de Souza RF

References (4)

Title : Monomeric Esterase: Insights into Cooperative Behavior, Hysteresis\/Allokairy - Vinces_2024_Biochemistry__
Author(s) : Vinces TC , de Souza AS , Carvalho CF , Visnardi AB , Teixeira RD , Llontop EE , Bismara BAP , Vicente EJ , Pereira JO , de Souza RF , Yonamine M , Marana SR , Farah CS , Guzzo CR
Ref : Biochemistry , : , 2024
Abstract : Herein, we present a novel esterase enzyme, Ade1, isolated from a metagenomic library of Amazonian dark earths soils, demonstrating its broad substrate promiscuity by hydrolyzing ester bonds linked to aliphatic groups. The three-dimensional structure of the enzyme was solved in the presence and absence of substrate (tributyrin), revealing its classification within the alpha/beta-hydrolase superfamily. Despite being a monomeric enzyme, enzymatic assays reveal a cooperative behavior with a sigmoidal profile (initial velocities vs substrate concentrations). Our investigation brings to light the allokairy/hysteresis behavior of Ade1, as evidenced by a transient burst profile during the hydrolysis of substrates such as p-nitrophenyl butyrate and p-nitrophenyl octanoate. Crystal structures of Ade1, coupled with molecular dynamics simulations, unveil the existence of multiple conformational structures within a single molecular state (E(1)). Notably, substrate binding induces a loop closure that traps the substrate in the catalytic site. Upon product release, the cap domain opens simultaneously with structural changes, transitioning the enzyme to a new molecular state (E(2)). This study advances our understanding of hysteresis/allokairy mechanisms, a temporal regulation that appears more pervasive than previously acknowledged and extends its presence to metabolic enzymes. These findings also hold potential implications for addressing human diseases associated with metabolic dysregulation.
ESTHER : Vinces_2024_Biochemistry__
PubMedSearch : Vinces_2024_Biochemistry__
PubMedID: 38669355
Gene_locus related to this paper: 9bact-6EB3

Title : Molecular and functional basis of a novel Amazonian Dark Earth Esterase 1 (Ade1) with hysteresis behavior and quorum-quenching activity - Vinces_2021_Biorxiv__
Author(s) : Vinces TC , de Souza AS , Carvalho CF , Teixeira RD , Bismara BAP , Vicente EJ , Pereira JO , de Souza RF , Yonamine M , Marana SR , Farah CS , Guzzo CR
Ref : Biorxiv , : , 2021
Abstract : Amazon Dark Earth (ADE) soil is rich in organic compounds and its fertility has been associated with a high diversity of microorganisms. Herein, we investigate the biochemical and functional features of a novel esterase, Ade1, obtained from a metagenomic library of Amazonian Dark Earth soils of the Amazonian Rainforest, in Brazil. The esterases cleave ester bonds to form a carboxylic and an alcohol group. Esterases and lipases are enzymes found in almost all living organisms, demonstrating their biological relevance. We reported that Ade1 belongs to an alpha/beta-hydrolase superfamily. We suggest that Ade1 is a moonlighting enzyme with hysteresis behavior and quorum-quenching activity, which may play a key role in the metabolism of a Gram-negative proteobacteria. In addition, molecular dynamics simulations reveal that the hysteresis behavior is directly associated with structural properties of the cap domain. Our findings reveal details of the molecular basis, catalytic and structural mechanisms of a novel alpha/beta-hydrolase, which may be applied to other esterases of biotechnological, food, and/or pharmaceutical interest.
ESTHER : Vinces_2021_Biorxiv__
PubMedSearch : Vinces_2021_Biorxiv__
PubMedID:
Gene_locus related to this paper: 9bact-6EB3

Title : Novel insights into the genomic basis of citrus canker based on the genome sequences of two strains of Xanthomonas fuscans subsp. aurantifolii - Moreira_2010_BMC.Genomics_11_238
Author(s) : Moreira LM , Almeida NF, Jr. , Potnis N , Digiampietri LA , Adi SS , Bortolossi JC , da Silva AC , da Silva AM , de Moraes FE , de Oliveira JC , de Souza RF , Facincani AP , Ferraz AL , Ferro MI , Furlan LR , Gimenez DF , Jones JB , Kitajima EW , Laia ML , Leite RP, Jr. , Nishiyama MY , Rodrigues Neto J , Nociti LA , Norman DJ , Ostroski EH , Pereira HA, Jr. , Staskawicz BJ , Tezza RI , Ferro JA , Vinatzer BA , Setubal JC
Ref : BMC Genomics , 11 :238 , 2010
Abstract : BACKGROUND: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C.
RESULTS: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. CONCLUSION: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.
ESTHER : Moreira_2010_BMC.Genomics_11_238
PubMedSearch : Moreira_2010_BMC.Genomics_11_238
PubMedID: 20388224
Gene_locus related to this paper: xanax-CATD , xanax-ENTF2 , xanax-estA1 , xanax-GAA , xanax-PTRB , xanax-XAC0198 , xanax-XAC0515 , xanax-XAC0591 , xanax-XAC0619 , xanax-XAC0628 , xanax-XAC0736 , xanax-XAC0753 , xanax-XAC0805 , xanax-XAC1213 , xanax-XAC1713 , xanax-XAC1752 , xanax-XAC2393 , xanax-XAC2532 , xanax-XAC2541 , xanax-XAC2987 , xanax-XAC3315 , xanax-XAC3371 , xanax-XAC4046 , xanax-XAC4055 , xanax-XAC4106 , xanax-XYNB , xanc5-q3bqi2 , xanca-impep , xanca-XCC1105 , xanca-XCC2566 , xanca-XCC2722 , xanor-acvB , xanor-metx , 9xant-a0a0g8v5k2

Title : Comparison of the genomes of two Xanthomonas pathogens with differing host specificities - da Silva_2002_Nature_417_459
Author(s) : da Silva ACR , Ferro JA , Reinach FC , Farah CS , Furlan LR , Quaggio RB , Monteiro-Vitorello CB , Van Sluys MA , Almeida Jr NF , Alves LMC , do Amaral AM , Bertolini MC , Camargo LEA , Camarotte G , Cannavan F , Cardozo J , Chambergo F , Ciapina LP , Cicarelli RMB , Coutinho LL , Cursino-Santos JR , El-Dorry H , Faria JB , Ferreira AJS , Ferreira RCC , Ferro MIT , Formighieri EF , Franco MC , Greggio CC , Gruber A , Katsuyama AM , Kishi LT , Leite JrRP , Lemos EGM , Lemos MVF , Locali EC , Machado MA , Madeira AMBN , Martinez-Rossi NM , Martins EC , Meidanis J , Menck CFM , Miyaki CY , Moon DH , Moreira LM , Novo MTM , Okura VK , Oliveira MC , Oliveira VR , Pereira Jr HA , Rossi A , Sena JAD , Silva C , de Souza RF , Spinola LAF , Takita MA , Tamura RE , Teixeira EC , Tezza RID , Trindade dos Santos M , Truffi D , Tsai SM , White FF , Setubal JC , Kitajima JP
Ref : Nature , 417 :459 , 2002
Abstract : The genus Xanthomonas is a diverse and economically important group of bacterial phytopathogens, belonging to the gamma-subdivision of the Proteobacteria. Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, which affects most commercial citrus cultivars, resulting in significant losses worldwide. Symptoms include canker lesions, leading to abscission of fruit and leaves and general tree decline. Xanthomonas campestris pv. campestris (Xcc) causes black rot, which affects crucifers such as Brassica and Arabidopsis. Symptoms include marginal leaf chlorosis and darkening of vascular tissue, accompanied by extensive wilting and necrosis. Xanthomonas campestris pv. campestris is grown commercially to produce the exopolysaccharide xanthan gum, which is used as a viscosifying and stabilizing agent in many industries. Here we report and compare the complete genome sequences of Xac and Xcc. Their distinct disease phenotypes and host ranges belie a high degree of similarity at the genomic level. More than 80% of genes are shared, and gene order is conserved along most of their respective chromosomes. We identified several groups of strain-specific genes, and on the basis of these groups we propose mechanisms that may explain the differing host specificities and pathogenic processes.
ESTHER : da Silva_2002_Nature_417_459
PubMedSearch : da Silva_2002_Nature_417_459
PubMedID: 12024217
Gene_locus related to this paper: xanac-q8phx9 , xanac-q8pmm6 , xanax-ACVB , xanax-BIOH , xanax-CATD , xanax-CPO , xanax-DHAA , xancp-OleB , xanax-ENTF2 , xanax-estA1 , xanax-GAA , xanax-META , xanax-METX , xanax-PCAD , xanax-PHBC , xanax-PTRB , xanax-Q8PMQ8 , xanax-Q8PQP0 , xanax-XAC0198 , xanax-XAC0262 , xanax-XAC0279 , xanax-XAC0319 , xanax-XAC0372 , xanax-XAC0375 , xanax-XAC0501 , xanax-XAC0515 , xanax-XAC0574 , xanax-XAC0591 , xanax-XAC0619 , xanax-XAC0628 , xanax-XAC0736 , xanax-XAC0753 , xanax-XAC0805 , xanax-XAC0874 , xanax-XAC0916 , xanax-XAC1200 , xanax-XAC1213 , xanax-XAC1591 , xanax-XAC1713 , xanax-XAC1752 , xanax-XAC2126 , xanax-XAC2393 , xanax-XAC2532 , xanax-XAC2541 , xanax-XAC2907 , xanax-XAC2981 , xanax-XAC2987 , xanax-XAC2990 , xanax-XAC3037 , xanax-XAC3053 , xanax-XAC3152 , xanax-XAC3173 , xanax-XAC3315 , xanax-XAC3371 , xanax-XAC3619 , xanax-XAC3674 , xanax-XAC3770 , xanax-XAC3967 , xanax-XAC3999 , xanax-XAC4046 , xanax-XAC4055 , xanax-XAC4106 , xanax-XAC4221 , xanax-XAC4316 , xanax-XYNB , xanca-acvB , xanca-BIOH , xanca-CATD , xanca-CPO , xanca-estA1 , xanca-impep , xanca-META , xanca-METX , xanca-PCAD , xanca-PHBC , xanca-Q8PB04 , xanca-W78 , xanca-XCC0080 , xanca-XCC0180 , xanca-XCC0243 , xanca-XCC0260 , xanca-XCC0266 , xanca-XCC0372 , xanca-XCC0375 , xanca-XCC0753 , xanca-XCC0757 , xanca-XCC0800 , xanca-XCC0843 , xanca-XCC1105 , xanca-XCC1541 , xanca-XCC1734 , xanca-XCC2285 , xanca-XCC2374 , xanca-XCC2397 , xanca-XCC2405 , xanca-XCC2566 , xanca-XCC2722 , xanca-XCC2737 , xanca-XCC2811 , xanca-XCC2817 , xanca-XCC2854 , xanca-XCC2869 , xanca-XCC2957 , xanca-XCC3028 , xanca-XCC3164 , xanca-XCC3219 , xanca-XCC3296 , xanca-XCC3300 , xanca-XCC3308 , xanca-XCC3320 , xanca-XCC3514 , xanca-XCC3548 , xanca-XCC3555 , xanca-XCC3623 , xanca-XCC3885 , xanca-XCC3915 , xanca-XCC3961 , xanca-XCC3970 , xanca-XCC4016 , xanca-XCC4096 , xanca-XCC4180 , xanca-XYNB , xanca-XYNB2 , xancb-b0rq23 , xancp-q8pax3 , xancp-y2094