2018_Genome.Biol.Evol_10_3250
PubMedSearch : Wu_2018_Genome.Biol.Evol_10_3250
PubMedID: 30398645
Gene_locus related to this paper: 9aphy-a0a5c2t2q2

Title : Integrative visual omics of the white-rot fungus Polyporus brumalis exposes the biotechnological potential of its oxidative enzymes for delignifying raw plant biomass - Miyauchi_2018_Biotechnol.Biofuels_11_201
Author(s) : Miyauchi S , Rancon A , Drula E , Hage H , Chaduli D , Favel A , Grisel S , Henrissat B , Herpoel-Gimbert I , Ruiz-Duenas FJ , Chevret D , Hainaut M , Lin J , Wang M , Pangilinan J , Lipzen A , Lesage-Meessen L , Navarro D , Riley R , Grigoriev IV , Zhou S , Raouche S , Rosso MN
Ref : Biotechnol Biofuels , 11 :201 , 2018
Abstract : Background: Plant biomass conversion for green chemistry and bio-energy is a current challenge for a modern sustainable bioeconomy. The complex polyaromatic lignin polymers in raw biomass feedstocks (i.e., agriculture and forestry by-products) are major obstacles for biomass conversions. White-rot fungi are wood decayers able to degrade all polymers from lignocellulosic biomass including cellulose, hemicelluloses, and lignin. The white-rot fungus Polyporus brumalis efficiently breaks down lignin and is regarded as having a high potential for the initial treatment of plant biomass in its conversion to bio-energy. Here, we describe the extraordinary ability of P. brumalis for lignin degradation using its enzymatic arsenal to break down wheat straw, a lignocellulosic substrate that is considered as a biomass feedstock worldwide. Results: We performed integrative multi-omics analyses by combining data from the fungal genome, transcriptomes, and secretomes. We found that the fungus possessed an unexpectedly large set of genes coding for Class II peroxidases involved in lignin degradation (19 genes) and GMC oxidoreductases/dehydrogenases involved in generating the hydrogen peroxide required for lignin peroxidase activity and promoting redox cycling of the fungal enzymes involved in oxidative cleavage of lignocellulose polymers (36 genes). The examination of interrelated multi-omics patterns revealed that eleven Class II Peroxidases were secreted by the fungus during fermentation and eight of them where tightly co-regulated with redox cycling enzymatic partners. Conclusion: As a peculiar feature of P. brumalis, we observed gene family extension, up-regulation and secretion of an abundant set of versatile peroxidases and manganese peroxidases, compared with other Polyporales species. The orchestrated secretion of an abundant set of these delignifying enzymes and redox cycling enzymatic partners could contribute to the delignification capabilities of the fungus. Our findings highlight the diversity of wood decay mechanisms present in Polyporales and the potentiality of further exploring this taxonomic order for enzymatic functions of biotechnological interest.
ESTHER : Miyauchi_2018_Biotechnol.Biofuels_11_201
PubMedSearch : Miyauchi_2018_Biotechnol.Biofuels_11_201
PubMedID: 30061923
Gene_locus related to this paper: 9aphy-a0a371d1b5 , 9aphy-a0a371dju9

Title : Population genomics of picophytoplankton unveils novel chromosome hypervariability - Blanc-Mathieu_2017_Sci.Adv_3_e1700239
Author(s) : Blanc-Mathieu R , Krasovec M , Hebrard M , Yau S , Desgranges E , Martin J , Schackwitz W , Kuo A , Salin G , Donnadieu C , Desdevises Y , Sanchez-Ferandin S , Moreau H , Rivals E , Grigoriev IV , Grimsley N , Eyre-Walker A , Piganeau G
Ref : Sci Adv , 3 :e1700239 , 2017
Abstract : Tiny photosynthetic microorganisms that form the picoplankton (between 0.3 and 3 microm in diameter) are at the base of the food web in many marine ecosystems, and their adaptability to environmental change hinges on standing genetic variation. Although the genomic and phenotypic diversity of the bacterial component of the oceans has been intensively studied, little is known about the genomic and phenotypic diversity within each of the diverse eukaryotic species present. We report the level of genomic diversity in a natural population of Ostreococcus tauri (Chlorophyta, Mamiellophyceae), the smallest photosynthetic eukaryote. Contrary to the expectations of clonal evolution or cryptic species, the spectrum of genomic polymorphism observed suggests a large panmictic population (an effective population size of 1.2 x 10(7)) with pervasive evidence of sexual reproduction. De novo assemblies of low-coverage chromosomes reveal two large candidate mating-type loci with suppressed recombination, whose origin may pre-date the speciation events in the class Mamiellophyceae. This high genetic diversity is associated with large phenotypic differences between strains. Strikingly, resistance of isolates to large double-stranded DNA viruses, which abound in their natural environment, is positively correlated with the size of a single hypervariable chromosome, which contains 44 to 156 kb of strain-specific sequences. Our findings highlight the role of viruses in shaping genome diversity in marine picoeukaryotes.
ESTHER : Blanc-Mathieu_2017_Sci.Adv_3_e1700239
PubMedSearch : Blanc-Mathieu_2017_Sci.Adv_3_e1700239
PubMedID: 28695208
Gene_locus related to this paper: ostta-q01g03

Title : Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria - Sipos_2017_Nat.Ecol.Evol_1_1931
Author(s) : Sipos G , Prasanna AN , Walter MC , O'Connor E , Balint B , Krizsan K , Kiss B , Hess J , Varga T , Slot J , Riley R , Boka B , Rigling D , Barry K , Lee J , Mihaltcheva S , LaButti K , Lipzen A , Waldron R , Moloney NM , Sperisen C , Kredics L , Vagvolgyi C , Patrignani A , Fitzpatrick D , Nagy I , Doyle S , Anderson JB , Grigoriev IV , Guldener U , Munsterkotter M , Nagy LG
Ref : Nat Ecol Evol , 1 :1931 , 2017
Abstract : Armillaria species are both devastating forest pathogens and some of the largest terrestrial organisms on Earth. They forage for hosts and achieve immense colony sizes via rhizomorphs, root-like multicellular structures of clonal dispersal. Here, we sequenced and analysed the genomes of four Armillaria species and performed RNA sequencing and quantitative proteomic analysis on the invasive and reproductive developmental stages of A. ostoyae. Comparison with 22 related fungi revealed a significant genome expansion in Armillaria, affecting several pathogenicity-related genes, lignocellulose-degrading enzymes and lineage-specific genes expressed during rhizomorph development. Rhizomorphs express an evolutionarily young transcriptome that shares features with the transcriptomes of both fruiting bodies and vegetative mycelia. Several genes show concomitant upregulation in rhizomorphs and fruiting bodies and share cis-regulatory signatures in their promoters, providing genetic and regulatory insights into complex multicellularity in fungi. Our results suggest that the evolution of the unique dispersal and pathogenicity mechanisms of Armillaria might have drawn upon ancestral genetic toolkits for wood-decay, morphogenesis and complex multicellularity.
ESTHER : Sipos_2017_Nat.Ecol.Evol_1_1931
PubMedSearch : Sipos_2017_Nat.Ecol.Evol_1_1931
PubMedID: 29085064
Gene_locus related to this paper: armos-armb

Title : Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus - de Vries_2017_Genome.Biol_18_28
Author(s) : de Vries RP , Riley R , Wiebenga A , Aguilar-Osorio G , Amillis S , Uchima CA , Anderluh G , Asadollahi M , Askin M , Barry K , Battaglia E , Bayram O , Benocci T , Braus-Stromeyer SA , Caldana C , Canovas D , Cerqueira GC , Chen F , Chen W , Choi C , Clum A , Dos Santos RA , Damasio AR , Diallinas G , Emri T , Fekete E , Flipphi M , Freyberg S , Gallo A , Gournas C , Habgood R , Hainaut M , Harispe ML , Henrissat B , Hilden KS , Hope R , Hossain A , Karabika E , Karaffa L , Karanyi Z , Krasevec N , Kuo A , Kusch H , LaButti K , Lagendijk EL , Lapidus A , Levasseur A , Lindquist E , Lipzen A , Logrieco AF , Maccabe A , Makela MR , Malavazi I , Melin P , Meyer V , Mielnichuk N , Miskei M , Molnar AP , Mule G , Ngan CY , Orejas M , Orosz E , Ouedraogo JP , Overkamp KM , Park HS , Perrone G , Piumi F , Punt PJ , Ram AF , Ramon A , Rauscher S , Record E , Riano-Pachon DM , Robert V , Rohrig J , Ruller R , Salamov A , Salih NS , Samson RA , Sandor E , Sanguinetti M , Schutze T , Sepcic K , Shelest E , Sherlock G , Sophianopoulou V , Squina FM , Sun H , Susca A , Todd RB , Tsang A , Unkles SE , van de Wiele N , van Rossen-Uffink D , Oliveira JV , Vesth TC , Visser J , Yu JH , Zhou M , Andersen MR , Archer DB , Baker SE , Benoit I , Brakhage AA , Braus GH , Fischer R , Frisvad JC , Goldman GH , Houbraken J , Oakley B , Pocsi I , Scazzocchio C , Seiboth B , vanKuyk PA , Wortman J , Dyer PS , Grigoriev IV
Ref : Genome Biol , 18 :28 , 2017
Abstract : BACKGROUND: The fungal genus Aspergillus is of critical importance to humankind. Species include those with industrial applications, important pathogens of humans, animals and crops, a source of potent carcinogenic contaminants of food, and an important genetic model. The genome sequences of eight aspergilli have already been explored to investigate aspects of fungal biology, raising questions about evolution and specialization within this genus. RESULTS: We have generated genome sequences for ten novel, highly diverse Aspergillus species and compared these in detail to sister and more distant genera. Comparative studies of key aspects of fungal biology, including primary and secondary metabolism, stress response, biomass degradation, and signal transduction, revealed both conservation and diversity among the species. Observed genomic differences were validated with experimental studies. This revealed several highlights, such as the potential for sex in asexual species, organic acid production genes being a key feature of black aspergilli, alternative approaches for degrading plant biomass, and indications for the genetic basis of stress response. A genome-wide phylogenetic analysis demonstrated in detail the relationship of the newly genome sequenced species with other aspergilli. CONCLUSIONS: Many aspects of biological differences between fungal species cannot be explained by current knowledge obtained from genome sequences. The comparative genomics and experimental study, presented here, allows for the first time a genus-wide view of the biological diversity of the aspergilli and in many, but not all, cases linked genome differences to phenotype. Insights gained could be exploited for biotechnological and medical applications of fungi.
ESTHER : de Vries_2017_Genome.Biol_18_28
PubMedSearch : de Vries_2017_Genome.Biol_18_28
PubMedID: 28196534
Gene_locus related to this paper: asptu-a0a1l9nhd0 , aspve-a0a1l9pxx8 , aspve-a0a1l9q4m3 , aspwe-a0a1l9s133 , 9euro-a0a1l9t3v9 , aspwe-a0a1l9rcx6 , aspna-g3y5a6 , aspgl-a0a1l9v4d3 , 9euro-a0a1l9sa36 , aspsb-a0a319eji6 , aspve-a0a1l9px96 , 9euro-a0a1l9tay1 , aspgl-a0a1l9vbc0 , aspc5-a0a1r3rh65 , 9euro-a0a2v5i956 , aspwe-a0a1l9rpp6 , aspna-g3xpw9 , aspve-a0a1l9plv1 , 9euro-a0a1l9tk47 , aspve-a0a1l9pde9 , aspve-a0a1l9pz72 , aspwe-a0a1l9rde6 , 9euro-a0a1l9tdb5 , aspkw-g7xq95 , aspbc-a0a1l9u6h4 , aspbc-a0a1l9u2l4 , asptc-a0a1l9mx83 , aspgl-a0a1l9ve90 , aspve-a0a1l9pvz9 , 9euro-a0a1l9tdh3 , aspc5-a0a1r3rmn9 , aspwe-a0a1l9rlq2 , asptc-a0a1l9nby7 , aspng-a0a100i8t9 , aspc5-a0a1r3rem6 , aspbc-a0a1l9uy89 , aspa1-anee , aspa1-aneh , aspa1-acrc , aspbc-alba , aspa1-acui

Title : Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels - Wu_2017_Appl.Microbiol.Biotechnol_101_2603
Author(s) : Wu W , Davis RW , Tran-Gyamfi MB , Kuo A , LaButti K , Mihaltcheva S , Hundley H , Chovatia M , Lindquist E , Barry K , Grigoriev IV , Henrissat B , Gladden JM
Ref : Applied Microbiology & Biotechnology , 101 :2603 , 2017
Abstract : Recently, several endophytic fungi have been demonstrated to produce volatile organic compounds (VOCs) with properties similar to fossil fuels, called "mycodiesel," while growing on lignocellulosic plant and agricultural residues. The fact that endophytes are plant symbionts suggests that some may be able to produce lignocellulolytic enzymes, making them capable of both deconstructing lignocellulose and converting it into mycodiesel, two properties that indicate that these strains may be useful consolidated bioprocessing (CBP) hosts for the biofuel production. In this study, four endophytes Hypoxylon sp. CI4A, Hypoxylon sp. EC38, Hypoxylon sp. CO27, and Daldinia eschscholzii EC12 were selected and evaluated for their CBP potential. Analysis of their genomes indicates that these endophytes have a rich reservoir of biomass-deconstructing carbohydrate-active enzymes (CAZys), which includes enzymes active on both polysaccharides and lignin, as well as terpene synthases (TPSs), enzymes that may produce fuel-like molecules, suggesting that they do indeed have CBP potential. GC-MS analyses of their VOCs when grown on four representative lignocellulosic feedstocks revealed that these endophytes produce a wide spectrum of hydrocarbons, the majority of which are monoterpenes and sesquiterpenes, including some known biofuel candidates. Analysis of their cellulase activity when grown under the same conditions revealed that these endophytes actively produce endoglucanases, exoglucanases, and beta-glucosidases. The richness of CAZymes as well as terpene synthases identified in these four endophytic fungi suggests that they are great candidates to pursue for development into platform CBP organisms.
ESTHER : Wu_2017_Appl.Microbiol.Biotechnol_101_2603
PubMedSearch : Wu_2017_Appl.Microbiol.Biotechnol_101_2603
PubMedID: 28078400
Gene_locus related to this paper: 9pezi-a0a1y2u1s8 , 9pezi-a0a1y2x077 , 9pezi-a0a1y2vv92 , 9pezi-a0a1y2txs8 , 9pezi-a0a1y2wzb7 , 9pezi-a0a1y2ufj7 , 9pezi-a0a1y2vvc9 , 9pezi-a0a1y2w3w4

Title : Fungi Contribute Critical but Spatially Varying Roles in Nitrogen and Carbon Cycling in Acid Mine Drainage - Mosier_2016_Front.Microbiol_7_238
Author(s) : Mosier AC , Miller CS , Frischkorn KR , Ohm RA , Li Z , LaButti K , Lapidus A , Lipzen A , Chen C , Johnson J , Lindquist EA , Pan C , Hettich RL , Grigoriev IV , Singer SW , Banfield JF
Ref : Front Microbiol , 7 :238 , 2016
Abstract : The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and in the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. These findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches.
ESTHER : Mosier_2016_Front.Microbiol_7_238
PubMedSearch : Mosier_2016_Front.Microbiol_7_238
PubMedID: 26973616
Gene_locus related to this paper: 9pezi-a0a150vf31 , 9pezi-a0a150uua7 , 9pezi-a0a150uvr8 , 9pezi-a0a150uzg0 , 9pezi-a0a150v0d4 , 9pezi-a0a150v5h7 , 9pezi-a0a150v662 , 9pezi-a0a150v8z3 , 9pezi-a0a150v9v5 , 9pezi-a0a150vc68 , 9pezi-a0a150vcp1 , 9pezi-a0a150vd70 , 9pezi-a0a150vda0 , 9pezi-a0a150vgv5 , 9pezi-a0a150vil1 , 9pezi-a0a150uu68 , 9pezi-a0a150vas8 , 9pezi-a0a150vji1 , 9pezi-a0a150vii2

Title : Comparative genomics of biotechnologically important yeasts - Riley_2016_Proc.Natl.Acad.Sci.U.S.A_113_9882
Author(s) : Riley R , Haridas S , Wolfe KH , Lopes MR , Hittinger CT , Goker M , Salamov AA , Wisecaver JH , Long TM , Calvey CH , Aerts AL , Barry KW , Choi C , Clum A , Coughlan AY , Deshpande S , Douglass AP , Hanson SJ , Klenk HP , LaButti KM , Lapidus A , Lindquist EA , Lipzen AM , Meier-Kolthoff JP , Ohm RA , Otillar RP , Pangilinan JL , Peng Y , Rokas A , Rosa CA , Scheuner C , Sibirny AA , Slot JC , Stielow JB , Sun H , Kurtzman CP , Blackwell M , Grigoriev IV , Jeffries TW
Ref : Proc Natl Acad Sci U S A , 113 :9882 , 2016
Abstract : Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.
ESTHER : Riley_2016_Proc.Natl.Acad.Sci.U.S.A_113_9882
PubMedSearch : Riley_2016_Proc.Natl.Acad.Sci.U.S.A_113_9882
PubMedID: 27535936
Gene_locus related to this paper: wicaa-a0a1e3nx95 , cybjn-a0a1e4s739 , 9asco-a0a1q2yku6 , ogapd-w1qjr8 , 9asco-a0a1e3pdp5 , lipst-a0a1e3qdq0 , 9asco-a0a1e4tg55

Title : Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities - Nagy_2016_Mol.Biol.Evol_33_959
Author(s) : Nagy LG , Riley R , Tritt A , Adam C , Daum C , Floudas D , Sun H , Yadav JS , Pangilinan J , Larsson KH , Matsuura K , Barry K , LaButti K , Kuo R , Ohm RA , Bhattacharya SS , Shirouzu T , Yoshinaga Y , Martin FM , Grigoriev IV , Hibbett DS
Ref : Molecular Biology Evolution , 33 :959 , 2016
Abstract : Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot.
ESTHER : Nagy_2016_Mol.Biol.Evol_33_959
PubMedSearch : Nagy_2016_Mol.Biol.Evol_33_959
PubMedID: 26659563
Gene_locus related to this paper: 9homo-a0a164swv2 , 9homo-a0a164tl22 , 9homo-a0a164vkv1 , 9homo-a0a164y4j9 , 9homo-a0a164y4l9 , 9homo-a0a164ytj2 , 9homo-a0a164zeu0 , exigl-a0a165as65 , exigl-a0a165ck85 , 9basi-a0a165cm83 , 9aphy-a0a165dbf1 , 9aphy-a0a165dbf3 , 9basi-a0a165dcb7 , 9aphy-a0a165ddj9 , exigl-a0a165dj22 , exigl-a0a165dmd7 , 9aphy-a0a165egr5 , 9basi-a0a165ekd3 , 9basi-a0a165enc9 , 9basi-a0a165end6 , 9basi-a0a165epz3 , 9basi-a0a165eq46 , 9basi-a0a165eq95 , 9basi-a0a165eqk7 , 9basi-a0a165eup2 , 9aphy-a0a165fb02 , 9aphy-a0a165fmr9 , 9aphy-a0a165g3p1 , 9basi-a0a165g673 , 9basi-a0a165g6g2 , 9aphy-a0a165gec2 , 9basi-a0a165gfp7 , 9aphy-a0a165h505 , 9aphy-a0a165hd72 , 9aphy-a0a165hrk1 , exigl-a0a165hzc8 , 9basi-a0a165i2y7 , 9basi-a0a165iru3 , 9basi-a0a165is19 , 9basi-a0a165is40 , exigl-a0a165j2r4 , exigl-a0a165j754 , 9basi-a0a165jg92 , 9basi-a0a165jgb0 , exigl-a0a165ke04 , exigl-a0a165kpb0 , exigl-a0a165l7g6 , 9aphy-a0a165lux8 , 9aphy-a0a165luy2.1 , 9aphy-a0a165luy2.2 , exigl-a0a165m310 , 9aphy-a0a165mxa5 , 9aphy-a0a165mxc8 , 9aphy-a0a165mxe4 , exigl-a0a165mz73 , 9homo-a0a165nfz4 , 9homo-a0a165ng04 , 9aphy-a0a165nry3 , 9homo-a0a165ntf3 , 9homo-a0a165p2a0 , 9aphy-a0a165ph74 , 9homo-a0a165phz5 , exigl-a0a165pm12 , exigl-a0a165pu90 , exigl-a0a165puh2 , 9aphy-a0a165q9t4 , 9homo-a0a165qeb7 , 9homo-a0a165qeh8 , 9aphy-a0a165qqm2 , 9aphy-a0a165quj0 , 9aphy-a0a165qul3 , exigl-a0a165qxy0 , 9aphy-a0a165r6t2 , 9aphy-a0a165r8g4 , 9aphy-a0a165tfc7 , 9homo-a0a165tgm2 , 9homo-a0a165tzv4 , 9homo-a0a165tzw4 , 9homo-a0a165uez3 , 9homo-a0a165ugh4 , 9homo-a0a165ugp4 , 9homo-a0a165ugq6 , 9homo-a0a165uh51 , 9aphy-a0a165umj9 , 9homo-a0a165us14 , 9homo-a0a165xi11 , 9homo-a0a165xmw5 , 9homo-a0a165xmx9 , 9homo-a0a165xsk7 , 9homo-a0a165y3k8 , 9homo-a0a165yhg3 , 9homo-a0a165ymb3 , 9homo-a0a165yt77 , 9homo-a0a165ytu4 , 9homo-a0a165zr30 , 9homo-a0a166a1g9 , 9homo-a0a166a1h1 , exigl-a0a166abe4 , 9homo-a0a166akq6 , exigl-a0a166al33 , 9homo-a0a166arm1 , 9homo-a0a166as45 , 9homo-a0a166as65 , 9homo-a0a166as77 , exigl-a0a166auh4 , 9homo-a0a166azk8 , exigl-a0a166azz6 , 9homo-a0a166bss2 , 9homo-a0a166bsu9 , 9homo-a0a166bui6 , 9homo-a0a166crl5 , 9homo-a0a166d8q4 , 9homo-a0a166dss7 , 9homo-a0a166dtg8 , 9homo-a0a166du49 , 9homo-a0a166du64 , 9homo-a0a166e1z2 , 9homo-a0a166eec5 , 9homo-a0a166eux5 , 9homo-a0a166evw5 , 9homo-a0a166ey75 , 9homo-a0a166eyq0 , 9homo-a0a166ez78 , 9homo-a0a166eze7 , 9homo-a0a166fh25 , 9homo-a0a166g4k8 , 9homo-a0a166gct1 , 9homo-a0a166gf56 , 9homo-a0a166gsr8 , 9homo-a0a166j6i1 , 9homo-a0a166jiu0 , 9homo-a0a166jr36 , 9homo-a0a166kia8 , 9homo-a0a166ks21 , 9homo-a0a166kvn8 , 9homo-a0a166kxf0 , 9homo-a0a166kxg2 , 9homo-a0a166lcs7 , 9homo-a0a166lw48 , 9homo-a0a166lyz4 , 9homo-a0a166puu7.1 , 9homo-a0a166puu7.2 , 9homo-a0a166puz0 , 9homo-a0a166pv75 , 9homo-a0a166pva0 , 9homo-a0a166pvf7 , 9homo-a0a166px11 , 9homo-a0a166q635 , 9basi-a0a167gl88 , 9basi-a0a167gl97 , 9basi-a0a167gla5 , 9basi-a0a167hca0 , 9basi-a0a167hrt3 , 9basi-a0a167hru7 , 9basi-a0a167k219 , 9basi-a0a167k232 , 9basi-a0a167k265 , 9basi-a0a167l6m6 , 9basi-a0a167lrl7 , 9basi-a0a167lt70 , 9basi-a0a167mtk7 , 9basi-a0a167n1z0 , 9basi-a0a167p9x5 , 9basi-a0a167qks1 , 9basi-a0a167qkt4 , 9basi-a0a167qky5 , 9basi-a0a167qln8 , 9basi-a0a167rpp7 , 9homo-a0a167u8e3 , 9homo-a0a167v1m8 , 9homo-a0a166hqx0 , 9homo-a0a166l842 , exigl-a0a165n4f2 , exigl-a0a165q512 , 9agam-a0a165nq75 , 9agam-a0a166cv75 , 9agam-a0a165mvt4 , 9agam-a0a164t8q2 , 9agam-a0a166flp0

Title : The genome of Xylona heveae provides a window into fungal endophytism - Gazis_2016_Fungal.Biol_120_26
Author(s) : Gazis R , Kuo A , Riley R , LaButti K , Lipzen A , Lin J , Amirebrahimi M , Hesse CN , Spatafora JW , Henrissat B , Hainaut M , Grigoriev IV , Hibbett DS
Ref : Fungal Biol , 120 :26 , 2016
Abstract : Xylona heveae has only been isolated as an endophyte of rubber trees. In an effort to understand the genetic basis of endophytism, we compared the genome contents of X. heveae and 36 other Ascomycota with diverse lifestyles and nutritional modes. We focused on genes that are known to be important in the host-fungus interaction interface and that presumably have a role in determining the lifestyle of a fungus. We used phylogenomic data to infer the higher-level phylogenetic position of the Xylonomycetes, and mined ITS sequences to explore its taxonomic and ecological diversity. The X. heveae genome contains a low number of enzymes needed for plant cell wall degradation, suggesting that Xylona is a highly adapted specialist and likely dependent on its host for survival. The reduced repertoire of carbohydrate active enzymes could reflect an adaptation to intercellulary growth and to the avoidance of the host's immune system, suggesting that Xylona has a strictly endophytic lifestyle. Phylogenomic data resolved the position of Xylonomycetes as sister to Lecanoromycetes and Eurotiomycetes and placed the beetle-endosymbiont Symbiotaphrina as a member of this class. ITS data revealed that Trinosporium is also part of the Xylonomycetes, extending the taxonomic and ecological diversity of this group.
ESTHER : Gazis_2016_Fungal.Biol_120_26
PubMedSearch : Gazis_2016_Fungal.Biol_120_26
PubMedID: 26693682
Gene_locus related to this paper: 9pezi-a0a165f9w1 , 9pezi-a0a165fsb2 , 9pezi-a0a165gpf2 , 9pezi-a0a164zp96 , xylht-a0a165aju9 , xylht-a0a165jye6 , xylht-a0a165jir4

Title : Phylogenomic Analyses Indicate that Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants - Chang_2015_Genome.Biol.Evol_7_1590
Author(s) : Chang Y , Wang S , Sekimoto S , Aerts AL , Choi C , Clum A , LaButti KM , Lindquist EA , Yee Ngan C , Ohm RA , Salamov AA , Grigoriev IV , Spatafora JW , Berbee ML
Ref : Genome Biol Evol , 7 :1590 , 2015
Abstract : As decomposers, fungi are key players in recycling plant material in global carbon cycles. We hypothesized that genomes of early diverging fungi may have inherited pectinases from an ancestral species that had been able to extract nutrients from pectin-containing land plants and their algal allies (Streptophytes). We aimed to infer, based on pectinase gene expansions and on the organismal phylogeny, the geological timing of the plant-fungus association. We analyzed 40 fungal genomes, three of which, including Gonapodya prolifera, were sequenced for this study. In the organismal phylogeny from 136 housekeeping loci, Rozella diverged first from all other fungi. Gonapodya prolifera was included among the flagellated, predominantly aquatic fungal species in Chytridiomycota. Sister to Chytridiomycota were the predominantly terrestrial fungi including zygomycota I and zygomycota II, along with the ascomycetes and basidiomycetes that comprise Dikarya. The Gonapodya genome has 27 genes representing five of the seven classes of pectin-specific enzymes known from fungi. Most of these share a common ancestry with pectinases from Dikarya. Indicating functional and sequence similarity, Gonapodya, like many Dikarya, can use pectin as a carbon source for growth in pure culture. Shared pectinases of Dikarya and Gonapodya provide evidence that even ancient aquatic fungi had adapted to extract nutrients from the plants in the green lineage. This implies that 750 million years, the estimated maximum age of origin of the pectin-containing streptophytes represents a maximum age for the divergence of Chytridiomycota from the lineage including Dikarya.
ESTHER : Chang_2015_Genome.Biol.Evol_7_1590
PubMedSearch : Chang_2015_Genome.Biol.Evol_7_1590
PubMedID: 25977457
Gene_locus related to this paper: gonpr-a0a139axi8

Title : Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii - Floudas_2015_Fungal.Genet.Biol_76_78
Author(s) : Floudas D , Held BW , Riley R , Nagy LG , Koehler G , Ransdell AS , Younus H , Chow J , Chiniquy J , Lipzen A , Tritt A , Sun H , Haridas S , LaButti K , Ohm RA , Kues U , Blanchette RA , Grigoriev IV , Minto RE , Hibbett DS
Ref : Fungal Genet Biol , 76 :78 , 2015
Abstract : Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.
ESTHER : Floudas_2015_Fungal.Genet.Biol_76_78
PubMedSearch : Floudas_2015_Fungal.Genet.Biol_76_78
PubMedID: 25683379
Gene_locus related to this paper: 9agar-a0a0d6zyq5 , 9agar-a0a0d7a2p9 , 9agar-a0a0d7a2v2 , 9agar-a0a0d7abt2 , 9agar-a0a0d7acd3 , 9agar-a0a0d7acx0 , 9agar-a0a0d7acx9 , 9agar-a0a0d7adg2 , 9agar-a0a0d7a6d0 , 9agar-a0a0d7aen7 , 9agar-a0a0d7aez7 , 9agar-a0a0d7ahq5 , 9agar-a0a0d7akr6 , 9agar-a0a0d7al29 , 9agar-a0a0d7an16 , 9agar-a0a0d7ann7 , 9agar-a0a0d7anv1 , 9homo-a0a0d7atv2 , 9homo-a0a0d7ay28 , 9homo-a0a0d7ayz7 , 9homo-a0a0d7b1w8 , 9homo-a0a0d7b2p0 , 9homo-a0a0d7b4n4 , 9homo-a0a0d7b624 , 9homo-a0a0d7b7r3 , 9homo-a0a0d7b7w3 , 9homo-a0a0d7bac5 , 9homo-a0a0d7bav7 , 9homo-a0a0d7bbx7 , 9homo-a0a0d7bdn7 , 9homo-a0a0d7bgj9 , 9homo-a0a0d7biw2 , 9homo-a0a0d7bqi1 , 9homo-a0a0d7bv80 , 9agar-a0a0d7b6f6 , 9agar-a0a0d7b976 , 9agar-a0a0d7aeu9 , 9agar-a0a0d7ag53 , 9agar-a0a0d7b8a5

Title : Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1 -
Author(s) : Firrincieli A , Otillar R , Salamov A , Schmutz J , Khan Z , Redman RS , Fleck ND , Lindquist E , Grigoriev IV , Doty SL
Ref : Front Microbiol , 6 :978 , 2015
PubMedID: 26441909
Gene_locus related to this paper: rhogw-a0a0p9evi9

Title : Enhanced degradation of softwood versus hardwood by the white-rot fungus Pycnoporus coccineus - Couturier_2015_Biotechnol.Biofuels_8_216
Author(s) : Couturier M , Navarro D , Chevret D , Henrissat B , Piumi F , Ruiz-Duenas FJ , Martinez AT , Grigoriev IV , Riley R , Lipzen A , Berrin JG , Master ER , Rosso MN
Ref : Biotechnol Biofuels , 8 :216 , 2015
Abstract : BACKGROUND: White-rot basidiomycete fungi are potent degraders of plant biomass, with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. Deeper functional analyses are however necessary to understand the enzymatic mechanisms leading to lignocellulose breakdown. The Polyporale fungus Pycnoporus coccineus BRFM310 grows well on both coniferous and deciduous wood. In the present study, we analyzed the early response of the fungus to softwood (pine) and hardwood (aspen) feedstocks and tested the effect of the secreted enzymes on lignocellulose deconstruction. RESULTS: Transcriptomic and proteomic analyses revealed that P. coccineus grown separately on pine and aspen displayed similar sets of transcripts and enzymes implicated in lignin and polysaccharide degradation. In particular, the expression of lignin-targeting oxidoreductases, such as manganese peroxidases, increased upon cultivation on both woods. The sets of enzymes secreted during growth on both pine and aspen were more efficient in saccharide release from pine than from aspen, and characterization of the residual solids revealed polysaccharide conversion on both pine and aspen fiber surfaces. CONCLUSION: The combined analysis of soluble sugars and solid residues showed the suitability of P. coccineus secreted enzymes for softwood degradation. Analyses of solubilized products and residual surface chemistries of enzyme-treated wood samples pointed to differences in fiber penetration by different P. coccineus secretomes. Accordingly, beyond the variety of CAZymes identified in P. coccineus genome, transcriptome and secretome, we discuss several parameters such as the abundance of manganese peroxidases and the potential role of cytochrome P450s and pectin degradation on the efficacy of fungi for softwood conversion.
ESTHER : Couturier_2015_Biotechnol.Biofuels_8_216
PubMedSearch : Couturier_2015_Biotechnol.Biofuels_8_216
PubMedID: 26692083
Gene_locus related to this paper: pycco-a0a1y2inc6 , pycco-a0a1y2ib15 , pycco-a0a1y2j2i8 , pycco-a0a1y2i5q8 , pycco-a0a1y2ib37

Title : Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum - Kis-Papo_2014_Nat.Commun_5_3745
Author(s) : Kis-Papo T , Weig AR , Riley R , Persoh D , Salamov A , Sun H , Lipzen A , Wasser SP , Rambold G , Grigoriev IV , Nevo E
Ref : Nat Commun , 5 :3745 , 2014
Abstract : The Dead Sea is one of the most hypersaline habitats on Earth. The fungus Eurotium rubrum (Eurotiomycetes) is among the few species able to survive there. Here we highlight its adaptive strategies, based on genome analysis and transcriptome profiling. The 26.2 Mb genome of E. rubrum shows, for example, gains in gene families related to stress response and losses with regard to transport processes. Transcriptome analyses under different salt growth conditions revealed, among other things differentially expressed genes encoding ion and metabolite transporters. Our findings suggest that long-term adaptation to salinity requires cellular and metabolic responses that differ from short-term osmotic stress signalling. The transcriptional response indicates that halophilic E. rubrum actively counteracts the salinity stress. Many of its genes encode for proteins with a significantly higher proportion of acidic amino acid residues. This trait is characteristic of the halophilic prokaryotes as well, supporting the theory of convergent evolution under extreme hypersaline stress.
ESTHER : Kis-Papo_2014_Nat.Commun_5_3745
PubMedSearch : Kis-Papo_2014_Nat.Commun_5_3745
PubMedID: 24811710
Gene_locus related to this paper: 9euro-a0a017sa42 , 9euro-a0a017s0c9 , 9euro-a0a017s186 , 9euro-a0a017s8c9 , 9euro-a0a017s6r6

Title : Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood - Hori_2014_PLoS.Genet_10_e1004759
Author(s) : Hori C , Ishida T , Igarashi K , Samejima M , Suzuki H , Master E , Ferreira P , Ruiz-Duenas FJ , Held B , Canessa P , Larrondo LF , Schmoll M , Druzhinina IS , Kubicek CP , Gaskell JA , Kersten P , St John F , Glasner J , Sabat G , Splinter BonDurant S , Syed K , Yadav J , Mgbeahuruike AC , Kovalchuk A , Asiegbu FO , Lackner G , Hoffmeister D , Rencoret J , Gutierrez A , Sun H , Lindquist E , Barry K , Riley R , Grigoriev IV , Henrissat B , Kues U , Berka RM , Martinez AT , Covert SF , Blanchette RA , Cullen D
Ref : PLoS Genet , 10 :e1004759 , 2014
Abstract : Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.
ESTHER : Hori_2014_PLoS.Genet_10_e1004759
PubMedSearch : Hori_2014_PLoS.Genet_10_e1004759
PubMedID: 25474575
Gene_locus related to this paper: phlgi-a0a0c3nds0 , phlgi-a0a0c3niq6 , phlgi-a0a0c3pc91 , phlgi-a0a0c3pv58 , phlgi-a0a0c3rra0 , phlgi-a0a0c3rvc4 , phlgi-a0a0c3rvu0 , phlgi-a0a0c3s394 , phlgi-a0a0c3s606 , phlgi-a0a0c3s673 , phlgi-a0a0c3s8d3 , phlgi-a0a0c3sce4 , phlgi-a0a0c3sdt8

Title : Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the fern pathogen Mixia osmundae - Toome_2014_New.Phytol_202_554
Author(s) : Toome M , Ohm RA , Riley RW , James TY , Lazarus KL , Henrissat B , Albu S , Boyd A , Chow J , Clum A , Heller G , Lipzen A , Nolan M , Sandor L , Zvenigorodsky N , Grigoriev IV , Spatafora JW , Aime MC
Ref : New Phytol , 202 :554 , 2014
Abstract : Mixia osmundae (Basidiomycota, Pucciniomycotina) represents a monotypic class containing an unusual fern pathogen with incompletely understood biology. We sequenced and analyzed the genome of M. osmundae, focusing on genes that may provide some insight into its mode of pathogenicity and reproductive biology. Mixia osmundae has the smallest plant pathogenic basidiomycete genome sequenced to date, at 13.6 Mb, with very few repeats, high gene density, and relatively few significant gene family gains. The genome shows that the yeast state of M. osmundae is haploid and the lack of segregation of mating genes suggests that the spores produced on Osmunda spp. fronds are probably asexual. However, our finding of a complete complement of mating and meiosis genes suggests the capacity to undergo sexual reproduction. Analyses of carbohydrate active enzymes suggest that this fungus is a biotroph with the ability to break down several plant cell wall components. Analyses of publicly available sequence data show that other Mixia members may exist on other plant hosts and with a broader distribution than previously known.
ESTHER : Toome_2014_New.Phytol_202_554
PubMedSearch : Toome_2014_New.Phytol_202_554
PubMedID: 24372469
Gene_locus related to this paper: mixos-g7dyk5 , mixos-g7eay5

Title : Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species - Gostincar_2014_BMC.Genomics_15_549
Author(s) : Gostincar C , Ohm RA , Kogej T , Sonjak S , Turk M , Zajc J , Zalar P , Grube M , Sun H , Han J , Sharma A , Chiniquy J , Ngan CY , Lipzen A , Barry K , Grigoriev IV , Gunde-Cimerman N
Ref : BMC Genomics , 15 :549 , 2014
Abstract : BACKGROUND: Aureobasidium pullulans is a black-yeast-like fungus used for production of the polysaccharide pullulan and the antimycotic aureobasidin A, and as a biocontrol agent in agriculture. It can cause opportunistic human infections, and it inhabits various extreme environments. To promote the understanding of these traits, we performed de-novo genome sequencing of the four varieties of A. pullulans.
RESULTS: The 25.43-29.62 Mb genomes of these four varieties of A. pullulans encode between 10266 and 11866 predicted proteins. Their genomes encode most of the enzyme families involved in degradation of plant material and many sugar transporters, and they have genes possibly associated with degradation of plastic and aromatic compounds. Proteins believed to be involved in the synthesis of pullulan and siderophores, but not of aureobasidin A, are predicted. Putative stress-tolerance genes include several aquaporins and aquaglyceroporins, large numbers of alkali-metal cation transporters, genes for the synthesis of compatible solutes and melanin, all of the components of the high-osmolarity glycerol pathway, and bacteriorhodopsin-like proteins. All of these genomes contain a homothallic mating-type locus.
CONCLUSIONS: The differences between these four varieties of A. pullulans are large enough to justify their redefinition as separate species: A. pullulans, A. melanogenum, A. subglaciale and A. namibiae. The redundancy observed in several gene families can be linked to the nutritional versatility of these species and their particular stress tolerance. The availability of the genome sequences of the four Aureobasidium species should improve their biotechnological exploitation and promote our understanding of their stress-tolerance mechanisms, diverse lifestyles, and pathogenic potential.
ESTHER : Gostincar_2014_BMC.Genomics_15_549
PubMedSearch : Gostincar_2014_BMC.Genomics_15_549
PubMedID: 24984952
Gene_locus related to this paper: aurpu-a0a1a7mdx5 , 9pezi-a0a074w0m0 , 9pezi-a0a074wgq7 , aurpu-a0a074xfg8 , 9pezi-a0a074y586 , 9pezi-a0a074yqf6 , 9pezi-a0a074w5k8 , aurpu-a0a074x6a3 , 9pezi-a0a074z3s4 , 9pezi-a0a074x4q0 , 9pezi-a0a074w2e2 , 9pezi-a0a074x294 , aurpu-a0a074y1y2 , aurpu-a0a074x9w9 , 9pezi-a0a074ydw7 , 9pezi-a0a074w1z9 , 9pezi-a0a074wvx0 , 9pezi-a0a074vkc4 , 9pezi-a0a074y2z2 , 9pezi-a0a074vlb9 , aurpu-a0a074x490 , 9pezi-a0a074ydn0 , 9pezi-a0a074wng0 , 9pezi-a0a074yhi1 , 9pezi-a0a074yp94 , 9pezi-a0a074wbe1 , 9pezi-a0a074wm90 , 9pezi-a0a074ww95 , aurpu-a0a074xg41 , aurpu-a0a074xtu4 , 9pezi-a0a074y8g8 , aurpu-a0a074ysb8 , 9pezi-a0a074zem7 , 9pezi-a0a074yvw8 , 9pezi-a0a074w278 , aurpu-a0a074xxz9 , 9pezi-a0a074y9f0 , aurpu-a0a074xzv0 , 9pezi-a0a074wce5 , 9pezi-a0a074wmz5 , 9pezi-a0a074vr83 , 9pezi-a0a074w4l5 , 9pezi-a0a074wwv4 , 9pezi-a0a074w5f4 , aurpu-a0a074xir3 , aurpu-a0a074xnm6 , 9pezi-a0a074zhr2 , 9pezi-a0a074vzq8 , 9pezi-a0a074web5 , aurpu-a0a074xz32 , 9pezi-a0a074ybl0 , aurpu-a0a074xl81 , 9pezi-a0a074vaq7 , 9pezi-a0a074wuj9 , aurpu-a0a074xyu0 , 9pezi-a0a074vfi8 , 9pezi-a0a074wih8 , aurpu-a0a074xj03 , 9pezi-a0a074vze0 , 9pezi-a0a074w5u8 , 9pezi-a0a074wui5 , 9pezi-a0a074xhu0 , aurpu-a0a074xyg1 , 9pezi-a0a074yct6 , 9pezi-a0a074zd60 , 9pezi-a0a074w686 , aurpu-a0a074xr93 , 9pezi-a0a074y1r2 , 9pezi-a0a074z801 , 9pezi-a0a074y6a8 , 9pezi-a0a074vg30 , aurpu-a0a074wzm8 , 9pezi-a0a074y7g9 , 9pezi-a0a074vwd1 , 9pezi-a0a074whl7 , aurpu-a0a074x6c3 , 9pezi-a0a074yak1 , aurpu-a0a074x5y4 , 9pezi-a0a074yaq1 , aurpu-a0a074xm87 , 9pezi-a0a074wgg7 , 9pezi-a0a074vky7 , aurpu-a0a074xpr5 , 9pezi-a0a074zrg4 , 9pezi-a0a074w1f9 , aurpu-a0a074xft8 , 9pezi-a0a074y5i5 , aurpu-a0a074xla0 , 9pezi-a0a074w5n7 , 9pezi-a0a074wey0 , aurpu-a0a074y3b0 , 9pezi-a0a074vrn9 , 9pezi-a0a074zgu9 , aurpu-a0a074xlv7 , 9pezi-a0a074wgb6 , 9pezi-a0a074wgj7 , 9pezi-a0a074vrg4 , 9pezi-a0a074ya42 , 9pezi-a0a074xnr8 , aurpu-a0a074x443 , 9pezi-a0a074yex2 , 9pezi-a0a074xu89 , aurpu-a0a074xxq7 , 9pezi-a0a074vih4 , aurse-a0a074ydf4 , aurse-a0a074yt75 , aurpu-a0a074y000

Title : Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot\/brown-rot paradigm for wood decay fungi - Riley_2014_Proc.Natl.Acad.Sci.U.S.A_111_9923
Author(s) : Riley R , Salamov AA , Brown DW , Nagy LG , Floudas D , Held BW , Levasseur A , Lombard V , Morin E , Otillar R , Lindquist EA , Sun H , LaButti KM , Schmutz J , Jabbour D , Luo H , Baker SE , Pisabarro AG , Walton JD , Blanchette RA , Henrissat B , Martin F , Cullen D , Hibbett DS , Grigoriev IV
Ref : Proc Natl Acad Sci U S A , 111 :9923 , 2014
Abstract : Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.
ESTHER : Riley_2014_Proc.Natl.Acad.Sci.U.S.A_111_9923
PubMedSearch : Riley_2014_Proc.Natl.Acad.Sci.U.S.A_111_9923
PubMedID: 24958869
Gene_locus related to this paper: pleos-a0a067nlj6 , 9agar-a0a067t0n0 , 9agar-a0a067sha0 , 9homo-a0a067pav0 , pleos-a0a067n337 , 9homo-a0a067pz82 , 9homo-a0a067m7p7 , pleos-a0a067p245 , 9homo-a0a067lrz6 , 9homo-a0a067m4r5 , 9homo-a0a067mr63 , 9homo-a0a067mrq8 , 9agar-a0a067t4j6 , 9homo-a0a067pdz2 , 9homo-a0a067q2n9 , 9agar-a0a067tsx5 , 9homo-a0a067mfq5 , 9homo-a0a067qc90 , pleos-a0a067p113 , 9homo-a0a067pwi6 , 9agar-a0a067s6d7 , 9agar-a0a067tie7 , pleos-a0a067ngc3 , 9agar-a0a067st69 , 9agar-a0a067t6h9 , 9agar-a0a067tj80 , pleos-a0a067npl2 , 9agar-a0a067sm07 , 9agar-a0a067tar9 , 9agar-a0a067tid6 , 9agar-a0a067u335 , pleos-a0a067ndv5 , pleos-a0a067nqw6 , 9homo-a0a067pkj2 , 9agar-a0a067t683 , 9homo-a0a067mgl1 , 9agar-a0a067sg35 , 9homo-a0a067q7g6 , 9agar-a0a067tub0 , 9agar-a0a067t8f5 , 9agar-a0a067tj19 , 9homo-a0a067pyu9 , 9agar-a0a067tjp8 , 9agar-a0a067sjg9 , 9agar-a0a067u0h4 , pleos-a0a067nxe9 , 9agar-a0a067sqt2 , 9agar-a0a067tgx3 , 9homo-a0a067psv8 , 9agar-a0a067sq58 , 9homo-a0a067m4m0 , 9agar-a0a067tqz5 , pleos-a0a067new9 , 9homo-a0a067m9v3 , 9agar-a0a067tlx5 , 9agar-a0a067tfq4 , pleos-a0a067nln4 , pleos-a0a067ndf5 , pleos-a0a067nn26 , pleos-a0a067nfv2 , 9homo-a0a067pnd3 , 9agar-a0a067sw48 , pleos-a0a067neg3 , pleos-a0a067nz51 , pleos-a0a067naf9 , pleos-a0a067nad7 , 9agar-a0a067sxe2 , 9agar-a0a067slu3 , pleos-a0a067n7p8 , pleos-a0a067nl60 , pleos-a0a067ncd0 , 9agar-a0a067th99 , 9agar-a0a067sp22 , pleos-a0a067pbw7 , 9homo-a0a067q916 , 9homo-a0a067pwe5 , galm3-a0a067scb0 , galm3-popa

Title : Pan genome of the phytoplankton Emiliania underpins its global distribution - Read_2013_Nature_499_209
Author(s) : Read BA , Kegel J , Klute MJ , Kuo A , Lefebvre SC , Maumus F , Mayer C , Miller J , Monier A , Salamov A , Young J , Aguilar M , Claverie JM , Frickenhaus S , Gonzalez K , Herman EK , Lin YC , Napier J , Ogata H , Sarno AF , Shmutz J , Schroeder D , de Vargas C , Verret F , von Dassow P , Valentin K , Van de Peer Y , Wheeler G , Dacks JB , Delwiche CF , Dyhrman ST , Glockner G , John U , Richards T , Worden AZ , Zhang X , Grigoriev IV
Ref : Nature , 499 :209 , 2013
Abstract : Coccolithophores have influenced the global climate for over 200 million years. These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems. They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space. Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean. Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.
ESTHER : Read_2013_Nature_499_209
PubMedSearch : Read_2013_Nature_499_209
PubMedID: 23760476

Title : Comparative genomics analysis of Trichoderma reesei strains - Koike_2013_Ind.Biotechnol_9_352
Author(s) : Koike H , Aerts A , LaButti K , Grigoriev IV , Baker SE
Ref : Ind Biotech , 9 :352 , 2013
Abstract : Trichoderma reesei is a key fungus for industrial production of lignocellulolytic enzymes. The genome sequences of the T. reesei hyper-cellulolytic strain RUT-C30 and its parental strain QM6a were compared at the nucleotide level. Approximately 97% of the 87 genomic-sequence scaffolds of T. reesei QM6a (33Mb) were found to have the corresponding nucleotide in the 182 genome-sequence scaffolds of RUT-C30 (32Mb). There are 455 loci within the QM6 sequence not detected in the RUT-C30 sequence. Regions at the termini of QM6a scaffolds as well as 14 small scaffolds do not have corresponding regions in RUT-C30 genomic scaffolds. Seventy-eight protein-encoding genes are included within these regions. Mutated nucleotide(s) in 2,371 positions, including short insertion/deletions (indels), were detected in the aligned regions. The predicted protein-coding regions of 97 gene models contain mutations, 34 of which were not previously described. Twenty-seven out of 34 newly discovered genes were found to have mutations in the peptide amino acid sequence. This is in addition to 63 genes described in a previous study based on low coverage sequencing of RUT-C30. These newly identified proteins are involved in signal transduction, transcription, RNA processing and modification, and post-translational modification according to their annotations. Similar distributions of eukaryotic orthologous group (KOG) categories between the mutated and all other proteins suggest random mutation. The roles of the mutated genes and potential regulatory regions in the observed phenotype of RUT-C30 remain to be explored in a targeted fashion.
ESTHER : Koike_2013_Ind.Biotechnol_9_352
PubMedSearch : Koike_2013_Ind.Biotechnol_9_352
Gene_locus related to this paper: hypjr-a0a024s1s9

Title : Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence - Manning_2013_G3.(Bethesda)_3_41
Author(s) : Manning VA , Pandelova I , Dhillon B , Wilhelm LJ , Goodwin SB , Berlin AM , Figueroa M , Freitag M , Hane JK , Henrissat B , Holman WH , Kodira CD , Martin J , Oliver RP , Robbertse B , Schackwitz W , Schwartz DC , Spatafora JW , Turgeon BG , Yandava C , Young S , Zhou S , Zeng Q , Grigoriev IV , Ma LJ , Ciuffetti LM
Ref : G3 (Bethesda) , 3 :41 , 2013
Abstract : Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.
ESTHER : Manning_2013_G3.(Bethesda)_3_41
PubMedSearch : Manning_2013_G3.(Bethesda)_3_41
PubMedID: 23316438
Gene_locus related to this paper: pyrtr-b2vxe8 , pyrtr-b2vvm1 , pyrtr-b2vzr5 , pyrtr-b2vu22 , pyrtr-kex1

Title : Comparative genome structure, secondary metabolite, and effector coding capacity across Cochliobolus pathogens - Condon_2013_PLoS.Genet_9_e1003233
Author(s) : Condon BJ , Leng Y , Wu D , Bushley KE , Ohm RA , Otillar R , Martin J , Schackwitz W , Grimwood J , MohdZainudin N , Xue C , Wang R , Manning VA , Dhillon B , Tu ZJ , Steffenson BJ , Salamov A , Sun H , Lowry S , LaButti K , Han J , Copeland A , Lindquist E , Barry K , Schmutz J , Baker SE , Ciuffetti LM , Grigoriev IV , Zhong S , Turgeon BG
Ref : PLoS Genet , 9 :e1003233 , 2013
Abstract : The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25x higher than those between inbred lines and 50x lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.
ESTHER : Condon_2013_PLoS.Genet_9_e1003233
PubMedSearch : Condon_2013_PLoS.Genet_9_e1003233
PubMedID: 23357949
Gene_locus related to this paper: cocsn-m2rnc6 , coch5-m2tnl8 , coch4-n4xap8 , sett2-r0j560 , cocsn-m2thl9 , coch5-m2v1s2 , coch4-n4xzy1 , cocsn-m2sqr3 , cocsn-m2rnk8 , coch4-n4xdv7 , coch5-m2uds0 , coch5-m2um94 , sett2-r0i8c5 , coch4-n4wlc8 , coch4-n4x9p3 , cocsn-m2rh47 , cocsn-m2qz08 , sett2-r0jqq6 , sett2-r0imb6 , coch4-n4x7u3 , cocsn-m2rv02 , cocsn-m2sy95 , coch5-m2ubd5 , cocsn-m2t3d2 , sett2-r0kl84 , sett2-r0jts7 , coch4-n4x2h3 , sett2-r0jxt9 , coch4-n4x7r9 , cocsn-m2sh75 , cocsn-m2t5z2 , coch5-m2ucf6 , sett2-r0k664 , cocsn-m2t3q1 , sett2-r0k4b4 , cocsn-m2t4i1 , coch5-m2th93 , cocsn-m2svm8 , cocsn-m2s6q4 , cocsn-m2s5h5 , coch4-n4xf94 , sett2-r0kdl8 , cocsn-m2qvi9 , sett2-r0kfg6 , cocsn-m2szq4 , sett2-r0j437 , coch4-n4x7j4 , coch5-m2twk3 , coch5-m2usf2 , sett2-r0kjt7 , sett2-r0k7y2 , cocsn-m2th03 , sett2-r0iy92 , sett2-r0kbr9 , sett2-r0k997 , coch5-m2sik6 , sett2-r0jzj5 , cocsn-m2r0j6 , coch4-n4x6a4 , cocsn-m2s7a5 , cocsn-m2sv79 , sett2-r0knx4 , sett2-r0ksh8 , sett2-r0ip86 , cocmi-w6yyy3 , cocsn-m2sqe4 , coch4-n4xzc8 , cocvi-w7eyp1 , cocmi-w6zf65 , cocvi-w7er28 , cocca-w6yw25 , cocvi-w7e2g6 , cocmi-w6z7k5 , cocca-w6ys73 , cocca-w6ydq2 , cocca-w6y7i5 , cocmi-w6yyr0 , cocca-w6yh47 , cocmi-w6zju4 , cocca-w6ynq5 , cocmi-w6zm44 , cocca-w6xx85 , cocmi-w6z011 , cocca-w6yre4 , cocmi-w6z9l3 , cocca-w6yfp7 , cocmi-w6zlc2 , cocca-w6yar2 , cocmi-w6yjr7 , cocca-w6yhs1 , cocca-w6xux8 , cocmi-w6z9s8 , cocca-w6yq27 , cocmi-w6zqk9 , cocca-w6xq19 , cocca-w6y1r6 , cocca-w6ygj2 , cocmi-w6zgn4 , cocca-w6ybh2 , cocmi-w6z710 , cocca-w6yk86 , cocmi-w6zjz2 , cocmi-w6z7f2 , cocca-w6xn57 , cocca-w6ybq4 , cocmi-w6yxn5 , cocmi-w6zf08 , cocsn-m2rtg8 , cocmi-w6zuj7 , cocca-w6xtb2 , cocca-w6yk97 , coch5-m2t2x3 , cocmi-w6z646 , cocsn-m2sze4 , sett2-r0kjg6 , cocmi-w6yrn5 , sett2-r0k5q0 , cocvi-w7ezb7 , sett2-r0jtm1 , cocmi-w6ywa1 , cocsn-m2t3e8 , coch5-m2ulw5 , coch5-m2urw9 , sett2-r0knn5 , cocmi-w6ysb2 , cocvi-w7eag7 , cocca-w6y1v2 , sett2-r0i9k2 , coch5-m2uul8 , cocsn-m2sl21

Title : Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis - Tisserant_2013_Proc.Natl.Acad.Sci.U.S.A_110_20117
Author(s) : Tisserant E , Malbreil M , Kuo A , Kohler A , Symeonidi A , Balestrini R , Charron P , Duensing N , Frei dit Frey N , Gianinazzi-Pearson V , Gilbert LB , Handa Y , Herr JR , Hijri M , Koul R , Kawaguchi M , Krajinski F , Lammers PJ , Masclaux FG , Murat C , Morin E , Ndikumana S , Pagni M , Petitpierre D , Requena N , Rosikiewicz P , Riley R , Saito K , San Clemente H , Shapiro H , van Tuinen D , Becard G , Bonfante P , Paszkowski U , Shachar-Hill YY , Tuskan GA , Young JP , Sanders IR , Henrissat B , Rensing SA , Grigoriev IV , Corradi N , Roux C , Martin F
Ref : Proc Natl Acad Sci U S A , 110 :20117 , 2013
Abstract : The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.
ESTHER : Tisserant_2013_Proc.Natl.Acad.Sci.U.S.A_110_20117
PubMedSearch : Tisserant_2013_Proc.Natl.Acad.Sci.U.S.A_110_20117
PubMedID: 24277808
Gene_locus related to this paper: rhiid-u9u175 , rhiid-u9trg1 , rhiid-u9uh96 , rhiid-u9ttu4

Title : Insights into bilaterian evolution from three spiralian genomes - Simakov_2013_Nature_493_526
Author(s) : Simakov O , Marletaz F , Cho SJ , Edsinger-Gonzales E , Havlak P , Hellsten U , Kuo DH , Larsson T , Lv J , Arendt D , Savage R , Osoegawa K , de Jong P , Grimwood J , Chapman JA , Shapiro H , Aerts A , Otillar RP , Terry AY , Boore JL , Grigoriev IV , Lindberg DR , Seaver EC , Weisblat DA , Putnam NH , Rokhsar DS
Ref : Nature , 493 :526 , 2013
Abstract : Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.
ESTHER : Simakov_2013_Nature_493_526
PubMedSearch : Simakov_2013_Nature_493_526
PubMedID: 23254933
Gene_locus related to this paper: capte-r7t7t5 , capte-r7tx98 , capte-r7ua57 , capte-r7ua73 , capte-ACHE1 , capte-ACHE2 , capte-ACHE3 , capte-ACHE4 , helro-ACHE1 , helro-ACHE1b , lotgi-ACHE1 , lotgi-ACHE2 , lotgi-v4aaa2 , lotgi-v3zx52 , lotgi-v4b4v9 , capte-r7tuq9 , capte-r7v997 , capte-r7vgb9 , lotgi-v3zwe9 , capte-r7tu45 , lotgi-v4bvy3 , lotgi-v3zh31 , capte-r7uie6 , lotgi-v4b898 , capte-r7u3w8 , capte-r7uxb2 , lotgi-v3za62 , capte-r7ux79 , capte-r7uq81 , capte-r7vcc3 , capte-r7ts12 , capte-r7u1x0 , capte-r7uhi1 , capte-r7vei7 , capte-r7v0v3 , lotgi-v4bvi8 , lotgi-v3zyd8 , capte-r7tzy6 , lotgi-v3z9i1 , helro-t1fsg3 , capte-x1yv75 , capte-x2b306 , lotgi-v3zcw8 , capte-r7thp6 , helro-t1fy80 , lotgi-v4bky5 , capte-r7tsq9 , lotgi-v4ali9 , lotgi-v4a9f2 , lotgi-v3zjj3 , helro-t1eej5 , helro-t1g9b7 , capte-r7tiy1 , capte-r7tbl5 , helro-t1exa6 , lotgi-v4a5l7 , helro-t1fm33 , capte-r7ud05 , capte-r7tql8 , capte-r7u5g6 , capte-r7u5z3 , capte-r7ue07 , lotgi-v3zk54 , lotgi-v4a4r1 , lotgi-v4aw76 , lotgi-v4b250 , lotgi-v4bbk1 , lotgi-v3zq85 , lotgi-v4a6s5 , lotgi-v4amq2 , lotgi-v4aqm2 , lotgi-v4crq0 , capte-r7tad7 , capte-r7vgm6 , lotgi-v4agl2 , lotgi-v3zur2 , lotgi-v4aui4 , capte-r7tlv8 , lotgi-v3zu07 , helro-t1g0w9

Title : Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs - Curtis_2012_Nature_492_59
Author(s) : Curtis BA , Tanifuji G , Burki F , Gruber A , Irimia M , Maruyama S , Arias MC , Ball SG , Gile GH , Hirakawa Y , Hopkins JF , Kuo A , Rensing SA , Schmutz J , Symeonidi A , Elias M , Eveleigh RJ , Herman EK , Klute MJ , Nakayama T , Obornik M , Reyes-Prieto A , Armbrust EV , Aves SJ , Beiko RG , Coutinho P , Dacks JB , Durnford DG , Fast NM , Green BR , Grisdale CJ , Hempel F , Henrissat B , Hoppner MP , Ishida K , Kim E , Koreny L , Kroth PG , Liu Y , Malik SB , Maier UG , McRose D , Mock T , Neilson JA , Onodera NT , Poole AM , Pritham EJ , Richards TA , Rocap G , Roy SW , Sarai C , Schaack S , Shirato S , Slamovits CH , Spencer DF , Suzuki S , Worden AZ , Zauner S , Barry K , Bell C , Bharti AK , Crow JA , Grimwood J , Kramer R , Lindquist E , Lucas S , Salamov A , McFadden GI , Lane CE , Keeling PJ , Gray MW , Grigoriev IV , Archibald JM
Ref : Nature , 492 :59 , 2012
Abstract : Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.
ESTHER : Curtis_2012_Nature_492_59
PubMedSearch : Curtis_2012_Nature_492_59
PubMedID: 23201678
Gene_locus related to this paper: guith-l1i9i5 , guith-l1k167 , guitc-l1jmn9

Title : The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction - Padamsee_2012_Fungal.Genet.Biol_49_217
Author(s) : Padamsee M , Kumar TK , Riley R , Binder M , Boyd A , Calvo AM , Furukawa K , Hesse C , Hohmann S , James TY , LaButti K , Lapidus A , Lindquist E , Lucas S , Miller K , Shantappa S , Grigoriev IV , Hibbett DS , McLaughlin DJ , Spatafora JW , Aime MC
Ref : Fungal Genet Biol , 49 :217 , 2012
Abstract : Wallemia (Wallemiales, Wallemiomycetes) is a genus of xerophilic Fungi of uncertain phylogenetic position within Basidiomycota. Most commonly found as food contaminants, species of Wallemia have also been isolated from hypersaline environments. The ability to tolerate environments with reduced water activity is rare in Basidiomycota. We sequenced the genome of W. sebi in order to understand its adaptations for surviving in osmotically challenging environments, and we performed phylogenomic and ultrastructural analyses to address its systematic placement and reproductive biology. W. sebi has a compact genome (9.8 Mb), with few repeats and the largest fraction of genes with functional domains compared with other Basidiomycota. We applied several approaches to searching for osmotic stress-related proteins. In silico analyses identified 93 putative osmotic stress proteins; homology searches showed the HOG (High Osmolarity Glycerol) pathway to be mostly conserved. Despite the seemingly reduced genome, several gene family expansions and a high number of transporters (549) were found that also provide clues to the ability of W. sebi to colonize harsh environments. Phylogenetic analyses of a 71-protein dataset support the position of Wallemia as the earliest diverging lineage of Agaricomycotina, which is confirmed by septal pore ultrastructure that shows the septal pore apparatus as a variant of the Tremella-type. Mating type gene homologs were identified although we found no evidence of meiosis during conidiogenesis, suggesting there may be aspects of the life cycle of W. sebi that remain cryptic.
ESTHER : Padamsee_2012_Fungal.Genet.Biol_49_217
PubMedSearch : Padamsee_2012_Fungal.Genet.Biol_49_217
PubMedID: 22326418
Gene_locus related to this paper: walsc-i4y6w1 , walmc-i4y5m3

Title : Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize - Suzuki_2012_BMC.Genomics_13_444
Author(s) : Suzuki H , MacDonald J , Syed K , Salamov A , Hori C , Aerts A , Henrissat B , Wiebenga A , vanKuyk PA , Barry K , Lindquist E , LaButti K , Lapidus A , Lucas S , Coutinho P , Gong Y , Samejima M , Mahadevan R , Abou-Zaid M , de Vries RP , Igarashi K , Yadav JS , Grigoriev IV , Master ER
Ref : BMC Genomics , 13 :444 , 2012
Abstract : BACKGROUND: Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome.
RESULTS: P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood.
CONCLUSIONS: The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.
ESTHER : Suzuki_2012_BMC.Genomics_13_444
PubMedSearch : Suzuki_2012_BMC.Genomics_13_444
PubMedID: 22937793
Gene_locus related to this paper: phacs-k5whx2 , phacs-k5v2s8 , phacs-k5v5r2 , phacs-k5vyk5 , phacs-k5vzf8 , phacs-k5wbu9 , phacs-k5wc10 , phacs-k5wpw0 , phacs-k5wzn6 , phacs-k5x1t8 , phacs-k5x5g6 , phacs-k5x5p4

Title : Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche - Morin_2012_Proc.Natl.Acad.Sci.U.S.A_109_17501
Author(s) : Morin E , Kohler A , Baker AR , Foulongne-Oriol M , Lombard V , Nagy LG , Ohm RA , Patyshakuliyeva A , Brun A , Aerts AL , Bailey AM , Billette C , Coutinho PM , Deakin G , Doddapaneni H , Floudas D , Grimwood J , Hilden K , Kues U , LaButti KM , Lapidus A , Lindquist EA , Lucas SM , Murat C , Riley RW , Salamov AA , Schmutz J , Subramanian V , Wosten HA , Xu J , Eastwood DC , Foster GD , Sonnenberg AS , Cullen D , de Vries RP , Lundell T , Hibbett DS , Henrissat B , Burton KS , Kerrigan RW , Challen MP , Grigoriev IV , Martin F
Ref : Proc Natl Acad Sci U S A , 109 :17501 , 2012
Abstract : Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and beta-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.
ESTHER : Morin_2012_Proc.Natl.Acad.Sci.U.S.A_109_17501
PubMedSearch : Morin_2012_Proc.Natl.Acad.Sci.U.S.A_109_17501
PubMedID: 23045686
Gene_locus related to this paper: agabu-k5x1b4 , agabu-k5x521 , agabu-k5w389 , agabu-k5wbk9 , agabu-k5wrh0 , agabu-k5ws85 , agabu-k5wsf9 , agabu-k5wxv1 , agabu-k5x0d9 , agabu-k5x588 , agabu-k5x5x2 , agabu-k5xd51 , agabu-k5xh54 , agabu-k5xsm1 , agabu-k5xsp8 , agabu-k5xtc1 , agabu-k5y2v2 , agabb-k9i3g9 , agabb-k9hnv7 , agabb-k9hr46 , agabu-k5wys0

Title : The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes - Floudas_2012_Science_336_1715
Author(s) : Floudas D , Binder M , Riley R , Barry K , Blanchette RA , Henrissat B , Martinez AT , Otillar R , Spatafora JW , Yadav JS , Aerts A , Benoit I , Boyd A , Carlson A , Copeland A , Coutinho PM , de Vries RP , Ferreira P , Findley K , Foster B , Gaskell J , Glotzer D , Gorecki P , Heitman J , Hesse C , Hori C , Igarashi K , Jurgens JA , Kallen N , Kersten P , Kohler A , Kues U , Kumar TK , Kuo A , LaButti K , Larrondo LF , Lindquist E , Ling A , Lombard V , Lucas S , Lundell T , Martin R , McLaughlin DJ , Morgenstern I , Morin E , Murat C , Nagy LG , Nolan M , Ohm RA , Patyshakuliyeva A , Rokas A , Ruiz-Duenas FJ , Sabat G , Salamov A , Samejima M , Schmutz J , Slot JC , St John F , Stenlid J , Sun H , Sun S , Syed K , Tsang A , Wiebenga A , Young D , Pisabarro A , Eastwood DC , Martin F , Cullen D , Grigoriev IV , Hibbett DS
Ref : Science , 336 :1715 , 2012
Abstract : Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non-lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.
ESTHER : Floudas_2012_Science_336_1715
PubMedSearch : Floudas_2012_Science_336_1715
PubMedID: 22745431
Gene_locus related to this paper: aurde-j0d098 , aurde-j0dc31 , glota-s7rlc1 , fompi-s8f7s4 , dacsp-m5fpg2 , dicsq-r7sm16 , dacsp-m5g7q5 , dacsp-m5fr12 , glota-s7q5w3 , fompi-s8f826.1 , fompi-s8f826.2 , dicsq-r7sy09 , glota-s7rt87 , dicsq-r7t032 , glota-s7rym7 , fompi-s8fiv2 , dacsp-m5gda3.2 , dicsq-r7swi6 , dacsp-m5frf2 , fompi-s8ebb6 , dicsq-r7sln3 , dicsq-r7sya6 , dacsp-m5g7g1 , dicsq-r7syx7 , dicsq-r7sx57 , dacsp-m5fps7 , glota-s7pwi7 , dicsq-r7swj6 , fompi-s8ejq6 , dicsq-r7spc3 , glota-s7q258 , dacsp-m5ft65 , glota-s7q3m7 , fompi-s8dkc7 , glota-s7q1z1 , fompi-s8eqi2 , glota-s7q1z8 , fompi-s8du50 , dacsp-m5gg33 , dacsp-m5g3a7 , fompi-s8ecd7 , fompi-s8dps1 , dacsp-m5fwr0 , dicsq-r7sub7 , glota-s7q8k9 , fompi-s8ffc3 , dacsp-m5g2f9 , fompi-s8ecc2 , dacsp-m5g868 , fompi-s8f890 , dicsq-r7t1a8 , fompi-s8ebx4 , fompi-s8eb97 , glota-s7q222 , glota-s7puf0 , fompi-s8f6v9 , dacsp-m5g0z2 , dacsp-m5gdh9 , fompi-s8fb37 , dacsp-m5fy91 , glota-s7q5v6 , fompi-s8fl44 , dicsq-r7stv9 , dicsq-r7szk3 , fompi-s8epq9 , glota-s7rh56 , dacsp-m5gbt1 , punst-r7s3x9 , punst-r7s0t5 , glota-s7q312 , glota-s7rhh6 , dicsq-r7t117 , dicsq-r7slz3

Title : The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry - de Wit_2012_PLoS.Genet_8_E1003088
Author(s) : de Wit PJ , van der Burgt A , Okmen B , Stergiopoulos I , Abd-Elsalam KA , Aerts AL , Bahkali AH , Beenen HG , Chettri P , Cox MP , Datema E , de Vries RP , Dhillon B , Ganley AR , Griffiths SA , Guo Y , Hamelin RC , Henrissat B , Kabir MS , Jashni MK , Kema G , Klaubauf S , Lapidus A , Levasseur A , Lindquist E , Mehrabi R , Ohm RA , Owen TJ , Salamov A , Schwelm A , Schijlen E , Sun H , van den Burg HA , van Ham RC , Zhang S , Goodwin SB , Grigoriev IV , Collemare J , Bradshaw RE
Ref : PLoS Genet , 8 :e1003088 , 2012
Abstract : We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an alpha-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.
ESTHER : de Wit_2012_PLoS.Genet_8_E1003088
PubMedSearch : de Wit_2012_PLoS.Genet_8_E1003088
PubMedID: 23209441
Gene_locus related to this paper: mycpj-q30dw8 , mycp1-n1pnd6 , mycp1-n1per0 , mycp1-n1pg49 , mycp1-n1pwj1 , mycp1-n1pcl8 , mycp1-m2y2b1 , mycp1-n1pwu7 , mycp1-n1ppa8 , mycp1-m2yk59 , mycp1-n1pps5 , mycp1-n1pw13 , mycp1-n1pe19 , mycp1-m2xhl1 , mycp1-n1pnh6 , mycp1-n1psn5 , mycp1-n1puh9 , mycp1-n1phf7 , mycp1-m2y2h4 , mycp1-n1q523 , dotsn-n1q1b1 , dotsn-n1q415 , dotsn-est1

Title : Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi - Ohm_2012_PLoS.Pathog_8_e1003037
Author(s) : Ohm RA , Feau N , Henrissat B , Schoch CL , Horwitz BA , Barry KW , Condon BJ , Copeland AC , Dhillon B , Glaser F , Hesse CN , Kosti I , LaButti K , Lindquist EA , Lucas S , Salamov AA , Bradshaw RE , Ciuffetti L , Hamelin RC , Kema GH , Lawrence C , Scott JA , Spatafora JW , Turgeon BG , de Wit PJ , Zhong S , Goodwin SB , Grigoriev IV
Ref : PLoS Pathog , 8 :e1003037 , 2012
Abstract : The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.
ESTHER : Ohm_2012_PLoS.Pathog_8_e1003037
PubMedSearch : Ohm_2012_PLoS.Pathog_8_e1003037
PubMedID: 23236275
Gene_locus related to this paper: mycpj-q30dw8 , sphms-m3db71 , bauco-m2n3p9 , cocsn-m2rnc6 , coch5-m2tnl8 , coch4-n4xap8 , sett2-r0j560 , bauco-m2lw45 , cocsn-m2thl9 , bauco-m2nan7 , sphms-m3asf7 , coch5-m2v1s2 , mycfi-m3am36 , coch4-n4xzy1 , mycfi-m3b3x0 , cocsn-m2sqr3 , cocsn-m2rnk8 , mycp1-n1pnd6 , bauco-m2n7y7 , coch4-n4xdv7 , coch5-m2uds0 , coch5-m2um94 , sett2-r0i8c5 , coch4-n4wlc8 , coch4-n4x9p3 , cocsn-m2rh47 , cocsn-m2qz08 , sett2-r0jqq6 , mycfi-m2yiq2 , sett2-r0imb6 , sphms-m3b727 , coch4-n4x7u3 , cocsn-m2rv02 , cocsn-m2sy95 , coch5-m2ubd5 , mycp1-n1per0 , mycp1-n1pg49 , mycfi-n1q8u1 , mycp1-n1pwj1 , mycp1-n1pcl8 , bauco-m2n330 , cocsn-m2t3d2 , mycfi-m3b223 , sett2-r0kl84 , bauco-m2lu86 , mycfi-m3b1s8 , sett2-r0jts7 , mycfi-m3amn9 , bauco-m2nf03 , mycfi-m3a015 , sphms-n1qgv4 , coch4-n4x2h3 , mycp1-m2y2b1 , sett2-r0jxt9 , mycfi-m2zg05 , sphms-m3cr09 , coch4-n4x7r9 , mycfi-m2yip7 , mycp1-n1pwu7 , cocsn-m2sh75 , cocsn-m2t5z2 , coch5-m2ucf6 , sphms-m3c9s8 , sphms-m3c383 , mycp1-n1ppa8 , sett2-r0k664 , cocsn-m2t3q1 , sett2-r0k4b4 , cocsn-m2t4i1 , bauco-m2lzw1 , coch5-m2th93 , cocsn-m2svm8 , sphms-m3d7h2 , sphms-m3cwc3 , mycfi-m3b329 , bauco-m2n4x9 , cocsn-m2s6q4 , mycfi-m3b7x7 , mycp1-m2yk59 , cocsn-m2s5h5 , bauco-m2nfr9 , bauco-m2myk4 , coch4-n4xf94 , mycfi-m3a252 , sphms-n1qes8 , mycp1-n1pps5 , sett2-r0kdl8 , cocsn-m2qvi9 , sett2-r0kfg6 , bauco-m2n1q0 , cocsn-m2szq4 , sett2-r0j437 , coch4-n4x7j4 , mycfi-m3b4h3 , coch5-m2twk3 , coch5-m2usf2 , sett2-r0kjt7 , mycfi-m2yrk1 , bauco-m2n4g8 , sett2-r0k7y2 , cocsn-m2th03 , sett2-r0iy92 , sett2-r0kbr9 , sett2-r0k997 , coch5-m2sik6 , bauco-m2n0g0 , bauco-m2lkk0 , sett2-r0jzj5 , sphms-m3bs21 , mycfi-m3a3h8 , mycp1-n1pw13 , cocsn-m2r0j6 , mycp1-n1pe19 , coch4-n4x6a4 , mycp1-m2xhl1 , cocsn-m2s7a5 , cocsn-m2sv79 , mycfi-n1qbd7 , mycp1-n1pnh6 , sphms-m3cz62 , sett2-r0knx4 , bauco-m2nlz2 , mycp1-n1psn5 , sett2-r0ksh8 , bauco-m2n3v9 , bauco-m2n9y7 , mycp1-n1puh9 , sett2-r0ip86 , sphms-m3c6j1 , sphms-n1qnq9 , cocsn-m2sqe4 , coch4-n4xzc8 , mycfi-m3ali0 , mycfi-m3a5j4 , mycp1-n1phf7 , bauco-m2myw5 , mycp1-m2y2h4 , mycfi-m3as05 , sphms-m3ccg5 , cocsn-m2rtg8 , sphms-n1qny5 , mycfi-n1q7c3 , mycp1-n1q523 , bauco-m2m190 , psefd-m3awp8 , sphms-n1qfl1 , dotsn-n1q1b1 , sphms-m3dcu2 , bauco-m2m7v7 , psefd-m3bad8 , bauco-m2nft5 , psefd-m3b4x7 , sphms-n1qdh4 , sphms-m3cq38 , bauco-m2mz43 , coch5-m2t2x3 , cocsn-m2sze4 , sphms-n1qfm9 , sett2-r0kjg6 , sett2-r0k5q0 , cocvi-w7ezb7 , sett2-r0jtm1 , cocmi-w6ywa1 , psefd-m3a663 , baupa-m2mxl2 , cocsn-m2t3e8 , coch5-m2ulw5 , coch5-m2urw9 , sett2-r0knn5 , cocca-w6y1v2 , baupa-m2nq79 , sett2-r0i9k2 , coch5-m2uul8 , dotsn-n1q415 , psefd-n1qcy3 , cocsn-m2sl21 , baupa-m2luc8 , dotsn-est1

Title : The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation - Blanc_2012_Genome.Biol_13_R39
Author(s) : Blanc G , Agarkova I , Grimwood J , Kuo A , Brueggeman A , Dunigan DD , Gurnon J , Ladunga I , Lindquist E , Lucas S , Pangilinan J , Proschold T , Salamov A , Schmutz J , Weeks D , Yamada T , Lomsadze A , Borodovsky M , Claverie JM , Grigoriev IV , Van Etten JL
Ref : Genome Biol , 13 :R39 , 2012
Abstract : BACKGROUND: Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced.
RESULTS: The 48.8 Mb genome contained in 20 chromosomes exhibits significant synteny conservation with the chromosomes of its relatives Chlorella variabilis and Chlamydomonas reinhardtii. The order of the genes is highly reshuffled within synteny blocks, suggesting that intra-chromosomal rearrangements were more prevalent than inter-chromosomal rearrangements. Remarkably, Zepp retrotransposons occur in clusters of nested elements with strictly one cluster per chromosome probably residing at the centromere. Several protein families overrepresented in C. subellipsoidae include proteins involved in lipid metabolism, transporters, cellulose synthases and short alcohol dehydrogenases. Conversely, C-169 lacks proteins that exist in all other sequenced chlorophytes, including components of the glycosyl phosphatidyl inositol anchoring system, pyruvate phosphate dikinase and the photosystem 1 reaction center subunit N (PsaN).
CONCLUSIONS: We suggest that some of these gene losses and gains could have contributed to adaptation to low temperatures. Comparison of these genomic features with the adaptive strategies of psychrophilic microbes suggests that prokaryotes and eukaryotes followed comparable evolutionary routes to adapt to cold environments.
ESTHER : Blanc_2012_Genome.Biol_13_R39
PubMedSearch : Blanc_2012_Genome.Biol_13_R39
PubMedID: 22630137
Gene_locus related to this paper: 9chlo-i0z4k0 , 9chlo-i0ylt0 , cocsc-i0ytb9 , cocsc-i0yin5

Title : Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis - Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
Author(s) : Fernandez-Fueyo E , Ruiz-Duenas FJ , Ferreira P , Floudas D , Hibbett DS , Canessa P , Larrondo LF , James TY , Seelenfreund D , Lobos S , Polanco R , Tello M , Honda Y , Watanabe T , Ryu JS , Kubicek CP , Schmoll M , Gaskell J , Hammel KE , St John FJ , Vanden Wymelenberg A , Sabat G , Splinter BonDurant S , Syed K , Yadav JS , Doddapaneni H , Subramanian V , Lavin JL , Oguiza JA , Perez G , Pisabarro AG , Ramirez L , Santoyo F , Master E , Coutinho PM , Henrissat B , Lombard V , Magnuson JK , Kues U , Hori C , Igarashi K , Samejima M , Held BW , Barry KW , LaButti KM , Lapidus A , Lindquist EA , Lucas SM , Riley R , Salamov AA , Hoffmeister D , Schwenk D , Hadar Y , Yarden O , de Vries RP , Wiebenga A , Stenlid J , Eastwood D , Grigoriev IV , Berka RM , Blanchette RA , Kersten P , Martinez AT , Vicuna R , Cullen D
Ref : Proc Natl Acad Sci U S A , 109 :5458 , 2012
Abstract : Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn(2+). Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.
ESTHER : Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
PubMedSearch : Fernandez-Fueyo_2012_Proc.Natl.Acad.Sci.U.S.A_109_5458
PubMedID: 22434909
Gene_locus related to this paper: cers8-m2r3x2 , cers8-m2qf37 , cers8-m2pcy7 , cers8-m2pcz3 , cers8-m2qn26 , cers8-m2r654 , cers8-m2r8g9 , cers8-m2ps90 , cers8-m2qn44 , cers8-m2q837 , cers8-m2pjy6 , cers8-m2r609 , cers8-m2qy35 , cers8-m2r1n1 , cers8-m2rl22 , cers8-m2qkx5 , cers8-m2qib7 , cers8-m2rgs8 , cers8-m2rlx6 , cers8-m2r4p3 , cers8-m2rf62 , cers8-m2qyx5 , cers8-m2pcz2 , cers8-m2rm22 , cers8-m2qwb7 , cers8-m2r9u3 , cers8-m2pp23 , cers8-m2r613 , cers8-m2rup8 , cers8-m2piv7 , cers8-m2rch3 , cers8-m2qvf7 , cers8-m2qvb7 , cers8-m2qvb2 , cers8-m2pip7 , cers8-m2rb73 , cers8-m2qgd3 , cers8-m2rcg8 , cers8-m2rb68

Title : Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen - Olson_2012_New.Phytol_194_1001
Author(s) : Olson A , Aerts A , Asiegbu F , Belbahri L , Bouzid O , Broberg A , Canback B , Coutinho PM , Cullen D , Dalman K , Deflorio G , van Diepen LT , Dunand C , Duplessis S , Durling M , Gonthier P , Grimwood J , Fossdal CG , Hansson D , Henrissat B , Hietala A , Himmelstrand K , Hoffmeister D , Hogberg N , James TY , Karlsson M , Kohler A , Kues U , Lee YH , Lin YC , Lind M , Lindquist E , Lombard V , Lucas S , Lunden K , Morin E , Murat C , Park J , Raffaello T , Rouze P , Salamov A , Schmutz J , Solheim H , Stahlberg J , Velez H , de Vries RP , Wiebenga A , Woodward S , Yakovlev I , Garbelotto M , Martin F , Grigoriev IV , Stenlid J
Ref : New Phytol , 194 :1001 , 2012
Abstract : Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess the trade-off between these strategies is provided by the forest pathogen and wood decayer Heterobasidion annosum sensu lato. We report the annotated genome sequence and transcript profiling, as well as the quantitative trait loci mapping, of one member of the species complex: H. irregulare. Quantitative trait loci critical for pathogenicity, and rich in transposable elements, orphan and secreted genes, were identified. A wide range of cellulose-degrading enzymes are expressed during wood decay. By contrast, pathogenic interaction between H. irregulare and pine engages fewer carbohydrate-active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress and secondary metabolite production. Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living hosts. Our findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct, yet overlapping, processes.
ESTHER : Olson_2012_New.Phytol_194_1001
PubMedSearch : Olson_2012_New.Phytol_194_1001
PubMedID: 22463738
Gene_locus related to this paper: 9homo-w4jrb9 , 9homo-w4jsg4 , 9homo-w4kds7 , 9homo-w4jwl9 , 9homo-w4kjy2 , 9homo-w4jw43 , 9homo-w4ka20 , 9homo-w4k8t3 , 9homo-w4jz43 , 9homo-w4k8q2 , 9homo-w4k910 , 9homo-w4k6f5 , 9homo-w4k6j3 , 9homo-w4k8n2 , 9homo-w4jrf3 , 9homo-w4ke07 , 9homo-w4k3i8 , 9homo-w4jqh1 , 9agam-w4k203 , 9agam-w4jpy3 , 9agam-w4jn81 , 9agam-w4jmz2

Title : Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis - Goodwin_2011_PLoS.Genet_7_e1002070
Author(s) : Goodwin SB , M'Barek S B , Dhillon B , Wittenberg AH , Crane CF , Hane JK , Foster AJ , Van der Lee TA , Grimwood J , Aerts A , Antoniw J , Bailey A , Bluhm B , Bowler J , Bristow J , van der Burgt A , Canto-Canche B , Churchill AC , Conde-Ferraez L , Cools HJ , Coutinho PM , Csukai M , Dehal P , De Wit P , Donzelli B , van de Geest HC , van Ham RC , Hammond-Kosack KE , Henrissat B , Kilian A , Kobayashi AK , Koopmann E , Kourmpetis Y , Kuzniar A , Lindquist E , Lombard V , Maliepaard C , Martins N , Mehrabi R , Nap JP , Ponomarenko A , Rudd JJ , Salamov A , Schmutz J , Schouten HJ , Shapiro H , Stergiopoulos I , Torriani SF , Tu H , de Vries RP , Waalwijk C , Ware SB , Wiebenga A , Zwiers LH , Oliver RP , Grigoriev IV , Kema GH
Ref : PLoS Genet , 7 :e1002070 , 2011
Abstract : The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed "mesosynteny" is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors.
ESTHER : Goodwin_2011_PLoS.Genet_7_e1002070
PubMedSearch : Goodwin_2011_PLoS.Genet_7_e1002070
PubMedID: 21695235
Gene_locus related to this paper: zymti-f9wzw8 , zymti-f9x2y6 , zymti-f9x423 , zymti-f9x813 , zymti-f9xa54 , zymti-f9xb42 , zymti-f9xbu5 , zymti-f9xcr9 , zymti-f9xdr7 , zymti-f9xer1 , zymti-f9xez8 , zymti-f9xfz9 , zymti-f9xh29 , zymti-f9xhe7 , zymti-f9xhr4 , zymti-f9xk09 , zymti-f9xns5 , zymti-f9xiu1 , zymti-f9xng3 , zymti-f9x4f2 , zymti-f9x4s7 , zymti-f9xdm8 , zymti-f9wwy9 , zymti-f9xkf2 , zymti-f9xlt3 , zymti-f9x0i3 , zymti-f9wwa6 , zymti-f9wyk7 , zymti-f9x3z1 , zymti-f9xf16 , zymtr-a0a1x7rhi5 , zymti-f9xfj3 , zymti-pks1

Title : Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88 - Andersen_2011_Genome.Res_21_885
Author(s) : Andersen MR , Salazar MP , Schaap PJ , van de Vondervoort PJ , Culley D , Thykaer J , Frisvad JC , Nielsen KF , Albang R , Albermann K , Berka RM , Braus GH , Braus-Stromeyer SA , Corrochano LM , Dai Z , van Dijck PW , Hofmann G , Lasure LL , Magnuson JK , Menke H , Meijer M , Meijer SL , Nielsen JB , Nielsen ML , van Ooyen AJ , Pel HJ , Poulsen L , Samson RA , Stam H , Tsang A , van den Brink JM , Atkins A , Aerts A , Shapiro H , Pangilinan J , Salamov A , Lou Y , Lindquist E , Lucas S , Grimwood J , Grigoriev IV , Kubicek CP , Martinez D , van Peij NN , Roubos JA , Nielsen J , Baker SE
Ref : Genome Res , 21 :885 , 2011
Abstract : The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.
ESTHER : Andersen_2011_Genome.Res_21_885
PubMedSearch : Andersen_2011_Genome.Res_21_885
PubMedID: 21543515
Gene_locus related to this paper: aspna-g3y4g9 , aspna-g3yal2 , aspna-g3ycq2 , aspnc-a2qbh3 , aspnc-a2qe77 , aspnc-a2qf54 , aspnc-a2qfe9 , aspnc-a2qg33 , aspnc-a2qh76 , aspnc-a2qhe2 , aspnc-a2qi32 , aspnc-a2ql89 , aspnc-a2ql90 , aspnc-a2qla0 , aspnc-a2qmk5 , aspnc-a2qn56 , aspnc-a2qs22 , aspnc-a2qti9 , aspnc-a2qtz0 , aspnc-a2quc1 , aspnc-a2qx92 , aspnc-a2qyf0 , aspnc-a2qys7 , aspnc-a2qz72 , aspnc-a2qzn6 , aspnc-a2qzr0 , aspnc-a2qzx0 , aspnc-a2qzx4 , aspnc-a2r0p4 , aspnc-a2r1r5 , aspnc-a2r2i5 , aspnc-a2r5r4 , aspnc-a2r6h5 , aspnc-a2r8r3 , aspnc-a2r8z3 , aspnc-a2r273 , aspnc-a2r496 , aspnc-a2r502 , aspnc-a5abe5 , aspnc-a5abe8 , aspnc-a5abh9 , aspnc-a5abk1 , aspnc-axe1 , aspnc-cuti1 , aspnc-cuti2 , aspng-a2qs46 , aspng-a2qv27 , aspni-EstA , aspkw-g7y0v7 , aspnc-a2qt47 , aspnc-a2qt66 , aspna-g3xpq9 , aspnc-a2qqa1 , aspna-g3xsl3 , aspna-g3y5a6 , aspna-g3xpw9 , aspaw-a0a401kpx5 , aspnc-a2qw57 , aspaw-a0a401kcz4 , aspna-alba , aspna-azac

Title : Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics - Gobler_2011_Proc.Natl.Acad.Sci.U.S.A_108_4352
Author(s) : Gobler CJ , Berry DL , Dyhrman ST , Wilhelm SW , Salamov A , Lobanov AV , Zhang Y , Collier JL , Wurch LL , Kustka AB , Dill BD , Shah M , VerBerkmoes NC , Kuo A , Terry A , Pangilinan J , Lindquist EA , Lucas S , Paulsen IT , Hattenrath-Lehmann TK , Talmage SC , Walker EA , Koch F , Burson AM , Marcoval MA , Tang YZ , Lecleir GR , Coyne KJ , Berg GM , Bertrand EM , Saito MA , Gladyshev VN , Grigoriev IV
Ref : Proc Natl Acad Sci U S A , 108 :4352 , 2011
Abstract : Harmful algal blooms (HABs) cause significant economic and ecological damage worldwide. Despite considerable efforts, a comprehensive understanding of the factors that promote these blooms has been lacking, because the biochemical pathways that facilitate their dominance relative to other phytoplankton within specific environments have not been identified. Here, biogeochemical measurements showed that the harmful alga Aureococcus anophagefferens outcompeted co-occurring phytoplankton in estuaries with elevated levels of dissolved organic matter and turbidity and low levels of dissolved inorganic nitrogen. We subsequently sequenced the genome of A. anophagefferens and compared its gene complement with those of six competing phytoplankton species identified through metaproteomics. Using an ecogenomic approach, we specifically focused on gene sets that may facilitate dominance within the environmental conditions present during blooms. A. anophagefferens possesses a larger genome (56 Mbp) and has more genes involved in light harvesting, organic carbon and nitrogen use, and encoding selenium- and metal-requiring enzymes than competing phytoplankton. Genes for the synthesis of microbial deterrents likely permit the proliferation of this species, with reduced mortality losses during blooms. Collectively, these findings suggest that anthropogenic activities resulting in elevated levels of turbidity, organic matter, and metals have opened a niche within coastal ecosystems that ideally suits the unique genetic capacity of A. anophagefferens and thus, has facilitated the proliferation of this and potentially other HABs.
ESTHER : Gobler_2011_Proc.Natl.Acad.Sci.U.S.A_108_4352
PubMedSearch : Gobler_2011_Proc.Natl.Acad.Sci.U.S.A_108_4352
PubMedID: 21368207
Gene_locus related to this paper: auran-f0xvq5 , auran-f0xwb9 , auran-f0y4x4 , auran-f0y5a8 , auran-f0ycl4 , auran-f0ycp7 , auran-f0ye99 , auran-f0yge8 , auran-f0yci9 , auran-f0yr72 , auran-f0y8q8 , auran-f0y7s1

Title : Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum - Sucgang_2011_Genome.Biol_12_R20.1
Author(s) : Sucgang R , Kuo A , Tian X , Salerno W , Parikh A , Feasley CL , Dalin E , Tu H , Huang E , Barry K , Lindquist E , Shapiro H , Bruce D , Schmutz J , Salamov A , Fey P , Gaudet P , Anjard C , Babu MM , Basu S , Bushmanova Y , van der Wel H , Katoh-Kurasawa M , Dinh C , Coutinho PM , Saito T , Elias M , Schaap P , Kay RR , Henrissat B , Eichinger L , Rivero F , Putnam NH , West CM , Loomis WF , Chisholm RL , Shaulsky G , Strassmann JE , Queller DC , Kuspa A , Grigoriev IV
Ref : Genome Biol , 12 :R20 , 2011
Abstract : BACKGROUND: The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum.
RESULTS: We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 x coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict.
CONCLUSIONS: The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.
ESTHER : Sucgang_2011_Genome.Biol_12_R20.1
PubMedSearch : Sucgang_2011_Genome.Biol_12_R20.1
PubMedID: 21356102
Gene_locus related to this paper: dicpu-f0z7q0 , dicpu-f0z822 , dicpu-f0zfi0 , dicpu-f0zjs1 , dicpu-f0zks4 , dicpu-f0zmm3 , dicpu-f0zmm8 , dicpu-f0zmm9 , dicpu-f0zni7 , dicpu-f0znl3 , dicpu-f0zq90 , dicpu-f0zvn5 , dicpu-f0zxa4 , dicpu-f0zyf9 , dicpu-f1a3n5 , dicpu-f1a5b4 , dicpu-f1a269 , dicpu-f1a615 , dicpu-f0ztw9 , dicpu-f0zri3 , dicpu-f0zys7

Title : Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma - Kubicek_2011_Genome.Biol_12_R40
Author(s) : Kubicek CP , Herrera-Estrella A , Seidl-Seiboth V , Martinez DA , Druzhinina IS , Thon M , Zeilinger S , Casas-Flores S , Horwitz BA , Mukherjee PK , Mukherjee M , Kredics L , Alcaraz LD , Aerts A , Antal Z , Atanasova L , Cervantes-Badillo MG , Challacombe J , Chertkov O , McCluskey K , Coulpier F , Deshpande N , von Dohren H , Ebbole DJ , Esquivel-Naranjo EU , Fekete E , Flipphi M , Glaser F , Gomez-Rodriguez EY , Gruber S , Han C , Henrissat B , Hermosa R , Hernandez-Onate M , Karaffa L , Kosti I , Le Crom S , Lindquist E , Lucas S , Lubeck M , Lubeck PS , Margeot A , Metz B , Misra M , Nevalainen H , Omann M , Packer N , Perrone G , Uresti-Rivera EE , Salamov A , Schmoll M , Seiboth B , Shapiro H , Sukno S , Tamayo-Ramos JA , Tisch D , Wiest A , Wilkinson HH , Zhang M , Coutinho PM , Kenerley CM , Monte E , Baker SE , Grigoriev IV
Ref : Genome Biol , 12 :R40 , 2011
Abstract : BACKGROUND: Mycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.
RESULTS: Here we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei.
CONCLUSIONS: The data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.
ESTHER : Kubicek_2011_Genome.Biol_12_R40
PubMedSearch : Kubicek_2011_Genome.Biol_12_R40
PubMedID: 21501500
Gene_locus related to this paper: hypai-g9nem6 , hypai-g9ng36 , hypai-g9ngu2 , hypai-g9nks5 , hypai-g9nks6 , hypai-g9nqe5 , hypai-g9nqk5 , hypai-g9nrx6 , hypai-g9nsx1 , hypai-g9ntn3 , hypai-g9nzc9 , hypai-g9nzd7 , hypai-g9p1t1 , hypai-g9p1v2 , hypai-g9p2n8 , hypai-g9p4z2 , hypai-g9p878 , hypai-g9pa17 , hypai-g9pbz9 , hypvg-g9mem8 , hypvg-g9mg52 , hypvg-g9mga2 , hypvg-g9mhi3 , hypvg-g9mjc7 , hypvg-g9mk44 , hypvg-g9mms1 , hypvg-g9mnf0 , hypvg-g9mng3 , hypvg-g9mpt0 , hypvg-g9mrp9 , hypvg-g9ms16 , hypvg-g9ms32 , hypvg-g9msv5 , hypvg-g9muh6 , hypvg-g9muk0 , hypvg-g9mwe2 , hypvg-g9my79 , hypvg-g9n0p7 , hypvg-g9n2g3 , hypvg-g9n2g4 , hypvg-g9n4k5 , hypvg-g9n9n0 , hypvg-g9n561 , hypvg-g9n988 , hypvg-g9nb12 , hypvg-g9nb54 , hypvg-g9nbh8 , hypai-g9npz7 , hypai-g9njw6 , hypvg-g9mx08 , hypvg-g9mlt2 , hypai-g9p4j3 , hypvg-g9nbd3 , hypai-g9nxf6 , hypvg-g9n3y9 , hypvg-g9mgs4 , hypai-g9p6m2 , hypvg-g9my62 , hypvg-g9nbv2 , hypvg-g9my22 , hypai-g9p2e2 , hypai-g9p596 , hypai-g9nf87 , hypvg-g9me87 , hypvg-g9ndn9 , hypai-g9niy5 , hypai-g9ntx6 , hypvg-g9n3e7 , hypai-g9nu29 , hypvg-g9n2z0 , hypvg-g9ndf4 , 9hypo-a0a2p4zt82 , hypvg-g9n0g0 , hypvg-g9muj2 , hypvg-g9mud0 , hypai-g9nkx5

Title : The ecoresponsive genome of Daphnia pulex - Colbourne_2011_Science_331_555
Author(s) : Colbourne JK , Pfrender ME , Gilbert D , Thomas WK , Tucker A , Oakley TH , Tokishita S , Aerts A , Arnold GJ , Basu MK , Bauer DJ , Caceres CE , Carmel L , Casola C , Choi JH , Detter JC , Dong Q , Dusheyko S , Eads BD , Frohlich T , Geiler-Samerotte KA , Gerlach D , Hatcher P , Jogdeo S , Krijgsveld J , Kriventseva EV , Kultz D , Laforsch C , Lindquist E , Lopez J , Manak JR , Muller J , Pangilinan J , Patwardhan RP , Pitluck S , Pritham EJ , Rechtsteiner A , Rho M , Rogozin IB , Sakarya O , Salamov A , Schaack S , Shapiro H , Shiga Y , Skalitzky C , Smith Z , Souvorov A , Sung W , Tang Z , Tsuchiya D , Tu H , Vos H , Wang M , Wolf YI , Yamagata H , Yamada T , Ye Y , Shaw JR , Andrews J , Crease TJ , Tang H , Lucas SM , Robertson HM , Bork P , Koonin EV , Zdobnov EM , Grigoriev IV , Lynch M , Boore JL
Ref : Science , 331 :555 , 2011
Abstract : We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.
ESTHER : Colbourne_2011_Science_331_555
PubMedSearch : Colbourne_2011_Science_331_555
PubMedID: 21292972
Gene_locus related to this paper: dappu-e9fut0 , dappu-e9fut9 , dappu-e9fvw6 , dappu-e9fxt4 , dappu-e9fyr6 , dappu-e9fzg6 , dappu-e9g1e2 , dappu-e9g1e6 , dappu-e9g1e7 , dappu-e9g1e8 , dappu-e9g1v3 , dappu-e9g1z2 , dappu-e9gb99 , dappu-e9gba0 , dappu-e9gcb4 , dappu-e9gdv5 , dappu-e9gdv7 , dappu-e9gi24 , dappu-e9gj77 , dappu-e9gja7 , dappu-e9gmp5 , dappu-e9gmr0 , dappu-e9gn32 , dappu-e9gp76 , dappu-e9gp82 , dappu-e9gp98 , dappu-e9gp99 , dappu-e9gvl2 , dappu-e9gzn7 , dappu-e9h1p4 , dappu-e9h2c8 , dappu-e9h2c9 , dappu-e9h6x9 , dappu-e9h6y4 , dappu-e9h7w9 , dappu-e9h8r4 , dappu-e9hd06 , dappu-e9hh56 , dappu-e9hh57 , dappu-e9hh59 , dappu-e9hmp4 , dappu-e9hp64 , dappu-e9hp65 , dappu-e9hpy8 , dappu-e9htg8 , dapul-ACHE1 , dapul-ACHE2 , dappu-e9gnj1 , dappu-e9gu36 , dappu-e9hpc4 , dappu-e9gb07 , dappu-e9glp6 , dappu-e9glp5 , dappu-e9gjv2 , dappu-e9h0c7 , dappu-e9g4g2 , dappu-e9gw69 , dappu-e9h3h9 , dappu-e9g545 , dappu-e9gw71 , dappu-e9gw68 , dappu-e9h3e7 , dappu-e9gfg9 , dappu-e9fvy6 , dappu-e9hgt2

Title : Massive changes in genome architecture accompany the transition to self-fertility in the filamentous fungus Neurospora tetrasperma - Ellison_2011_Genetics_189_55
Author(s) : Ellison CE , Stajich JE , Jacobson DJ , Natvig DO , Lapidus A , Foster B , Aerts A , Riley R , Lindquist EA , Grigoriev IV , Taylor JW
Ref : Genetics , 189 :55 , 2011
Abstract : A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (<5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated with the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration.
ESTHER : Ellison_2011_Genetics_189_55
PubMedSearch : Ellison_2011_Genetics_189_55
PubMedID: 21750257
Gene_locus related to this paper: neucr-90C4.300 , neucr-B19A17.360 , neucr-B23G1.090 , neucr-NCU00292.1 , neucr-NCU02679.1 , neucr-NCU04930.1 , neucr-NCU06573.1 , neucr-NCU08752.1 , neucr-NCU09575.1 , neucr-NCU10022.1 , neucr-q7s1x0 , neucr-q7s216 , neucr-q7s259 , neucr-q7s260 , neucr-q7scr4 , neut8-f8n463 , neut9-g4uk39 , neucr-f5hbr2 , neut8-f8mcp7 , neucr-q7ry64 , neucr-FAED , neut8-f8mrh8

Title : The Arabidopsis lyrata genome sequence and the basis of rapid genome size change - Hu_2011_Nat.Genet_43_476
Author(s) : Hu TT , Pattyn P , Bakker EG , Cao J , Cheng JF , Clark RM , Fahlgren N , Fawcett JA , Grimwood J , Gundlach H , Haberer G , Hollister JD , Ossowski S , Ottilar RP , Salamov AA , Schneeberger K , Spannagl M , Wang X , Yang L , Nasrallah ME , Bergelson J , Carrington JC , Gaut BS , Schmutz J , Mayer KF , Van de Peer Y , Grigoriev IV , Nordborg M , Weigel D , Guo YL
Ref : Nat Genet , 43 :476 , 2011
Abstract : We report the 207-Mb genome sequence of the North American Arabidopsis lyrata strain MN47 based on 8.3x dideoxy sequence coverage. We predict 32,670 genes in this outcrossing species compared to the 27,025 genes in the selfing species Arabidopsis thaliana. The much smaller 125-Mb genome of A. thaliana, which diverged from A. lyrata 10 million years ago, likely constitutes the derived state for the family. We found evidence for DNA loss from large-scale rearrangements, but most of the difference in genome size can be attributed to hundreds of thousands of small deletions, mostly in noncoding DNA and transposons. Analysis of deletions and insertions still segregating in A. thaliana indicates that the process of DNA loss is ongoing, suggesting pervasive selection for a smaller genome. The high-quality reference genome sequence for A. lyrata will be an important resource for functional, evolutionary and ecological studies in the genus Arabidopsis.
ESTHER : Hu_2011_Nat.Genet_43_476
PubMedSearch : Hu_2011_Nat.Genet_43_476
PubMedID: 21478890
Gene_locus related to this paper: arall-d7kc59 , arall-d7kfz1 , arall-d7kjk9 , arall-d7kk58 , arall-d7kuj1 , arall-d7kwx5 , arall-d7kzq8 , arall-d7laf7 , arall-D7LAK6 , arall-d7ltj2 , arall-d7lu11 , arall-d7ly06 , arall-d7lyn6 , arall-d7m1k0 , arall-d7m1k1 , arall-d7m1k3 , arall-d7m1l4 , arall-d7m814 , arall-d7mbk0 , arall-d7mbn8 , arall-d7mgs1 , arall-d7mi04 , arall-d7mld7 , arall-d7mpg7 , arall-d7mul9 , arath-At2g45610 , arath-At1g05790 , arath-At1g09980 , arath-At1g18360 , arath-AT1G29120 , arath-AT1G73920 , arath-AT1G76140 , arath-AT2G05260 , arath-At2g15230 , arath-At2g24280 , arath-AT2G42690 , arath-At2g47630 , arath-AT3G12150 , arath-At3g61680 , arath-AT3g62590 , arath-AT4G00500 , arath-AT4G25770 , arath-AT4g30610 , arath-At5g11650 , arath-At5g13640 , arath-AT5G19050 , arath-AT5G20060 , arath-AT5G20520 , arath-AT5G27320 , arath-At5g42930 , arath-At5g47330 , arath-CGEP , arath-clh1 , arath-clh2 , arath-F1N13.220 , arath-F2G14.100 , arath-F12A4.4 , arath-F14O10.2 , arath-SCP27 , arath-HNL , arath-GID1B , arath-LIP2 , arath-At5g17670 , arath-pip , arath-PLA11 , arath-PLA12 , arath-PLA13 , arath-PLA15 , arath-PLA17 , arath-Q8LPF5 , arath-Q9FFZ1 , arath-Q9FJ29 , arath-Q9FKP9 , arath-Q9FNF6 , arath-q9lhe8 , arath-Q9SFF6 , arath-q84w08 , arath-SCP7 , arath-SCP8 , arath-SCP26 , arath-SCP28 , arath-SCP33 , arath-SCP40 , arath-SCPL34 , arath-At4g12230 , arath-MES14 , arath-T19F11.2 , arath-MES10 , arath-At5g11790 , arath-T26B15.8 , arath-ZW18 , arall-d7l971 , arall-d7lfd3 , arall-d7lg04 , arall-d7lg05 , arall-d7lg06 , arall-d7lg07 , arall-d7mb17 , arall-d7mb18 , arall-d7l7v2 , arall-d7l7v3 , arall-d7lst0 , arall-d7lfw9 , arall-d7mgs6 , arall-d7mur3 , arall-d7kjr5 , arall-d7l7v1 , arall-d7ls88 , arall-d7kzg6 , arall-d7kcm6 , arall-d7krm0 , arall-d7kwe4 , arall-d7lri7 , arall-d7kq26

Title : Comparative genomics of xylose-fermenting fungi for enhanced biofuel production - Wohlbach_2011_Proc.Natl.Acad.Sci.U.S.A_108_13212
Author(s) : Wohlbach DJ , Kuo A , Sato TK , Potts KM , Salamov AA , LaButti KM , Sun H , Clum A , Pangilinan JL , Lindquist EA , Lucas S , Lapidus A , Jin M , Gunawan C , Balan V , Dale BE , Jeffries TW , Zinkel R , Barry KW , Grigoriev IV , Gasch AP
Ref : Proc Natl Acad Sci U S A , 108 :13212 , 2011
Abstract : Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.
ESTHER : Wohlbach_2011_Proc.Natl.Acad.Sci.U.S.A_108_13212
PubMedSearch : Wohlbach_2011_Proc.Natl.Acad.Sci.U.S.A_108_13212
PubMedID: 21788494
Gene_locus related to this paper: cantc-g3b3r0 , spapn-g3ap60 , spapn-g3aif9 , cantc-g3axw7

Title : The Selaginella genome identifies genetic changes associated with the evolution of vascular plants - Banks_2011_Science_332_960
Author(s) : Banks JA , Nishiyama T , Hasebe M , Bowman JL , Gribskov M , dePamphilis C , Albert VA , Aono N , Aoyama T , Ambrose BA , Ashton NW , Axtell MJ , Barker E , Barker MS , Bennetzen JL , Bonawitz ND , Chapple C , Cheng C , Correa LG , Dacre M , DeBarry J , Dreyer I , Elias M , Engstrom EM , Estelle M , Feng L , Finet C , Floyd SK , Frommer WB , Fujita T , Gramzow L , Gutensohn M , Harholt J , Hattori M , Heyl A , Hirai T , Hiwatashi Y , Ishikawa M , Iwata M , Karol KG , Koehler B , Kolukisaoglu U , Kubo M , Kurata T , Lalonde S , Li K , Li Y , Litt A , Lyons E , Manning G , Maruyama T , Michael TP , Mikami K , Miyazaki S , Morinaga S , Murata T , Mueller-Roeber B , Nelson DR , Obara M , Oguri Y , Olmstead RG , Onodera N , Petersen BL , Pils B , Prigge M , Rensing SA , Riano-Pachon DM , Roberts AW , Sato Y , Scheller HV , Schulz B , Schulz C , Shakirov EV , Shibagaki N , Shinohara N , Shippen DE , Sorensen I , Sotooka R , Sugimoto N , Sugita M , Sumikawa N , Tanurdzic M , Theissen G , Ulvskov P , Wakazuki S , Weng JK , Willats WW , Wipf D , Wolf PG , Yang L , Zimmer AD , Zhu Q , Mitros T , Hellsten U , Loque D , Otillar R , Salamov A , Schmutz J , Shapiro H , Lindquist E , Lucas S , Rokhsar D , Grigoriev IV
Ref : Science , 332 :960 , 2011
Abstract : Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.
ESTHER : Banks_2011_Science_332_960
PubMedSearch : Banks_2011_Science_332_960
PubMedID: 21551031
Gene_locus related to this paper: selml-d8qua5 , selml-d8qva1 , selml-d8qyh7 , selml-d8qza0 , selml-d8r5d4 , selml-d8r6d4 , selml-d8r504 , selml-d8r506 , selml-d8rbi1 , selml-d8rbs1 , selml-d8rck8 , selml-d8rf38 , selml-d8rkl6 , selml-d8rpr1 , selml-d8rpy0 , selml-d8ru47 , selml-d8ry54 , selml-d8rzp6 , selml-d8rzy7 , selml-d8s0c9 , selml-d8s0u3 , selml-d8s2t1 , selml-d8s3z8 , selml-d8s401 , selml-d8sba6 , selml-d8sch9 , selml-d8spq2 , selml-d8sq37 , selml-d8ssx7 , selml-d8swp2 , selml-d8t7a3 , selml-d8t8v4 , selml-d8taz4 , selml-d8tdq6 , selml-d8rai8 , selml-d8qt54 , selml-d8r2d8 , selml-d8rmd3 , selml-d8rra9 , selml-d8slg4 , selml-d8swp0 , selml-d8s7i0 , selml-d8qz37 , selml-d8sz00 , selml-d8s776 , selml-d8qw15 , selml-d8ska7 , selml-d8t0c4 , selml-d8r194 , selml-d8s5m8 , selml-d8s7r2 , selml-d8ta80 , selml-d8ru55

Title : The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi - Eastwood_2011_Science_333_762
Author(s) : Eastwood DC , Floudas D , Binder M , Majcherczyk A , Schneider P , Aerts A , Asiegbu FO , Baker SE , Barry K , Bendiksby M , Blumentritt M , Coutinho PM , Cullen D , de Vries RP , Gathman A , Goodell B , Henrissat B , Ihrmark K , Kauserud H , Kohler A , LaButti K , Lapidus A , Lavin JL , Lee YH , Lindquist E , Lilly W , Lucas S , Morin E , Murat C , Oguiza JA , Park J , Pisabarro AG , Riley R , Rosling A , Salamov A , Schmidt O , Schmutz J , Skrede I , Stenlid J , Wiebenga A , Xie X , Kues U , Hibbett DS , Hoffmeister D , Hogberg N , Martin F , Grigoriev IV , Watkinson SC
Ref : Science , 333 :762 , 2011
Abstract : Brown rot decay removes cellulose and hemicellulose from wood--residual lignin contributing up to 30% of forest soil carbon--and is derived from an ancestral white rot saprotrophy in which both lignin and cellulose are decomposed. Comparative and functional genomics of the "dry rot" fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota.
ESTHER : Eastwood_2011_Science_333_762
PubMedSearch : Eastwood_2011_Science_333_762
PubMedID: 21764756
Gene_locus related to this paper: serl3-f8prj2 , serl3-f8qcc4 , serl9-f8ngp6 , serl9-f8nhd7 , serl9-f8nhq9 , serl9-f8nq77 , serl9-f8nr67 , serl9-f8nrt5 , serl9-f8nvy7.1 , serl9-f8nvy7.2 , serl9-f8nvy8 , serl9-f8nxt0.1 , serl9-f8nxt0.2 , serl9-f8nzr3 , serl9-f8p0f0 , serl9-f8p6v0 , serl9-f8p015 , serl9-f8p018 , serl9-f8p386 , serl9-f8paz8 , serl9-f8pbv1 , serl9-f8pby1 , serl9-f8pc25 , serl9-f8pc39 , serl9-f8nia7 , serl3-f8pju2 , serl9-f8peh1 , serl9-nps3

Title : Obligate biotrophy features unraveled by the genomic analysis of rust fungi - Duplessis_2011_Proc.Natl.Acad.Sci.U.S.A_108_9166
Author(s) : Duplessis S , Cuomo CA , Lin YC , Aerts A , Tisserant E , Veneault-Fourrey C , Joly DL , Hacquard S , Amselem J , Cantarel BL , Chiu R , Coutinho PM , Feau N , Field M , Frey P , Gelhaye E , Goldberg J , Grabherr MG , Kodira CD , Kohler A , Kues U , Lindquist EA , Lucas SM , Mago R , Mauceli E , Morin E , Murat C , Pangilinan JL , Park R , Pearson M , Quesneville H , Rouhier N , Sakthikumar S , Salamov AA , Schmutz J , Selles B , Shapiro H , Tanguay P , Tuskan GA , Henrissat B , Van de Peer Y , Rouze P , Ellis JG , Dodds PN , Schein JE , Zhong S , Hamelin RC , Grigoriev IV , Szabo LJ , Martin F
Ref : Proc Natl Acad Sci U S A , 108 :9166 , 2011
Abstract : Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.
ESTHER : Duplessis_2011_Proc.Natl.Acad.Sci.U.S.A_108_9166
PubMedSearch : Duplessis_2011_Proc.Natl.Acad.Sci.U.S.A_108_9166
PubMedID: 21536894
Gene_locus related to this paper: pucgt-e3k840 , pucgt-e3kaq6 , pucgt-e3kw59 , pucgt-e3kz16 , pucgt-e3l9v6 , pucgt-e3l279 , pucgt-h6qt25 , mellp-f4reh4 , mellp-f4rhc8 , mellp-f4reh2 , mellp-f4r3y0 , mellp-f4rz15 , mellp-f4rz64 , mellp-f4rl14 , mellp-f4rz66 , mellp-f4s751 , mellp-f4s2g6 , pucgt-e3l1z7 , pucgt-e3l803 , pucgt-e3kst2 , pucgt-e3kst5 , mellp-f4ru03 , pucgt-e3l1z8 , pucgt-e3ktz7 , pucgt-e3jun4 , mellp-f4rl65 , mellp-f4rz16 , mellp-f4ru02 , mellp-f4sav4 , mellp-f4sav3 , mellp-f4s1j0 , mellp-f4rkp0 , mellp-f4s483 , pucgt-e3kzu5 , pucgt-h6qtq8 , mellp-f4r5l5 , pucgt-e3krw7 , pucgt-e3l7w5 , pucgt-e3k2w6 , pucgt-e3kfg2 , pucgt-kex1

Title : Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris - Berka_2011_Nat.Biotechnol_29_922
Author(s) : Berka RM , Grigoriev IV , Otillar R , Salamov A , Grimwood J , Reid I , Ishmael N , John T , Darmond C , Moisan MC , Henrissat B , Coutinho PM , Lombard V , Natvig DO , Lindquist E , Schmutz J , Lucas S , Harris P , Powlowski J , Bellemare A , Taylor D , Butler G , de Vries RP , Allijn IE , van den Brink J , Ushinsky S , Storms R , Powell AJ , Paulsen IT , Elbourne LD , Baker SE , Magnuson J , Laboissiere S , Clutterbuck AJ , Martinez D , Wogulis M , de Leon AL , Rey MW , Tsang A
Ref : Nat Biotechnol , 29 :922 , 2011
Abstract : Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.
ESTHER : Berka_2011_Nat.Biotechnol_29_922
PubMedSearch : Berka_2011_Nat.Biotechnol_29_922
PubMedID: 21964414
Gene_locus related to this paper: thiha-cip2 , thite-g2r8b5 , thite-g2rcm8 , thite-g2r192 , thiha-g2qdy2 , thiha-g2qh51 , thite-g2rae6 , thite-g2r5h0 , thiha-g2qj94 , thiha-g2qnb2 , thite-g2rg14 , myctt-g2q973 , thite-g2qtu3 , myctt-g2qpr0 , thite-g2rhm0 , 9pezi-a0a3s4b069 , myctt-g2qmb4 , thett-g2qur2

Title : The genome of the Western clawed frog Xenopus tropicalis - Hellsten_2010_Science_328_633
Author(s) : Hellsten U , Harland RM , Gilchrist MJ , Hendrix D , Jurka J , Kapitonov V , Ovcharenko I , Putnam NH , Shu S , Taher L , Blitz IL , Blumberg B , Dichmann DS , Dubchak I , Amaya E , Detter JC , Fletcher R , Gerhard DS , Goodstein D , Graves T , Grigoriev IV , Grimwood J , Kawashima T , Lindquist E , Lucas SM , Mead PE , Mitros T , Ogino H , Ohta Y , Poliakov AV , Pollet N , Robert J , Salamov A , Sater AK , Schmutz J , Terry A , Vize PD , Warren WC , Wells D , Wills A , Wilson RK , Zimmerman LB , Zorn AM , Grainger R , Grammer T , Khokha MK , Richardson PM , Rokhsar DS
Ref : Science , 328 :633 , 2010
Abstract : The western clawed frog Xenopus tropicalis is an important model for vertebrate development that combines experimental advantages of the African clawed frog Xenopus laevis with more tractable genetics. Here we present a draft genome sequence assembly of X. tropicalis. This genome encodes more than 20,000 protein-coding genes, including orthologs of at least 1700 human disease genes. Over 1 million expressed sequence tags validated the annotation. More than one-third of the genome consists of transposable elements, with unusually prevalent DNA transposons. Like that of other tetrapods, the genome of X. tropicalis contains gene deserts enriched for conserved noncoding elements. The genome exhibits substantial shared synteny with human and chicken over major parts of large chromosomes, broken by lineage-specific chromosome fusions and fissions, mainly in the mammalian lineage.
ESTHER : Hellsten_2010_Science_328_633
PubMedSearch : Hellsten_2010_Science_328_633
PubMedID: 20431018
Gene_locus related to this paper: xenla-q6pcj9 , xentr-a9umk0 , xentr-abhdb , xentr-ACHE , xentr-b0bm77 , xentr-b1h0y7 , xentr-b2guc4 , xentr-b7zt03 , xentr-b7ztj4 , xentr-BCHE1 , xentr-BCHE2 , xentr-cxest2 , xentr-d2x2k4 , xentr-d2x2k6 , xentr-f6rff6 , xentr-f6v0g3 , xentr-f6v2j6 , xentr-f6v3z1 , xentr-f6y4c8 , xentr-f6yve5 , xentr-f7a4y9 , xentr-f7acc5 , xentr-f7e2e2 , xentr-LOC394897 , xentr-ndrg1 , xentr-q0vfb6 , xentr-f7cpl7 , xentr-f6yj44 , xentr-f7ejk4 , xentr-f6q8j8 , xentr-f6z8f0 , xentr-f7d709 , xentr-b0bmb8 , xentr-f7af63 , xentr-a0a1b8y2w9 , xentr-f7d4k9 , xentr-f6r032 , xentr-f6yvq3 , xentr-a0a1b8y2z3 , xentr-f7afg4 , xentr-f6xb15 , xentr-f7e1r2 , xentr-a4ihf1 , xentr-f7eue5 , xentr-f6u7u3 , xentr-f172a , xentr-f7equ8 , xentr-f7dd89 , xentr-a9jtx5

Title : Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri - Prochnik_2010_Science_329_223
Author(s) : Prochnik SE , Umen J , Nedelcu AM , Hallmann A , Miller SM , Nishii I , Ferris P , Kuo A , Mitros T , Fritz-Laylin LK , Hellsten U , Chapman J , Simakov O , Rensing SA , Terry A , Pangilinan J , Kapitonov V , Jurka J , Salamov A , Shapiro H , Schmutz J , Grimwood J , Lindquist E , Lucas S , Grigoriev IV , Schmitt R , Kirk D , Rokhsar DS
Ref : Science , 329 :223 , 2010
Abstract : The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are well suited for the investigation of the evolution of multicellularity and development. We sequenced the 138-mega-base pair genome of V. carteri and compared its approximately 14,500 predicted proteins to those of its unicellular relative Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials and few species-specific protein-coding gene predictions. Volvox is enriched in volvocine-algal-specific proteins, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.
ESTHER : Prochnik_2010_Science_329_223
PubMedSearch : Prochnik_2010_Science_329_223
PubMedID: 20616280
Gene_locus related to this paper: volca-d8tmz1 , volca-d8tne9 , volca-d8tnn6 , volca-d8tns6 , volca-d8tr92 , volca-d8u2d3 , volca-d8u5r0 , volca-d8u7s7 , volca-d8u7s8 , volca-d8u9w4 , volca-d8u460 , volca-d8uab7 , volca-d8uai0 , volca-d8uev0 , volca-d8uhi9 , volca-d8uiw9 , volca-d8ujv0 , volca-d8uf23 , volca-d8tmz9 , volca-d8u6e0

Title : The genome of Naegleria gruberi illuminates early eukaryotic versatility - Fritz-Laylin_2010_Cell_140_631
Author(s) : Fritz-Laylin LK , Prochnik SE , Ginger ML , Dacks JB , Carpenter ML , Field MC , Kuo A , Paredez A , Chapman J , Pham J , Shu S , Neupane R , Cipriano M , Mancuso J , Tu H , Salamov A , Lindquist E , Shapiro H , Lucas S , Grigoriev IV , Cande WZ , Fulton C , Rokhsar DS , Dawson SC
Ref : Cell , 140 :631 , 2010
Abstract : Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.
ESTHER : Fritz-Laylin_2010_Cell_140_631
PubMedSearch : Fritz-Laylin_2010_Cell_140_631
PubMedID: 20211133
Gene_locus related to this paper: naegr-d2ux86 , naegr-d2uyl7 , naegr-d2uyn1 , naegr-d2uzk6 , naegr-d2uzp4 , naegr-d2v1m1 , naegr-d2v3p5 , naegr-d2v5p1 , naegr-d2v6f6 , naegr-d2v6y9 , naegr-d2v8x8 , naegr-d2v186 , naegr-d2v339 , naegr-d2v556 , naegr-d2vbq7 , naegr-d2vdq6 , naegr-d2ve51 , naegr-d2vga2 , naegr-d2vgm9 , naegr-d2vh14 , naegr-d2vha2 , naegr-d2vj80 , naegr-d2vjj7 , naegr-d2vl41 , naegr-d2vmj5 , naegr-d2vms7 , naegr-d2vqi5 , naegr-d2vr44 , naegr-d2vrq2 , naegr-d2vs01 , naegr-d2vs58 , naegr-d2vts5 , naegr-d2vu69 , naegr-d2vvg8 , naegr-d2vxp2 , naegr-d2vyl1 , naegr-d2vzy5 , naegr-d2w0l5 , naegr-d2w0v9 , naegr-d2w3g8 , naegr-d2w3v7 , naegr-d2w3v8 , naegr-d2vct1

Title : Genome sequence of the model mushroom Schizophyllum commune - Ohm_2010_Nat.Biotechnol_28_957
Author(s) : Ohm RA , de Jong JF , Lugones LG , Aerts A , Kothe E , Stajich JE , de Vries RP , Record E , Levasseur A , Baker SE , Bartholomew KA , Coutinho PM , Erdmann S , Fowler TJ , Gathman AC , Lombard V , Henrissat B , Knabe N , Kues U , Lilly WW , Lindquist E , Lucas S , Magnuson JK , Piumi F , Raudaskoski M , Salamov A , Schmutz J , Schwarze FW , vanKuyk PA , Horton JS , Grigoriev IV , Wosten HA
Ref : Nat Biotechnol , 28 :957 , 2010
Abstract : Much remains to be learned about the biology of mushroom-forming fungi, which are an important source of food, secondary metabolites and industrial enzymes. The wood-degrading fungus Schizophyllum commune is both a genetically tractable model for studying mushroom development and a likely source of enzymes capable of efficient degradation of lignocellulosic biomass. Comparative analyses of its 38.5-megabase genome, which encodes 13,210 predicted genes, reveal the species's unique wood-degrading machinery. One-third of the 471 genes predicted to encode transcription factors are differentially expressed during sexual development of S. commune. Whereas inactivation of one of these, fst4, prevented mushroom formation, inactivation of another, fst3, resulted in more, albeit smaller, mushrooms than in the wild-type fungus. Antisense transcripts may also have a role in the formation of fruiting bodies. Better insight into the mechanisms underlying mushroom formation should affect commercial production of mushrooms and their industrial use for producing enzymes and pharmaceuticals.
ESTHER : Ohm_2010_Nat.Biotechnol_28_957
PubMedSearch : Ohm_2010_Nat.Biotechnol_28_957
PubMedID: 20622885
Gene_locus related to this paper: schcm-d8pqz6 , schcm-d8prj2 , schcm-d8pug6 , schcm-d8pxe8 , schcm-d8pxe9 , schcm-d8pxz1 , schcm-d8q1c7 , schcm-d8q2b4 , schcm-d8q3j1 , schcm-d8q5m5 , schcm-d8q7x7.1 , schcm-d8q7x7.2 , schcm-d8q8y8 , schcm-d8q9n6 , schcm-d8q697 , schcm-d8qip8 , schcm-d8q5s5 , schcm-d8ppb3 , schcm-d8ppb6 , schcm-d8pv73 , schcm-d8pzm1 , schcm-d8q5a7 , schcm-d8qif0

Title : The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex - Blanc_2010_Plant.Cell_22_2943
Author(s) : Blanc G , Duncan G , Agarkova I , Borodovsky M , Gurnon J , Kuo A , Lindquist E , Lucas S , Pangilinan J , Polle J , Salamov A , Terry A , Yamada T , Dunigan DD , Grigoriev IV , Claverie JM , Van Etten JL
Ref : Plant Cell , 22 :2943 , 2010
Abstract : Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes.
ESTHER : Blanc_2010_Plant.Cell_22_2943
PubMedSearch : Blanc_2010_Plant.Cell_22_2943
PubMedID: 20852019
Gene_locus related to this paper: chlva-e1z3j3 , chlva-e1z3n9 , chlva-e1z620 , chlva-e1z882 , chlva-e1zd56 , chlva-e1zdd9 , chlva-e1zde0 , chlva-e1ze02 , chlva-e1zeh7 , chlva-e1zhu4 , chlva-e1zie3 , chlva-e1zii9 , chlva-e1zmj6 , chlva-e1ztt0 , chlva-e1z5k1 , chlva-e1ztf4

Title : Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas - Worden_2009_Science_324_268
Author(s) : Worden AZ , Lee JH , Mock T , Rouze P , Simmons MP , Aerts AL , Allen AE , Cuvelier ML , Derelle E , Everett MV , Foulon E , Grimwood J , Gundlach H , Henrissat B , Napoli C , McDonald SM , Parker MS , Rombauts S , Salamov A , von Dassow P , Badger JH , Coutinho PM , Demir E , Dubchak I , Gentemann C , Eikrem W , Gready JE , John U , Lanier W , Lindquist EA , Lucas S , Mayer KF , Moreau H , Not F , Otillar R , Panaud O , Pangilinan J , Paulsen I , Piegu B , Poliakov A , Robbens S , Schmutz J , Toulza E , Wyss T , Zelensky A , Zhou K , Armbrust EV , Bhattacharya D , Goodenough UW , Van de Peer Y , Grigoriev IV
Ref : Science , 324 :268 , 2009
Abstract : Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronic repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.
ESTHER : Worden_2009_Science_324_268
PubMedSearch : Worden_2009_Science_324_268
PubMedID: 19359590
Gene_locus related to this paper: 9chlo-c1e363 , 9chlo-c1ehp8 , 9chlo-c1fhv2 , 9chlo-c1mis3 , 9chlo-c1na62 , micpc-c1mh04 , micpc-c1mhj0 , micpc-c1mie7 , micpc-c1mj20 , micpc-c1mjh0 , micpc-c1mny7 , micpc-c1mpb2 , micpc-c1mrl2 , micpc-c1msr1 , micpc-c1mvk4 , micpc-c1mvx4 , micpc-c1n5d2 , micpc-c1n6i2 , micpc-c1n842 , micsr-c1dzu1 , micsr-c1e0v8 , micsr-c1e2u5 , micsr-c1e4q6 , micsr-c1e6z5 , micsr-c1e046 , micsr-c1e286 , micsr-c1eap0 , micsr-c1ec00 , micsr-c1edy4 , micsr-c1efl2 , micsr-c1eh15 , micsr-c1ei44 , micsr-c1eii9 , micsr-c1eiz1 , micsr-c1fft1 , micsr-c1fi89 , micsr-c1fj57 , micsr-c1e9f6 , micsr-c1e9u2 , micsr-c1fgg8 , micpc-c1mie3 , micpc-c1ms20 , micpc-c1n640 , miccc-c1e278 , micpc-c1mpa6

Title : Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion - Martinez_2009_Proc.Natl.Acad.Sci.U.S.A_106_1954
Author(s) : Martinez D , Challacombe J , Morgenstern I , Hibbett D , Schmoll M , Kubicek CP , Ferreira P , Ruiz-Duenas FJ , Martinez AT , Kersten P , Hammel KE , Vanden Wymelenberg A , Gaskell J , Lindquist E , Sabat G , Bondurant SS , Larrondo LF , Canessa P , Vicuna R , Yadav J , Doddapaneni H , Subramanian V , Pisabarro AG , Lavin JL , Oguiza JA , Master E , Henrissat B , Coutinho PM , Harris P , Magnuson JK , Baker SE , Bruno K , Kenealy W , Hoegger PJ , Kues U , Ramaiya P , Lucas S , Salamov A , Shapiro H , Tu H , Chee CL , Misra M , Xie G , Teter S , Yaver D , James T , Mokrejs M , Pospisek M , Grigoriev IV , Brettin T , Rokhsar D , Berka R , Cullen D
Ref : Proc Natl Acad Sci U S A , 106 :1954 , 2009
Abstract : Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome, and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative beta-1-4 endoglucanase were expressed at high levels relative to glucose-grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Also up-regulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H(2)O(2). These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H(2)O(2) react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons with the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.
ESTHER : Martinez_2009_Proc.Natl.Acad.Sci.U.S.A_106_1954
PubMedSearch : Martinez_2009_Proc.Natl.Acad.Sci.U.S.A_106_1954
PubMedID: 19193860
Gene_locus related to this paper: pospm-b8p1f3 , pospm-b8p2q7 , pospm-b8p4n0 , pospm-b8p4n9 , pospm-b8p5g9 , pospm-b8p5r9 , pospm-b8p6h2 , pospm-b8p7b1 , pospm-b8p7c4 , pospm-b8p8w7 , pospm-b8p9j1 , pospm-b8p164 , pospm-b8p280 , pospm-b8p423.1 , pospm-b8p423.2 , pospm-b8p858 , pospm-b8pam2 , pospm-b8pam5 , pospm-b8pb68 , pospm-b8pbm3 , pospm-b8pc54 , pospm-b8pc56 , pospm-b8pce4 , pospm-b8pd91 , pospm-b8pdk6 , pospm-b8ph32 , pospm-b8ph43 , pospm-b8phc9 , pospm-b8php7 , pospm-b8phy5 , pospm-b8pjg8 , pospm-b8pji9 , pospm-b8plr5 , pospm-b8pmk3 , pospm-b8pfg0 , pospm-b8pg35 , pospm-b8pa20.1 , pospm-b8pa20.2 , pospm-b8p4g8 , pospm-b8phn6

Title : The Sorghum bicolor genome and the diversification of grasses - Paterson_2009_Nature_457_551
Author(s) : Paterson AH , Bowers JE , Bruggmann R , Dubchak I , Grimwood J , Gundlach H , Haberer G , Hellsten U , Mitros T , Poliakov A , Schmutz J , Spannagl M , Tang H , Wang X , Wicker T , Bharti AK , Chapman J , Feltus FA , Gowik U , Grigoriev IV , Lyons E , Maher CA , Martis M , Narechania A , Otillar RP , Penning BW , Salamov AA , Wang Y , Zhang L , Carpita NC , Freeling M , Gingle AR , Hash CT , Keller B , Klein P , Kresovich S , McCann MC , Ming R , Peterson DG , Mehboob ur R , Ware D , Westhoff P , Mayer KF , Messing J , Rokhsar DS
Ref : Nature , 457 :551 , 2009
Abstract : Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.
ESTHER : Paterson_2009_Nature_457_551
PubMedSearch : Paterson_2009_Nature_457_551
PubMedID: 19189423
Gene_locus related to this paper: sorbi-b3vtb2 , sorbi-c5wp75 , sorbi-c5wts6 , sorbi-c5wu07 , sorbi-c5wvl7 , sorbi-c5ww85 , sorbi-c5ww86 , sorbi-c5wxa4 , sorbi-c5x1f6 , sorbi-c5x2x9 , sorbi-c5x5z9 , sorbi-c5x6q0 , sorbi-c5x230 , sorbi-c5x290 , sorbi-c5x345 , sorbi-c5x399 , sorbi-c5x610 , sorbi-c5xbm4 , sorbi-c5xct0 , sorbi-c5xdv0 , sorbi-c5xe87 , sorbi-c5xf40 , sorbi-c5xfu9 , sorbi-c5xh40 , sorbi-c5xh41 , sorbi-c5xh42 , sorbi-c5xh43 , sorbi-c5xh44 , sorbi-c5xh46 , sorbi-c5xhr2 , sorbi-c5xiw7 , sorbi-c5xjf0 , sorbi-c5xky2 , sorbi-c5xm54 , sorbi-c5xmb9 , sorbi-c5xmz5 , sorbi-c5xp10 , sorbi-c5xpm6 , sorbi-c5xr91 , sorbi-c5xr92 , sorbi-c5xs33 , sorbi-c5xtz0 , sorbi-c5xwd3 , sorbi-c5y0d2 , sorbi-c5y0h4 , sorbi-c5y3i5 , sorbi-c5y7x0 , sorbi-c5y517 , sorbi-c5y545 , sorbi-c5ydr3 , sorbi-c5yec0 , sorbi-c5yf71 , sorbi-c5yi32 , sorbi-c5yih2 , sorbi-c5ylw6 , sorbi-c5yn66 , sorbi-c5ynp8 , sorbi-c5yt11 , sorbi-c5yur5 , sorbi-c5ywz3 , sorbi-c5ywz4 , sorbi-c5yx73 , sorbi-c5yyn0 , sorbi-c5z2m6 , sorbi-c5z6a9 , sorbi-c5z6j1 , sorbi-c5z6s5 , sorbi-c5z177 , sorbi-Q9XE80 , sorbi-c5xyg4 , sorbi-c5z4q0 , sorbi-c5xly4 , sorbi-c5z4u8 , sorbi-c5xxg5 , sorbi-c5z9b9 , sorbi-a0a1z5r970 , sorbi-c5xhf9 , sorbi-c5yxt7 , sorbi-c5yxt6 , sorbi-c5y1m2 , sorbi-c5xdy6 , sorbi-a0a194ysf6 , sorbi-a0a1b6pnr2 , sorbi-a0a1b6qcb9 , sorbi-c5xx30 , sorbi-a0a1b6psg4 , sorbi-a0a1z5rj80 , sorbi-a0a1b6qfm2 , sorbi-a0a1b6qmu5 , sorbi-c6jru0

Title : The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion - Coleman_2009_PLoS.Genet_5_e1000618
Author(s) : Coleman JJ , Rounsley SD , Rodriguez-Carres M , Kuo A , Wasmann CC , Grimwood J , Schmutz J , Taga M , White GJ , Zhou S , Schwartz DC , Freitag M , Ma LJ , Danchin EG , Henrissat B , Coutinho PM , Nelson DR , Straney D , Napoli CA , Barker BM , Gribskov M , Rep M , Kroken S , Molnar I , Rensing C , Kennell JC , Zamora J , Farman ML , Selker EU , Salamov A , Shapiro H , Pangilinan J , Lindquist E , Lamers C , Grigoriev IV , Geiser DM , Covert SF , Temporini E , Vanetten HD
Ref : PLoS Genet , 5 :e1000618 , 2009
Abstract : The ascomycetous fungus Nectria haematococca, (asexual name Fusarium solani), is a member of a group of >50 species known as the "Fusarium solani species complex". Members of this complex have diverse biological properties including the ability to cause disease on >100 genera of plants and opportunistic infections in humans. The current research analyzed the most extensively studied member of this complex, N. haematococca mating population VI (MPVI). Several genes controlling the ability of individual isolates of this species to colonize specific habitats are located on supernumerary chromosomes. Optical mapping revealed that the sequenced isolate has 17 chromosomes ranging from 530 kb to 6.52 Mb and that the physical size of the genome, 54.43 Mb, and the number of predicted genes, 15,707, are among the largest reported for ascomycetes. Two classes of genes have contributed to gene expansion: specific genes that are not found in other fungi including its closest sequenced relative, Fusarium graminearum; and genes that commonly occur as single copies in other fungi but are present as multiple copies in N. haematococca MPVI. Some of these additional genes appear to have resulted from gene duplication events, while others may have been acquired through horizontal gene transfer. The supernumerary nature of three chromosomes, 14, 15, and 17, was confirmed by their absence in pulsed field gel electrophoresis experiments of some isolates and by demonstrating that these isolates lacked chromosome-specific sequences found on the ends of these chromosomes. These supernumerary chromosomes contain more repeat sequences, are enriched in unique and duplicated genes, and have a lower G+C content in comparison to the other chromosomes. Although the origin(s) of the extra genes and the supernumerary chromosomes is not known, the gene expansion and its large genome size are consistent with this species' diverse range of habitats. Furthermore, the presence of unique genes on supernumerary chromosomes might account for individual isolates having different environmental niches.
ESTHER : Coleman_2009_PLoS.Genet_5_e1000618
PubMedSearch : Coleman_2009_PLoS.Genet_5_e1000618
PubMedID: 19714214
Gene_locus related to this paper: fusso-cutas , nech7-c7yh18 , nech7-c7yir8 , nech7-c7yiz6 , nech7-c7yjl4 , nech7-c7yjp7 , nech7-c7yjq0 , nech7-c7ymg9 , nech7-c7ymv6 , nech7-c7yna5 , nech7-c7ynt6 , nech7-c7yq59 , nech7-c7yq86 , nech7-c7yqb0 , nech7-c7yqx3 , nech7-c7ysz7 , nech7-c7ysz8 , nech7-c7ytb2 , nech7-c7yum7 , nech7-c7yvb1 , nech7-c7yvb8 , nech7-c7yvf1 , nech7-c7yvq8 , nech7-c7yw21 , nech7-c7yx47 , nech7-c7yx92 , nech7-c7yxe7 , nech7-c7yxq5 , nech7-c7yxz4 , nech7-c7yy47 , nech7-c7yyj7 , nech7-c7yym7 , nech7-c7z0d7 , nech7-c7z0s1 , nech7-c7z1g9 , nech7-c7z1k9 , nech7-c7z2k4 , nech7-c7z2m9 , nech7-c7z2z2 , nech7-c7z3z3 , nech7-c7z4a4 , nech7-c7z5n1 , nech7-c7z5y2 , nech7-c7z6g5 , nech7-c7z7d0 , nech7-c7z7w8 , nech7-c7z8q7 , nech7-c7z9e7 , nech7-c7z073 , nech7-c7z354 , nech7-c7z389 , nech7-c7z688 , nech7-c7z855 , nech7-c7z987 , nech7-c7za94 , nech7-c7zah0 , nech7-c7zb79 , nech7-c7zbr8 , nech7-c7zcd1 , nech7-c7zdx8 , nech7-c7ze42 , nech7-c7ze84 , nech7-c7zed8 , nech7-c7zeh0 , nech7-c7zes2 , nech7-c7zgw2 , nech7-c7zha0 , nech7-c7zhy2 , nech7-c7zi55 , nech7-c7zig4 , nech7-c7zjg0 , nech7-c7zjv2 , nech7-c7zk96 , nech7-c7zkb5 , nech7-c7zkh4 , nech7-c7zla9 , nech7-c7zld2 , nech7-c7zlz1 , nech7-c7zm00 , nech7-c7zmn4 , nech7-c7zmu6 , nech7-c7zp06 , nech7-c7zp78 , nech7-c7zq58 , nech7-c7zq86 , nech7-c7zqb5 , nech7-c7zqk4 , nech7-c7zqp9 , nech7-c7zr59 , nech7-c7zrh2 , nech7-c7zrh3 , nech7-dapb , nech7-kex1 , nech7-c7zgl9 , nech7-c7z935 , nech7-c7znc0 , nech7-c7yiq8 , nech7-c7yiq7 , nech7-c7zhu0 , nech7-c7yw61 , nech7-c7yqd3 , nech7-c7zkb6 , nech7-c7z3b4 , nech7-c7ytr4 , nech7-c7zgf7 , 9hypo-a0a3m2s2j6 , nech7-c7yq54 , fusv7-cbpya

Title : The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis - Martin_2008_Nature_452_88
Author(s) : Martin F , Aerts A , Ahren D , Brun A , Danchin EG , Duchaussoy F , Gibon J , Kohler A , Lindquist E , Pereda V , Salamov A , Shapiro HJ , Wuyts J , Blaudez D , Buee M , Brokstein P , Canback B , Cohen D , Courty PE , Coutinho PM , Delaruelle C , Detter JC , Deveau A , Difazio S , Duplessis S , Fraissinet-Tachet L , Lucic E , Frey-Klett P , Fourrey C , Feussner I , Gay G , Grimwood J , Hoegger PJ , Jain P , Kilaru S , Labbe J , Lin YC , Legue V , Le Tacon F , Marmeisse R , Melayah D , Montanini B , Muratet M , Nehls U , Niculita-Hirzel H , Oudot-Le Secq MP , Peter M , Quesneville H , Rajashekar B , Reich M , Rouhier N , Schmutz J , Yin T , Chalot M , Henrissat B , Kues U , Lucas S , Van de Peer Y , Podila GK , Polle A , Pukkila PJ , Richardson PM , Rouze P , Sanders IR , Stajich JE , Tunlid A , Tuskan G , Grigoriev IV
Ref : Nature , 452 :88 , 2008
Abstract : Mycorrhizal symbioses--the union of roots and soil fungi--are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants. Boreal, temperate and montane forests all depend on ectomycorrhizae. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains approximately 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.
ESTHER : Martin_2008_Nature_452_88
PubMedSearch : Martin_2008_Nature_452_88
PubMedID: 18322534
Gene_locus related to this paper: lacbs-b0cns1 , lacbs-b0cpl4 , lacbs-b0cr62 , lacbs-b0cr66 , lacbs-b0csq9 , lacbs-b0ct56 , lacbs-b0ctt5 , lacbs-b0cuw1 , lacbs-b0cv23 , lacbs-b0cxm7 , lacbs-b0cz37 , lacbs-b0czx3 , lacbs-b0d0z5 , lacbs-b0d4i0 , lacbs-b0d4j3 , lacbs-b0d5n6 , lacbs-b0d8k0 , lacbs-b0d263 , lacbs-b0dhh1 , lacbs-b0dkp6 , lacbs-b0dmr2 , lacbs-b0dmt4 , lacbs-b0dsx5 , lacbs-b0dt05 , lacbs-b0dtw4 , lacbs-b0du88 , lacbs-b0dsl6

Title : The Phaeodactylum genome reveals the evolutionary history of diatom genomes - Bowler_2008_Nature_456_239
Author(s) : Bowler C , Allen AE , Badger JH , Grimwood J , Jabbari K , Kuo A , Maheswari U , Martens C , Maumus F , Otillar RP , Rayko E , Salamov A , Vandepoele K , Beszteri B , Gruber A , Heijde M , Katinka M , Mock T , Valentin K , Verret F , Berges JA , Brownlee C , Cadoret JP , Chiovitti A , Choi CJ , Coesel S , De Martino A , Detter JC , Durkin C , Falciatore A , Fournet J , Haruta M , Huysman MJ , Jenkins BD , Jiroutova K , Jorgensen RE , Joubert Y , Kaplan A , Kroger N , Kroth PG , La Roche J , Lindquist E , Lommer M , Martin-Jezequel V , Lopez PJ , Lucas S , Mangogna M , McGinnis K , Medlin LK , Montsant A , Oudot-Le Secq MP , Napoli C , Obornik M , Parker MS , Petit JL , Porcel BM , Poulsen N , Robison M , Rychlewski L , Rynearson TA , Schmutz J , Shapiro H , Siaut M , Stanley M , Sussman MR , Taylor AR , Vardi A , von Dassow P , Vyverman W , Willis A , Wyrwicz LS , Rokhsar DS , Weissenbach J , Armbrust EV , Green BR , Van de Peer Y , Grigoriev IV
Ref : Nature , 456 :239 , 2008
Abstract : Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one-fifth of the primary productivity on Earth. The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology. Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes ( approximately 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.
ESTHER : Bowler_2008_Nature_456_239
PubMedSearch : Bowler_2008_Nature_456_239
PubMedID: 18923393
Gene_locus related to this paper: phatc-b7fp91 , phatc-b7fqd3 , phatc-b7frf9 , phatc-b7fry8 , phatc-b7ftw8 , phatc-b7fv70 , phatc-b7fw66 , phatc-b7g2b2 , phatc-b7g5z5 , phatc-b7g6f1 , phatc-b7g6r8 , phatc-b7g957 , phatc-b7ga73 , phatc-b7gb22 , phatc-b7gc60 , phatc-b7gdm3 , phatc-b7gdq6 , phatc-b7ge82 , phatc-b7gee0 , phatr-b7frs5 , phatr-b7g1k3 , phatr-b7s4a4 , thaps-b8bsy4 , thaps-b8cfn8 , phatc-b7g635 , phatc-b7gaj3 , thaps-b8c079

Title : The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans - King_2008_Nature_451_783
Author(s) : King N , Westbrook MJ , Young SL , Kuo A , Abedin M , Chapman J , Fairclough S , Hellsten U , Isogai Y , Letunic I , Marr M , Pincus D , Putnam N , Rokas A , Wright KJ , Zuzow R , Dirks W , Good M , Goodstein D , Lemons D , Li W , Lyons JB , Morris A , Nichols S , Richter DJ , Salamov A , Sequencing JG , Bork P , Lim WA , Manning G , Miller WT , McGinnis W , Shapiro H , Tjian R , Grigoriev IV , Rokhsar D
Ref : Nature , 451 :783 , 2008
Abstract : Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron-rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans.
ESTHER : King_2008_Nature_451_783
PubMedSearch : King_2008_Nature_451_783
PubMedID: 18273011
Gene_locus related to this paper: monbe-a9up87 , monbe-a9uq69 , monbe-a9uq70 , monbe-a9uqa7 , monbe-a9urz6 , monbe-a9usu1 , monbe-a9usy8 , monbe-a9uta2 , monbe-a9uu09 , monbe-a9uxl2 , monbe-a9uy23 , monbe-a9uy95 , monbe-a9uym3 , monbe-a9uyw1 , monbe-a9uzc1 , monbe-a9v0e1 , monbe-a9v2b0 , monbe-a9v3a5 , monbe-a9v3t2 , monbe-a9v4h5 , monbe-a9v6i1 , monbe-a9v7b2 , monbe-a9v7c1 , monbe-a9v8k9 , monbe-a9v8u8 , monbe-a9v9i9 , monbe-a9v9k6 , monbe-a9v028 , monbe-a9v108 , monbe-a9v315 , monbe-a9v345 , monbe-a9v368 , monbe-a9v719 , monbe-a9v871 , monbe-a9vac5 , monbe-a9vah5 , monbe-a9van7 , monbe-a9vbp2 , monbe-a9vcn6 , monbe-a9vd99 , monbe-a9vdj5 , monbe-a9vag0

Title : Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina) - Martinez_2008_Nat.Biotechnol_26_553
Author(s) : Martinez D , Berka RM , Henrissat B , Saloheimo M , Arvas M , Baker SE , Chapman J , Chertkov O , Coutinho PM , Cullen D , Danchin EG , Grigoriev IV , Harris P , Jackson M , Kubicek CP , Han CS , Ho I , Larrondo LF , de Leon AL , Magnuson JK , Merino S , Misra M , Nelson B , Putnam N , Robbertse B , Salamov AA , Schmoll M , Terry A , Thayer N , Westerholm-Parvinen A , Schoch CL , Yao J , Barabote R , Nelson MA , Detter C , Bruce D , Kuske CR , Xie G , Richardson P , Rokhsar DS , Lucas SM , Rubin EM , Dunn-Coleman N , Ward M , Brettin TS
Ref : Nat Biotechnol , 26 :553 , 2008
Abstract : Trichoderma reesei is the main industrial source of cellulases and hemicellulases used to depolymerize biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. We assembled 89 scaffolds (sets of ordered and oriented contigs) to generate 34 Mbp of nearly contiguous T. reesei genome sequence comprising 9,129 predicted gene models. Unexpectedly, considering the industrial utility and effectiveness of the carbohydrate-active enzymes of T. reesei, its genome encodes fewer cellulases and hemicellulases than any other sequenced fungus able to hydrolyze plant cell wall polysaccharides. Many T. reesei genes encoding carbohydrate-active enzymes are distributed nonrandomly in clusters that lie between regions of synteny with other Sordariomycetes. Numerous genes encoding biosynthetic pathways for secondary metabolites may promote survival of T. reesei in its competitive soil habitat, but genome analysis provided little mechanistic insight into its extraordinary capacity for protein secretion. Our analysis, coupled with the genome sequence data, provides a roadmap for constructing enhanced T. reesei strains for industrial applications such as biofuel production.
ESTHER : Martinez_2008_Nat.Biotechnol_26_553
PubMedSearch : Martinez_2008_Nat.Biotechnol_26_553
PubMedID: 18454138
Gene_locus related to this paper: hypjq-g0rh85 , hypjq-cip2 , hypjq-g0r9d1 , hypjq-g0r810 , hypjq-g0rbm4 , hypjq-g0rez4 , hypjq-g0rfr3 , hypjq-g0rg60 , hypjq-g0rij9 , hypjq-g0riu1 , hypjq-g0rl87 , hypjq-g0rlh4 , hypjq-g0rme5 , hypjq-g0rwy5 , hypje-axylest , hypje-q7z9m3 , hypjq-g0r6x2 , hypje-a0a024s1b8 , hypjr-a0a024s1s9 , hypjq-g0rxi5

Title : The amphioxus genome and the evolution of the chordate karyotype - Putnam_2008_Nature_453_1064
Author(s) : Putnam NH , Butts T , Ferrier DE , Furlong RF , Hellsten U , Kawashima T , Robinson-Rechavi M , Shoguchi E , Terry A , Yu JK , Benito-Gutierrez EL , Dubchak I , Garcia-Fernandez J , Gibson-Brown JJ , Grigoriev IV , Horton AC , de Jong PJ , Jurka J , Kapitonov VV , Kohara Y , Kuroki Y , Lindquist E , Lucas S , Osoegawa K , Pennacchio LA , Salamov AA , Satou Y , Sauka-Spengler T , Schmutz J , Shin IT , Toyoda A , Bronner-Fraser M , Fujiyama A , Holland LZ , Holland PW , Satoh N , Rokhsar DS
Ref : Nature , 453 :1064 , 2008
Abstract : Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.
ESTHER : Putnam_2008_Nature_453_1064
PubMedSearch : Putnam_2008_Nature_453_1064
PubMedID: 18563158
Gene_locus related to this paper: brafl-ACHE1 , brafl-ACHE2 , brafl-ACHEA , brafl-ACHEB , brafl-c3xqm2 , brafl-c3xqm5 , brafl-c3xtl0 , brafl-c3xtl1 , brafl-c3xut6 , brafl-c3xut7 , brafl-c3xvw5 , brafl-c3xx27 , brafl-c3xx28 , brafl-c3xx30 , brafl-c3xx32 , brafl-c3xx36 , brafl-c3xx38 , brafl-c3xx39 , brafl-c3xx40 , brafl-c3xx41 , brafl-c3xxt9 , brafl-c3xyd7 , brafl-c3xyd8 , brafl-c3xyd9 , brafl-c3xye0 , brafl-c3xyt7 , brafl-c3xzy1 , brafl-c3xzy2 , brafl-c3y1p9 , brafl-c3y1t3 , brafl-c3y2u3 , brafl-c3y4l1 , brafl-c3y6v9 , brafl-c3y6y4 , brafl-c3y7d7 , brafl-c3y7s1 , brafl-c3y8k5 , brafl-c3y8t3 , brafl-c3y8t4 , brafl-c3y8t5 , brafl-c3y8v8 , brafl-c3y8w1.1 , brafl-c3y8w2 , brafl-c3y9i7 , brafl-c3y9i8 , brafl-c3y9l9 , brafl-c3y9y3 , brafl-c3y087 , brafl-c3yan2 , brafl-c3yaw4 , brafl-c3ybw7 , brafl-c3yc67 , brafl-c3ydm8 , brafl-c3yfm5 , brafl-c3yfz8 , brafl-c3ygc7 , brafl-c3ygc9.1 , brafl-c3ygd0 , brafl-c3ygd1 , brafl-c3ygd2.1 , brafl-c3ygd4 , brafl-c3ygg6 , brafl-c3ygr1 , brafl-c3yi63 , brafl-c3yi64 , brafl-c3yi67 , brafl-c3yi68 , brafl-c3yi69 , brafl-c3yk61 , brafl-c3ykb2 , brafl-c3yla7 , brafl-c3ylp9 , brafl-c3ylq0 , brafl-c3ylq1 , brafl-c3ymu0 , brafl-c3yne9 , brafl-c3ypm6 , brafl-c3yr72 , brafl-c3yra8 , brafl-c3ys59 , brafl-c3yv27 , brafl-c3ywf1 , brafl-c3ywh9 , brafl-c3yx17 , brafl-c3yx19 , brafl-c3yxb9 , brafl-c3yxi7 , brafl-c3yyq5 , brafl-c3yz04 , brafl-c3z1c7 , brafl-c3z1u9 , brafl-c3z1v0 , brafl-c3z3n7 , brafl-c3z5c8 , brafl-c3z9f4 , brafl-c3z066 , brafl-c3z139 , brafl-c3z975 , brafl-c3zab8 , brafl-c3zab9 , brafl-c3zbr4 , brafl-c3zci7 , brafl-c3zcy8 , brafl-c3zd14 , brafl-c3zer1 , brafl-c3zf44 , brafl-c3zf47 , brafl-c3zf48 , brafl-c3zfs6 , brafl-c3zhm6 , brafl-c3ziv7.1 , brafl-c3ziv7.2 , brafl-c3zlg0 , brafl-c3zlg2 , brafl-c3zlg3 , brafl-c3zli5 , brafl-c3zme7 , brafl-c3zme8 , brafl-c3zmp8 , brafl-c3zmv1 , brafl-c3zmv2 , brafl-c3znd6 , brafl-c3znl2 , brafl-c3zqg7 , brafl-c3zqz2 , brafl-c3zs46 , brafl-c3zs49 , brafl-c3zs56 , brafl-c3zv54 , brafl-c3zvv1 , brafl-c3zwz6 , brafl-c3zxg2 , brafl-c3zxq3 , brafl-c3yim2 , brafl-c3zfs5 , brafl-c3zfs3 , brafl-c3xr79 , brafl-c3y7r2 , brafl-c3yj62 , brafl-c3zg22 , brafl-c3y2t9 , brafl-c3y2u0 , brafl-c3ycg1 , brafl-c3ycg2 , brafl-c3ycg4 , brafl-c3z1l3 , brafl-c3zn71 , brafl-c3zj72 , brafl-c3yf35 , brafl-c3z474 , brafl-c3zqr8 , brafl-c3yde6

Title : The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants - Rensing_2008_Science_319_64
Author(s) : Rensing SA , Lang D , Zimmer AD , Terry A , Salamov A , Shapiro H , Nishiyama T , Perroud PF , Lindquist EA , Kamisugi Y , Tanahashi T , Sakakibara K , Fujita T , Oishi K , Shin IT , Kuroki Y , Toyoda A , Suzuki Y , Hashimoto S , Yamaguchi K , Sugano S , Kohara Y , Fujiyama A , Anterola A , Aoki S , Ashton N , Barbazuk WB , Barker E , Bennetzen JL , Blankenship R , Cho SH , Dutcher SK , Estelle M , Fawcett JA , Gundlach H , Hanada K , Heyl A , Hicks KA , Hughes J , Lohr M , Mayer K , Melkozernov A , Murata T , Nelson DR , Pils B , Prigge M , Reiss B , Renner T , Rombauts S , Rushton PJ , Sanderfoot A , Schween G , Shiu SH , Stueber K , Theodoulou FL , Tu H , Van de Peer Y , Verrier PJ , Waters E , Wood A , Yang L , Cove D , Cuming AC , Hasebe M , Lucas S , Mishler BD , Reski R , Grigoriev IV , Quatrano RS , Boore JL
Ref : Science , 319 :64 , 2008
Abstract : We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.
ESTHER : Rensing_2008_Science_319_64
PubMedSearch : Rensing_2008_Science_319_64
PubMedID: 18079367
Gene_locus related to this paper: phypa-a9rbi6 , phypa-a9rfh1 , phypa-a9rg19 , phypa-a9rgt9 , phypa-a9rhz9 , phypa-a9rkj1 , phypa-a9rns2 , phypa-a9rp52 , phypa-a9rq03 , phypa-a9ry17 , phypa-a9ry72 , phypa-a9s5n8 , phypa-a9s6w1 , phypa-a9s8c7 , phypa-a9s299 , phypa-a9san7 , phypa-a9sc75 , phypa-a9se75 , phypa-a9sg07 , phypa-a9skf7 , phypa-a9skr1 , phypa-a9skw1 , phypa-a9sl58 , phypa-a9slp7 , phypa-a9smq5 , phypa-a9sp13 , phypa-a9ssb0 , phypa-a9sse1 , phypa-a9ssf6 , phypa-a9st85 , phypa-a9sx74 , phypa-a9sy58 , phypa-a9syy4 , phypa-a9t0n4 , phypa-a9t0p4 , phypa-a9t1j2 , phypa-a9t5h1 , phypa-a9t7g6 , phypa-a9t8u8 , phypa-a9t9c9 , phypa-a9t9d9 , phypa-a0a7i4d2t7 , phypa-a9t498 , phypa-a9tbu4 , phypa-a9tc36 , phypa-a9tds0 , phypa-a9te64 , phypa-a9tfw2 , phypa-a9tin6 , phypa-a9tja4 , phypa-a9tmp3 , phypa-a9tmr4 , phypa-a9tql4 , phypa-a9tr83 , phypa-a9tsl1 , phypa-a9tsv6 , phypa-a9tu05 , phypa-a9tw81 , phypa-a9tyr8 , phypa-a9u0c9 , phypa-a9u0k3 , phypa-a9u0p4 , phypa-a9u2u7 , phypa-a9u3s0 , phypa-a9tfm7 , phypa-a9tfp6 , phypa-a9syg9 , phypa-a9tzk2 , phypa-a9tvg4 , phypa-a9t1y4 , phypa-a9tqt6 , phypa-a9st18 , phypa-a9tix9 , phypa-a0a2k1kfe3 , phypa-a9sqk3 , phypa-a0a2k1ie71 , phypa-a0a2k1kg29 , phypa-a0a2k1iji3

Title : The Trichoplax genome and the nature of placozoans - Srivastava_2008_Nature_454_955
Author(s) : Srivastava M , Begovic E , Chapman J , Putnam NH , Hellsten U , Kawashima T , Kuo A , Mitros T , Salamov A , Carpenter ML , Signorovitch AY , Moreno MA , Kamm K , Grimwood J , Schmutz J , Shapiro H , Grigoriev IV , Buss LW , Schierwater B , Dellaporta SL , Rokhsar DS
Ref : Nature , 454 :955 , 2008
Abstract : As arguably the simplest free-living animals, placozoans may represent a primitive metazoan form, yet their biology is poorly understood. Here we report the sequencing and analysis of the approximately 98 million base pair nuclear genome of the placozoan Trichoplax adhaerens. Whole-genome phylogenetic analysis suggests that placozoans belong to a 'eumetazoan' clade that includes cnidarians and bilaterians, with sponges as the earliest diverging animals. The compact genome shows conserved gene content, gene structure and synteny in relation to the human and other complex eumetazoan genomes. Despite the apparent cellular and organismal simplicity of Trichoplax, its genome encodes a rich array of transcription factor and signalling pathway genes that are typically associated with diverse cell types and developmental processes in eumetazoans, motivating further searches for cryptic cellular complexity and/or as yet unobserved life history stages.
ESTHER : Srivastava_2008_Nature_454_955
PubMedSearch : Srivastava_2008_Nature_454_955
PubMedID: 18719581
Gene_locus related to this paper: triad-b3rka6 , triad-b3rkc3 , triad-b3rkc4 , triad-b3rkc5 , triad-b3rkr2 , triad-b3rks9 , triad-b3rkt0 , triad-b3rl14 , triad-b3rls2 , triad-b3rnj7 , triad-b3rnw5 , triad-b3rrr2 , triad-b3rsh1 , triad-b3rsh3 , triad-b3rty7 , triad-b3ru11 , triad-b3rur2 , triad-b3rut0 , triad-b3rvc1 , triad-b3rw12 , triad-b3rwp0 , triad-b3rwr4 , triad-b3rxn2 , triad-b3ry59 , triad-b3s1y9 , triad-b3s3d8 , triad-b3s3e9 , triad-b3s8a0 , triad-b3s9x4 , triad-b3s445 , triad-b3s449 , triad-b3s478 , triad-b3s705 , triad-b3s706 , triad-b3s898 , triad-b3s899 , triad-b3s949 , triad-b3s950 , triad-b3sa20 , triad-b3sa22 , triad-b3sa23 , triad-b3sa24 , triad-b3sa25 , triad-b3sa26 , triad-b3sa27 , triad-b3sa28 , triad-b3sa29 , triad-b3sa31 , triad-b3sa33 , triad-b3sa34 , triad-b3sa36 , triad-b3sb39 , triad-b3scd3 , triad-b3scg3 , triad-b3scg4 , triad-b3scr3 , triad-b3seb0 , triad-b3seb1 , triad-b3seu9 , triad-b3sf12 , triad-b3rt61 , triad-b3rt62 , triad-b3rj15 , triad-b3sdi1

Title : The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation - Palenik_2007_Proc.Natl.Acad.Sci.U.S.A_104_7705
Author(s) : Palenik B , Grimwood J , Aerts A , Rouze P , Salamov A , Putnam N , Dupont C , Jorgensen R , Derelle E , Rombauts S , Zhou K , Otillar R , Merchant SS , Podell S , Gaasterland T , Napoli C , Gendler K , Manuell A , Tai V , Vallon O , Piganeau G , Jancek S , Heijde M , Jabbari K , Bowler C , Lohr M , Robbens S , Werner G , Dubchak I , Pazour GJ , Ren Q , Paulsen I , Delwiche C , Schmutz J , Rokhsar D , Van de Peer Y , Moreau H , Grigoriev IV
Ref : Proc Natl Acad Sci U S A , 104 :7705 , 2007
Abstract : The smallest known eukaryotes, at approximately 1-mum diameter, are Ostreococcus tauri and related species of marine phytoplankton. The genome of Ostreococcus lucimarinus has been completed and compared with that of O. tauri. This comparison reveals surprising differences across orthologous chromosomes in the two species from highly syntenic chromosomes in most cases to chromosomes with almost no similarity. Species divergence in these phytoplankton is occurring through multiple mechanisms acting differently on different chromosomes and likely including acquisition of new genes through horizontal gene transfer. We speculate that this latter process may be involved in altering the cell-surface characteristics of each species. In addition, the genome of O. lucimarinus provides insights into the unique metal metabolism of these organisms, which are predicted to have a large number of selenocysteine-containing proteins. Selenoenzymes are more catalytically active than similar enzymes lacking selenium, and thus the cell may require less of that protein. As reported here, selenoenzymes, novel fusion proteins, and loss of some major protein families including ones associated with chromatin are likely important adaptations for achieving a small cell size.
ESTHER : Palenik_2007_Proc.Natl.Acad.Sci.U.S.A_104_7705
PubMedSearch : Palenik_2007_Proc.Natl.Acad.Sci.U.S.A_104_7705
PubMedID: 17460045
Gene_locus related to this paper: ostlu-a4rrl5 , ostlu-a4ruh2 , ostlu-a4rut7 , ostlu-a4ruy3 , ostlu-a4rxn1 , ostlu-a4ry37 , ostlu-a4s2e6 , ostlu-a4s2y4 , ostlu-a4s3d7 , ostlu-a4s4v4 , ostlu-a4s5e4 , ostlu-a4s5y6 , ostlu-a4s7a8 , ostlu-a4s7z5 , ostlu-a4s8g3 , ostlu-a4s8n8 , ostlu-a4s8s1 , ostlu-a4s958 , ostlu-a4sac2 , ostlu-a4saz3 , ostlu-a4sbb7 , ostlu-a4s6q5 , ostlu-a4s1q9 , ostlu-a4s8b2 , ostlu-a4s262

Title : The Chlamydomonas genome reveals the evolution of key animal and plant functions - Merchant_2007_Science_318_245
Author(s) : Merchant SS , Prochnik SE , Vallon O , Harris EH , Karpowicz SJ , Witman GB , Terry A , Salamov A , Fritz-Laylin LK , Marechal-Drouard L , Marshall WF , Qu LH , Nelson DR , Sanderfoot AA , Spalding MH , Kapitonov VV , Ren Q , Ferris P , Lindquist E , Shapiro H , Lucas SM , Grimwood J , Schmutz J , Cardol P , Cerutti H , Chanfreau G , Chen CL , Cognat V , Croft MT , Dent R , Dutcher S , Fernandez E , Fukuzawa H , Gonzalez-Ballester D , Gonzalez-Halphen D , Hallmann A , Hanikenne M , Hippler M , Inwood W , Jabbari K , Kalanon M , Kuras R , Lefebvre PA , Lemaire SD , Lobanov AV , Lohr M , Manuell A , Meier I , Mets L , Mittag M , Mittelmeier T , Moroney JV , Moseley J , Napoli C , Nedelcu AM , Niyogi K , Novoselov SV , Paulsen IT , Pazour G , Purton S , Ral JP , Riano-Pachon DM , Riekhof W , Rymarquis L , Schroda M , Stern D , Umen J , Willows R , Wilson N , Zimmer SL , Allmer J , Balk J , Bisova K , Chen CJ , Elias M , Gendler K , Hauser C , Lamb MR , Ledford H , Long JC , Minagawa J , Page MD , Pan J , Pootakham W , Roje S , Rose A , Stahlberg E , Terauchi AM , Yang P , Ball S , Bowler C , Dieckmann CL , Gladyshev VN , Green P , Jorgensen R , Mayfield S , Mueller-Roeber B , Rajamani S , Sayre RT , Brokstein P , Dubchak I , Goodstein D , Hornick L , Huang YW , Jhaveri J , Luo Y , Martinez D , Ngau WC , Otillar B , Poliakov A , Porter A , Szajkowski L , Werner G , Zhou K , Grigoriev IV , Rokhsar DS , Grossman AR
Ref : Science , 318 :245 , 2007
Abstract : Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.
ESTHER : Merchant_2007_Science_318_245
PubMedSearch : Merchant_2007_Science_318_245
PubMedID: 17932292
Gene_locus related to this paper: chlre-a0a2k3e2k6 , chlre-a8hmd4 , chlre-a8hqa9 , chlre-a8htq0 , chlre-a8hus6.1 , chlre-a8hus6.2 , chlre-a8icg4 , chlre-a8iwm0 , chlre-a8ize5 , chlre-a8j2s9 , chlre-a8j5w6 , chlre-a8j7f8 , chlre-a8j8u9 , chlre-a8j8v0 , chlre-a8j9u6 , chlre-a8j143 , chlre-a8j248 , chlre-a8jd32 , chlre-a8jd42 , chlre-a8jgj2 , chlre-a8jhc8 , chlre-a8jhe5 , chlre-a8iwj1 , chlre-a8j7d5 , chlre-a0a2k3dii0

Title : Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization - Putnam_2007_Science_317_86
Author(s) : Putnam NH , Srivastava M , Hellsten U , Dirks B , Chapman J , Salamov A , Terry A , Shapiro H , Lindquist E , Kapitonov VV , Jurka J , Genikhovich G , Grigoriev IV , Lucas SM , Steele RE , Finnerty JR , Technau U , Martindale MQ , Rokhsar DS
Ref : Science , 317 :86 , 2007
Abstract : Sea anemones are seemingly primitive animals that, along with corals, jellyfish, and hydras, constitute the oldest eumetazoan phylum, the Cnidaria. Here, we report a comparative analysis of the draft genome of an emerging cnidarian model, the starlet sea anemone Nematostella vectensis. The sea anemone genome is complex, with a gene repertoire, exon-intron structure, and large-scale gene linkage more similar to vertebrates than to flies or nematodes, implying that the genome of the eumetazoan ancestor was similarly complex. Nearly one-fifth of the inferred genes of the ancestor are eumetazoan novelties, which are enriched for animal functions like cell signaling, adhesion, and synaptic transmission. Analysis of diverse pathways suggests that these gene "inventions" along the lineage leading to animals were likely already well integrated with preexisting eukaryotic genes in the eumetazoan progenitor.
ESTHER : Putnam_2007_Science_317_86
PubMedSearch : Putnam_2007_Science_317_86
PubMedID: 17615350
Gene_locus related to this paper: nemve-a7rfc6 , nemve-a7rhs0 , nemve-a7rhw2 , nemve-a7ric9 , nemve-a7riu9 , nemve-a7rk54 , nemve-a7rlg8 , nemve-a7rlv4 , nemve-a7rn07 , nemve-a7rn08 , nemve-a7rn68 , nemve-a7rnv3 , nemve-a7rpb3 , nemve-a7rpq4 , nemve-a7rqa8 , nemve-a7rqw3 , nemve-a7rwv1 , nemve-a7rxl6 , nemve-a7s1d5 , nemve-a7s3l3 , nemve-a7s3q1 , nemve-a7s5u3 , nemve-a7s6g4 , nemve-a7s6s7 , nemve-a7sa46 , nemve-a7sbd9 , nemve-a7sbe0 , nemve-a7sbm6 , nemve-a7scy7 , nemve-a7sex0 , nemve-a7sfa0 , nemve-a7sff3 , nemve-a7sgb1 , nemve-a7shf2 , nemve-a7siv4 , nemve-a7sj77 , nemve-a7sjw1 , nemve-a7skr3 , nemve-a7slm1 , nemve-a7slm2 , nemve-a7sp35 , nemve-a7sq47 , nemve-a7sq73 , nemve-a7sqk0 , nemve-a7su21 , nemve-a7su25 , nemve-a7svn0 , nemve-a7svu2 , nemve-a7sx21 , nemve-a7syk4 , nemve-a7t3e6 , nemve-a7suy2 , nemve-a7s803 , nemve-a7t3m9 , nemve-a0a1t4jh34 , nemve-a7rvd5 , nemve-a7rhu9 , nemve-a7si15

Title : Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis - Jeffries_2007_Nat.Biotechnol_25_319
Author(s) : Jeffries TW , Grigoriev IV , Grimwood J , Laplaza JM , Aerts A , Salamov A , Schmutz J , Lindquist E , Dehal P , Shapiro H , Jin YS , Passoth V , Richardson PM
Ref : Nat Biotechnol , 25 :319 , 2007
Abstract : Xylose is a major constituent of plant lignocellulose, and its fermentation is important for the bioconversion of plant biomass to fuels and chemicals. Pichia stipitis is a well-studied, native xylose-fermenting yeast. The mechanism and regulation of xylose metabolism in P. stipitis have been characterized and genes from P. stipitis have been used to engineer xylose metabolism in Saccharomyces cerevisiae. We have sequenced and assembled the complete genome of P. stipitis. The sequence data have revealed unusual aspects of genome organization, numerous genes for bioconversion, a preliminary insight into regulation of central metabolic pathways and several examples of colocalized genes with related functions. The genome sequence provides insight into how P. stipitis regulates its redox balance while very efficiently fermenting xylose under microaerobic conditions.
ESTHER : Jeffries_2007_Nat.Biotechnol_25_319
PubMedSearch : Jeffries_2007_Nat.Biotechnol_25_319
PubMedID: 17334359
Gene_locus related to this paper: picst-a3geu9 , picst-a3gfu2 , picst-a3ggh9 , picst-a3gha8 , picst-a3ghe3 , picst-a3gi73 , picst-a3lmu3 , picst-a3ln06 , picst-a3ln59 , picst-a3lnv8 , picst-a3lp77 , picst-a3lqt4 , picst-a3lrt0 , picst-a3ls15 , picst-a3lsj8 , picst-a3lu11 , picst-a3luu0 , picst-a3lv87 , picst-a3lvi5 , picst-a3lvu9 , picst-a3lvv2 , picst-a3lwa4 , picst-a3lxl2 , picst-a3lxs8 , picst-a3lyi3 , picst-atg15 , picst-bna7 , picst-a3lyh1 , picst-a3lnc5 , picst-a3lr32

Title : Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis - Tyler_2006_Science_313_1261
Author(s) : Tyler BM , Tripathy S , Zhang X , Dehal P , Jiang RH , Aerts A , Arredondo FD , Baxter L , Bensasson D , Beynon JL , Chapman J , Damasceno CM , Dorrance AE , Dou D , Dickerman AW , Dubchak IL , Garbelotto M , Gijzen M , Gordon SG , Govers F , Grunwald NJ , Huang W , Ivors KL , Jones RW , Kamoun S , Krampis K , Lamour KH , Lee MK , McDonald WH , Medina M , Meijer HJ , Nordberg EK , Maclean DJ , Ospina-Giraldo MD , Morris PF , Phuntumart V , Putnam NH , Rash S , Rose JK , Sakihama Y , Salamov AA , Savidor A , Scheuring CF , Smith BM , Sobral BW , Terry A , Torto-Alalibo TA , Win J , Xu Z , Zhang H , Grigoriev IV , Rokhsar DS , Boore JL
Ref : Science , 313 :1261 , 2006
Abstract : Draft genome sequences have been determined for the soybean pathogen Phytophthora sojae and the sudden oak death pathogen Phytophthora ramorum. Oomycetes such as these Phytophthora species share the kingdom Stramenopila with photosynthetic algae such as diatoms, and the presence of many Phytophthora genes of probable phototroph origin supports a photosynthetic ancestry for the stramenopiles. Comparison of the two species' genomes reveals a rapid expansion and diversification of many protein families associated with plant infection such as hydrolases, ABC transporters, protein toxins, proteinase inhibitors, and, in particular, a superfamily of 700 proteins with similarity to known oomycete avirulence genes.
ESTHER : Tyler_2006_Science_313_1261
PubMedSearch : Tyler_2006_Science_313_1261
PubMedID: 16946064
Gene_locus related to this paper: phyrm-h3ga89 , phyrm-h3gbl6.1 , phyrm-h3gbl6.2 , phyrm-h3gbl7 , phyrm-h3gdd4 , phyrm-h3gl36 , phyrm-h3gq42 , phyrm-h3gx86 , phyrm-h3gyi2 , phyrm-h3gyi3 , phyrm-h3gyi4 , phyrm-h3h292 , phyrm-h3h293 , phyrm-h3h967 , phyrm-h3hcf9 , physp-g4ynp3 , physp-g4yut6 , physp-g4yut8 , physp-g4yw23 , physp-g4zis3 , physp-g4zqe3 , physp-g4zqe4 , physp-g4zqf0 , physp-g4zqn9 , physp-g4zwy9 , physp-g5a582 , physp-g5a583 , physp-g5aav9 , phyrm-h3g9e7 , physp-g4zwu9 , phyrm-h3ggp1 , physp-g4ztq5 , physp-g4zwu8 , physp-g4zwv7 , physp-g4zwv6 , physp-g4zwv0 , physp-g4zwv8 , phyrm-h3gp95 , phyrm-h3g6r5 , physp-g4zwv9 , physp-g5a510 , phyrm-h3glu3 , physp-g5aci1 , phyrm-h3h2d0 , physp-g4ztb2 , physp-g4yg47 , phyrm-h3h2c9 , physp-g4ztb3 , phyrm-h3gvj3 , phyrm-h3gy62 , physp-g4yg46 , physp-g4zdt9 , phyrm-h3gdh5 , physp-g4zm41 , physp-g5abj7 , phyrm-h3gz76 , physp-g5a425 , phyrm-h3h080 , physp-g4ytv0 , phyrm-h3gcw7

Title : Detection of protein fold similarity based on correlation of amino acid properties - Grigoriev_1999_Proc.Natl.Acad.Sci.U.S.A_96_14318
Author(s) : Grigoriev IV , Kim SH
Ref : Proc Natl Acad Sci U S A , 96 :14318 , 1999
Abstract : An increasing number of proteins with weak sequence similarity have been found to assume similar three-dimensional fold and often have similar or related biochemical or biophysical functions. We propose a method for detecting the fold similarity between two proteins with low sequence similarity based on their amino acid properties alone. The method, the proximity correlation matrix (PCM) method, is built on the observation that the physical properties of neighboring amino acid residues in sequence at structurally equivalent positions of two proteins of similar fold are often correlated even when amino acid sequences are different. The hydrophobicity is shown to be the most strongly correlated property for all protein fold classes. The PCM method was tested on 420 proteins belonging to 64 different known folds, each having at least three proteins with little sequence similarity. The method was able to detect fold similarities for 40% of the 420 sequences. Compared with sequence comparison and several fold-recognition methods, the method demonstrates good performance in detecting fold similarities among the proteins with low sequence identity. Applied to the complete genome of Methanococcus jannaschii, the method recognized the folds for 22 hypothetical proteins.
ESTHER : Grigoriev_1999_Proc.Natl.Acad.Sci.U.S.A_96_14318
PubMedSearch : Grigoriev_1999_Proc.Natl.Acad.Sci.U.S.A_96_14318
PubMedID: 10588703
Gene_locus related to this paper: mycge-esl1 , mycge-esl2 , mycge-esl3 , mycge-pip