Van Sluys MA

References (9)

Title : Complete Genome Sequence of Leifsonia xyli subsp. cynodontis Strain DSM46306, a Gram-Positive Bacterial Pathogen of Grasses - Monteiro-Vitorello_2013_Genome.Announc_1_e00915
Author(s) : Monteiro-Vitorello CB , Zerillo MM , Van Sluys MA , Camargo LE , Kitajima JP
Ref : Genome Announc , 1 : , 2013
Abstract : We announce the complete genome sequence of Leifsonia xyli subsp. cynodontis, a vascular pathogen of Bermuda grass. The species also comprises Leifsonia xyli subsp. xyli, a sugarcane pathogen. Since these two subspecies have genome sequences available, a comparative analysis will contribute to our understanding of the differences in their biology and host specificity.
ESTHER : Monteiro-Vitorello_2013_Genome.Announc_1_e00915
PubMedSearch : Monteiro-Vitorello_2013_Genome.Announc_1_e00915
PubMedID: 24201198

Title : Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads - Darrasse_2013_BMC.Genomics_14_761
Author(s) : Darrasse A , Carrere S , Barbe V , Boureau T , Arrieta-Ortiz ML , Bonneau S , Briand M , Brin C , Cociancich S , Durand K , Fouteau S , Gagnevin L , Guerin F , Guy E , Indiana A , Koebnik R , Lauber E , Munoz A , Noel LD , Pieretti I , Poussier S , Pruvost O , Robene-Soustrade I , Rott P , Royer M , Serres-Giardi L , Szurek B , Van Sluys MA , Verdier V , Verniere C , Arlat M , Manceau C , Jacques MA
Ref : BMC Genomics , 14 :761 , 2013
Abstract : BACKGROUND: Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences.
RESULTS: Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations.
CONCLUSIONS: This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.
ESTHER : Darrasse_2013_BMC.Genomics_14_761
PubMedSearch : Darrasse_2013_BMC.Genomics_14_761
PubMedID: 24195767
Gene_locus related to this paper: xanax-estA1 , xanax-XAC1213 , xanax-XAC2987 , xanax-XAC3315 , xanax-XAC4055 , xanor-q5h5n1

Title : Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp - Bogdanove_2011_J.Bacteriol_193_5450
Author(s) : Bogdanove AJ , Koebnik R , Lu H , Furutani A , Angiuoli SV , Patil PB , Van Sluys MA , Ryan RP , Meyer DF , Han SW , Aparna G , Rajaram M , Delcher AL , Phillippy AM , Puiu D , Schatz MC , Shumway M , Sommer DD , Trapnell C , Benahmed F , Dimitrov G , Madupu R , Radune D , Sullivan S , Jha G , Ishihara H , Lee SW , Pandey A , Sharma V , Sriariyanun M , Szurek B , Vera-Cruz CM , Dorman KS , Ronald PC , Verdier V , Dow JM , Sonti RV , Tsuge S , Brendel VP , Rabinowicz PD , Leach JE , White FF , Salzberg SL
Ref : Journal of Bacteriology , 193 :5450 , 2011
Abstract : Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.
ESTHER : Bogdanove_2011_J.Bacteriol_193_5450
PubMedSearch : Bogdanove_2011_J.Bacteriol_193_5450
PubMedID: 21784931
Gene_locus related to this paper: xanax-XAC4055 , xanca-CATD , xanca-estA1 , xanca-XCC0080 , xanca-XCC3164 , xanor-q5h5n1

Title : Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A - Salzberg_2008_BMC.Genomics_9_204
Author(s) : Salzberg SL , Sommer DD , Schatz MC , Phillippy AM , Rabinowicz PD , Tsuge S , Furutani A , Ochiai H , Delcher AL , Kelley D , Madupu R , Puiu D , Radune D , Shumway M , Trapnell C , Aparna G , Jha G , Pandey A , Patil PB , Ishihara H , Meyer DF , Szurek B , Verdier V , Koebnik R , Dow JM , Ryan RP , Hirata H , Tsuyumu S , Won Lee S , Seo YS , Sriariyanum M , Ronald PC , Sonti RV , Van Sluys MA , Leach JE , White FF , Bogdanove AJ
Ref : BMC Genomics , 9 :204 , 2008
Abstract : BACKGROUND: Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. RESULTS: The PXO99A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. CONCLUSION: Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world.
ESTHER : Salzberg_2008_BMC.Genomics_9_204
PubMedSearch : Salzberg_2008_BMC.Genomics_9_204
PubMedID: 18452608
Gene_locus related to this paper: xanax-GAA , xanax-PTRB , xanax-XAC0628 , xanax-XAC0736 , xanax-XAC1713 , xanca-impep , xanca-XCC1105 , xanor-acvB , xanor-bioh , xanor-metx , xanor-q5gu74 , xanor-q5gvh6 , xanor-q5gy36 , xanor-q5gy47 , xanor-q5gz98 , xanor-q5h3e8 , xanor-q5h5n1 , xanor-q5h5w8 , xanor-q5h5x9 , xanor-q5h236 , xanor-Q93M73 , xanop-a0a0k0gpc4

Title : Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis - Nascimento_2004_J.Bacteriol_186_2164
Author(s) : Nascimento AL , Ko AI , Martins EA , Monteiro-Vitorello CB , Ho PL , Haake DA , Verjovski-Almeida S , Hartskeerl RA , Marques MV , Oliveira MC , Menck CF , Leite LC , Carrer H , Coutinho LL , Degrave WM , Dellagostin OA , El-Dorry H , Ferro ES , Ferro MI , Furlan LR , Gamberini M , Giglioti EA , Goes-Neto A , Goldman GH , Goldman MH , Harakava R , Jeronimo SM , Junqueira-de-Azevedo IL , Kimura ET , Kuramae EE , Lemos EG , Lemos MV , Marino CL , Nunes LR , de Oliveira RC , Pereira GG , Reis MS , Schriefer A , Siqueira WJ , Sommer P , Tsai SM , Simpson AJ , Ferro JA , Camargo LE , Kitajima JP , Setubal JC , Van Sluys MA
Ref : Journal of Bacteriology , 186 :2164 , 2004
Abstract : Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in accidental hosts, including humans. Complete genome sequencing of Leptospira interrogans serovar Copenhageni and comparative analysis with the available Leptospira interrogans serovar Lai genome reveal that despite overall genetic similarity there are significant structural differences, including a large chromosomal inversion and extensive variation in the number and distribution of insertion sequence elements. Genome sequence analysis elucidates many of the novel aspects of leptospiral physiology relating to energy metabolism, oxygen tolerance, two-component signal transduction systems, and mechanisms of pathogenesis. A broad array of transcriptional regulation proteins and two new families of afimbrial adhesins which contribute to host tissue colonization in the early steps of infection were identified. Differences in genes involved in the biosynthesis of lipopolysaccharide O side chains between the Copenhageni and Lai serovars were identified, offering an important starting point for the elucidation of the organism's complex polysaccharide surface antigens. Differences in adhesins and in lipopolysaccharide might be associated with the adaptation of serovars Copenhageni and Lai to different animal hosts. Hundreds of genes encoding surface-exposed lipoproteins and transmembrane outer membrane proteins were identified as candidates for development of vaccines for the prevention of leptospirosis.
ESTHER : Nascimento_2004_J.Bacteriol_186_2164
PubMedSearch : Nascimento_2004_J.Bacteriol_186_2164
PubMedID: 15028702
Gene_locus related to this paper: lepin-AXEA , lepin-ESTA , lepin-LA0357 , lepin-LA0587 , lepin-LA0932 , lepin-LA1069 , lepin-LA1345 , lepin-LA1541 , lepin-LA1861 , lepin-LA1902 , lepin-LA1936 , lepin-LA1955 , lepin-LA2034 , lepin-LA2132 , lepin-LA2501 , lepin-LA2505 , lepin-LA2526 , lepin-LA2544 , lepin-LA2857 , lepin-LA2958 , lepin-LA3100 , lepin-LA3107 , lepin-LA3147 , lepin-LA3604 , lepin-LA3661 , lepin-LA3672 , lepin-LA3788 , lepin-LA3851 , lepin-LA3897 , lepin-LA3998 , lepin-METX , lepin-q8f7a8 , lepin-q72tt9

Title : The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli - Monteiro-Vitorello_2004_Mol.Plant.Microbe.Interact_17_827
Author(s) : Monteiro-Vitorello CB , Camargo LE , Van Sluys MA , Kitajima JP , Truffi D , do Amaral AM , Harakava R , de Oliveira JC , Wood D , de Oliveira MC , Miyaki C , Takita MA , da Silva AC , Furlan LR , Carraro DM , Camarotte G , Almeida NF, Jr. , Carrer H , Coutinho LL , El-Dorry HA , Ferro MI , Gagliardi PR , Giglioti E , Goldman MH , Goldman GH , Kimura ET , Ferro ES , Kuramae EE , Lemos EG , Lemos MV , Mauro SM , Machado MA , Marino CL , Menck CF , Nunes LR , Oliveira RC , Pereira GG , Siqueira W , de Souza AA , Tsai SM , Zanca AS , Simpson AJ , Brumbley SM , Setubal JC
Ref : Mol Plant Microbe Interact , 17 :827 , 2004
Abstract : The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.
ESTHER : Monteiro-Vitorello_2004_Mol.Plant.Microbe.Interact_17_827
PubMedSearch : Monteiro-Vitorello_2004_Mol.Plant.Microbe.Interact_17_827
PubMedID: 15305603
Gene_locus related to this paper: leixx-q6ack2 , leixx-q6acm6 , leixx-q6acw2 , leixx-q6ad78 , leixx-q6adb9 , leixx-q6aed1 , leixx-q6aee6 , leixx-q6af15 , leixx-q6agt3 , leixx-q6ah78

Title : Comparative analyses of the complete genome sequences of Pierce's disease and citrus variegated chlorosis strains of Xylella fastidiosa - Van Sluys_2003_J.Bacteriol_185_1018
Author(s) : Van Sluys MA , de Oliveira MC , Monteiro-Vitorello CB , Miyaki CY , Furlan LR , Camargo LE , da Silva AC , Moon DH , Takita MA , Lemos EG , Machado MA , Ferro MI , da Silva FR , Goldman MH , Goldman GH , Lemos MV , El-Dorry H , Tsai SM , Carrer H , Carraro DM , de Oliveira RC , Nunes LR , Siqueira WJ , Coutinho LL , Kimura ET , Ferro ES , Harakava R , Kuramae EE , Marino CL , Giglioti E , Abreu IL , Alves LM , do Amaral AM , Baia GS , Blanco SR , Brito MS , Cannavan FS , Celestino AV , da Cunha AF , Fenille RC , Ferro JA , Formighieri EF , Kishi LT , Leoni SG , Oliveira AR , Rosa VE, Jr. , Sassaki FT , Sena JA , de Souza AA , Truffi D , Tsukumo F , Yanai GM , Zaros LG , Civerolo EL , Simpson AJ , Almeida NF, Jr. , Setubal JC , Kitajima JP
Ref : Journal of Bacteriology , 185 :1018 , 2003
Abstract : Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X. fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X. fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X. fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X. fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.
ESTHER : Van Sluys_2003_J.Bacteriol_185_1018
PubMedSearch : Van Sluys_2003_J.Bacteriol_185_1018
PubMedID: 12533478
Gene_locus related to this paper: xylfa-ACVB , xylfa-cxest , xylfa-metx , xylfa-PD1038 , xylfa-PD1211 , xylfa-PD1300 , xylfa-PD1702 , xylfa-PD2024 , xylfa-pip , xylfa-XF0015 , xylfa-XF0357 , xylfa-XF0754 , xylfa-XF0863 , xylfa-XF1029 , xylfa-XF1181 , xylfa-XF1253 , xylfa-XF1282 , xylfa-XF1356 , xylfa-XF1479 , xylfa-XF1965 , xylfa-XF2330 , xylfa-XF2551

Title : Comparison of the genomes of two Xanthomonas pathogens with differing host specificities - da Silva_2002_Nature_417_459
Author(s) : da Silva ACR , Ferro JA , Reinach FC , Farah CS , Furlan LR , Quaggio RB , Monteiro-Vitorello CB , Van Sluys MA , Almeida Jr NF , Alves LMC , do Amaral AM , Bertolini MC , Camargo LEA , Camarotte G , Cannavan F , Cardozo J , Chambergo F , Ciapina LP , Cicarelli RMB , Coutinho LL , Cursino-Santos JR , El-Dorry H , Faria JB , Ferreira AJS , Ferreira RCC , Ferro MIT , Formighieri EF , Franco MC , Greggio CC , Gruber A , Katsuyama AM , Kishi LT , Leite JrRP , Lemos EGM , Lemos MVF , Locali EC , Machado MA , Madeira AMBN , Martinez-Rossi NM , Martins EC , Meidanis J , Menck CFM , Miyaki CY , Moon DH , Moreira LM , Novo MTM , Okura VK , Oliveira MC , Oliveira VR , Pereira Jr HA , Rossi A , Sena JAD , Silva C , de Souza RF , Spinola LAF , Takita MA , Tamura RE , Teixeira EC , Tezza RID , Trindade dos Santos M , Truffi D , Tsai SM , White FF , Setubal JC , Kitajima JP
Ref : Nature , 417 :459 , 2002
Abstract : The genus Xanthomonas is a diverse and economically important group of bacterial phytopathogens, belonging to the gamma-subdivision of the Proteobacteria. Xanthomonas axonopodis pv. citri (Xac) causes citrus canker, which affects most commercial citrus cultivars, resulting in significant losses worldwide. Symptoms include canker lesions, leading to abscission of fruit and leaves and general tree decline. Xanthomonas campestris pv. campestris (Xcc) causes black rot, which affects crucifers such as Brassica and Arabidopsis. Symptoms include marginal leaf chlorosis and darkening of vascular tissue, accompanied by extensive wilting and necrosis. Xanthomonas campestris pv. campestris is grown commercially to produce the exopolysaccharide xanthan gum, which is used as a viscosifying and stabilizing agent in many industries. Here we report and compare the complete genome sequences of Xac and Xcc. Their distinct disease phenotypes and host ranges belie a high degree of similarity at the genomic level. More than 80% of genes are shared, and gene order is conserved along most of their respective chromosomes. We identified several groups of strain-specific genes, and on the basis of these groups we propose mechanisms that may explain the differing host specificities and pathogenic processes.
ESTHER : da Silva_2002_Nature_417_459
PubMedSearch : da Silva_2002_Nature_417_459
PubMedID: 12024217
Gene_locus related to this paper: xanac-q8phx9 , xanac-q8pmm6 , xanax-ACVB , xanax-BIOH , xanax-CATD , xanax-CPO , xanax-DHAA , xancp-OleB , xanax-ENTF2 , xanax-estA1 , xanax-GAA , xanax-META , xanax-METX , xanax-PCAD , xanax-PHBC , xanax-PTRB , xanax-Q8PMQ8 , xanax-Q8PQP0 , xanax-XAC0198 , xanax-XAC0262 , xanax-XAC0279 , xanax-XAC0319 , xanax-XAC0372 , xanax-XAC0375 , xanax-XAC0501 , xanax-XAC0515 , xanax-XAC0574 , xanax-XAC0591 , xanax-XAC0619 , xanax-XAC0628 , xanax-XAC0736 , xanax-XAC0753 , xanax-XAC0805 , xanax-XAC0874 , xanax-XAC0916 , xanax-XAC1200 , xanax-XAC1213 , xanax-XAC1591 , xanax-XAC1713 , xanax-XAC1752 , xanax-XAC2126 , xanax-XAC2393 , xanax-XAC2532 , xanax-XAC2541 , xanax-XAC2907 , xanax-XAC2981 , xanax-XAC2987 , xanax-XAC2990 , xanax-XAC3037 , xanax-XAC3053 , xanax-XAC3152 , xanax-XAC3173 , xanax-XAC3315 , xanax-XAC3371 , xanax-XAC3619 , xanax-XAC3674 , xanax-XAC3770 , xanax-XAC3967 , xanax-XAC3999 , xanax-XAC4046 , xanax-XAC4055 , xanax-XAC4106 , xanax-XAC4221 , xanax-XAC4316 , xanax-XYNB , xanca-acvB , xanca-BIOH , xanca-CATD , xanca-CPO , xanca-estA1 , xanca-impep , xanca-META , xanca-METX , xanca-PCAD , xanca-PHBC , xanca-Q8PB04 , xanca-W78 , xanca-XCC0080 , xanca-XCC0180 , xanca-XCC0243 , xanca-XCC0260 , xanca-XCC0266 , xanca-XCC0372 , xanca-XCC0375 , xanca-XCC0753 , xanca-XCC0757 , xanca-XCC0800 , xanca-XCC0843 , xanca-XCC1105 , xanca-XCC1541 , xanca-XCC1734 , xanca-XCC2285 , xanca-XCC2374 , xanca-XCC2397 , xanca-XCC2405 , xanca-XCC2566 , xanca-XCC2722 , xanca-XCC2737 , xanca-XCC2811 , xanca-XCC2817 , xanca-XCC2854 , xanca-XCC2869 , xanca-XCC2957 , xanca-XCC3028 , xanca-XCC3164 , xanca-XCC3219 , xanca-XCC3296 , xanca-XCC3300 , xanca-XCC3308 , xanca-XCC3320 , xanca-XCC3514 , xanca-XCC3548 , xanca-XCC3555 , xanca-XCC3623 , xanca-XCC3885 , xanca-XCC3915 , xanca-XCC3961 , xanca-XCC3970 , xanca-XCC4016 , xanca-XCC4096 , xanca-XCC4180 , xanca-XYNB , xanca-XYNB2 , xancb-b0rq23 , xancp-q8pax3 , xancp-y2094

Title : The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa Consortium of the Organization for Nucleotide Sequencing and Analysis - Simpson_2000_Nature_406_151
Author(s) : Simpson AJ , Reinach FC , Arruda P , Abreu FA , Acencio M , Alvarenga R , Alves LM , Araya JE , Baia GS , Baptista CS , Barros MH , Bonaccorsi ED , Bordin S , Bove JM , Briones MR , Bueno MR , Camargo AA , Camargo LE , Carraro DM , Carrer H , Colauto NB , Colombo C , Costa FF , Costa MC , Costa-Neto CM , Coutinho LL , Cristofani M , Dias-Neto E , Docena C , El-Dorry H , Facincani AP , Ferreira AJ , Ferreira VC , Ferro JA , Fraga JS , Franca SC , Franco MC , Frohme M , Furlan LR , Garnier M , Goldman GH , Goldman MH , Gomes SL , Gruber A , Ho PL , Hoheisel JD , Junqueira ML , Kemper EL , Kitajima JP , Krieger JE , Kuramae EE , Laigret F , Lambais MR , Leite LC , Lemos EG , Lemos MV , Lopes SA , Lopes CR , Machado JA , Machado MA , Madeira AM , Madeira HM , Marino CL , Marques MV , Martins EA , Martins EM , Matsukuma AY , Menck CF , Miracca EC , Miyaki CY , Monteriro-Vitorello CB , Moon DH , Nagai MA , Nascimento AL , Netto LE , Nhani A, Jr. , Nobrega FG , Nunes LR , Oliveira MA , de Oliveira MC , de Oliveira RC , Palmieri DA , Paris A , Peixoto BR , Pereira GA , Pereira HA, Jr. , Pesquero JB , Quaggio RB , Roberto PG , Rodrigues V , de MRAJ , de Rosa VE, Jr. , de Sa RG , Santelli RV , Sawasaki HE , da Silva AC , da Silva AM , da Silva FR , da Silva WA, Jr. , da Silveira JF , Silvestri ML , Siqueira WJ , de Souza AA , de Souza AP , Terenzi MF , Truffi D , Tsai SM , Tsuhako MH , Vallada H , Van Sluys MA , Verjovski-Almeida S , Vettore AL , Zago MA , Zatz M , Meidanis J , Setubal JC
Ref : Nature , 406 :151 , 2000
Abstract : Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis--a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to 47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.
ESTHER : Simpson_2000_Nature_406_151
PubMedSearch : Simpson_2000_Nature_406_151
PubMedID: 10910347
Gene_locus related to this paper: xylfa-ACVB , xylfa-cxest , xylfa-metx , xylfa-PD2024 , xylfa-pip , xylfa-q9pdj5 , xylfa-XF0015 , xylfa-XF0357 , xylfa-XF0358 , xylfa-XF0754 , xylfa-XF0863 , xylfa-XF0992 , xylfa-XF1029 , xylfa-XF1181 , xylfa-XF1253 , xylfa-XF1282 , xylfa-XF1356 , xylfa-XF1479 , xylfa-XF1743 , xylfa-XF1745 , xylfa-XF1750 , xylfa-XF1829 , xylfa-XF1965 , xylfa-XF2151 , xylfa-XF2260 , xylfa-XF2330 , xylfa-XF2551 , xylfa-XFA0032