N link to NCBI taxonomic web page and E link to ESTHER gene locus found in this strain. > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Gammaproteobacteria: NE > Enterobacterales: NE > Enterobacteriaceae: NE > Enterobacter: NE > Enterobacter sp.: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
N link to NCBI taxonomic web page and E link to ESTHER gene locus found in this strain. Enterobacter cloacae subsp. cloacae: N, E.
Enterobacter cloacae: N, E.
Enterobacter cloacae EcWSU1: N, E.
Enterobacter cloacae subsp. dissolvens SDM: N, E.
Enterobacter cloacae str. Hanford: N, E.
Enterobacter cloacae S611: N, E.
Enterobacter cloacae subsp. cloacae ATCC 13047: N, E.
Enterobacter cloacae subsp. cloacae NCTC 9394: N, E.
Enterobacter cloacae subsp. cloacae GS1: N, E.
Enterobacter cloacae UCI 30: N, E.
Enterobacter cloacae UCI 23: N, E.
Enterobacter cloacae UCI 36: N, E.
Enterobacter cloacae BIDMC 8: N, E.
Enterobacter cloacae UCI 35: N, E.
Enterobacter cloacae UCICRE 5: N, E.
Enterobacter cloacae BIDMC 66: N, E.
Enterobacter cloacae MGH 53: N, E.
Enterobacter cloacae ECNIH2: N, E.
Enterobacter cloacae subsp. cloacae ENHKU01: N, E.
Enterobacter cloacae UCICRE 12: N, E.
Enterobacter cloacae BWH 31: N, E.
Enterobacter cloacae BWH 29: N, E.
Enterobacter cloacae BIDMC 67: N, E.
Enterobacter cloacae BWH 43: N, E.
Enterobacter cloacae UCI 29: N, E.
Enterobacter cloacae UCI 49: N, E.
Enterobacter cloacae UCI 24: N, E.
Enterobacter cloacae P101: N, E.
Enterobacter cloacae ISC8: N, E.
Enterobacter cloacae UCICRE 11: N, E.
Enterobacter hormaechei ATCC 49162: N, E.
Enterobacter hormaechei: N, E.
Enterobacter hormaechei subsp. hormaechei: N, E.
Enterobacter hormaechei subsp. oharae: N, E.
Enterobacter hormaechei subsp. xiangfangensis: N, E.
Enterobacter hormaechei subsp. steigerwaltii: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MKHDHFVVQSPDTPAKQLLLLFHGVGDNAVNMGQIGSWFAPVFPHALIVS IGGVEPCGPDGRQWFSVEGVTEENRQARIDAAMPAFIDTVRYWQQQSGVG ADATALIGFSQGSIMSLESVKAQPGLVSRVIAFNGRFATLPQSATTQTTI HLIHGGEDRVIELSHAVAAQETLMREGGDVTLDIVDDLGHAIDDRSMQFA LDHLRYTVPKHYFDEALSGGKPNDDDIVEFM
Title: Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET Magalhaes RP, Cunha JM, Sousa SF Ref: Int J Mol Sci, 22:11257, 2021 : PubMed
Plastics are highly durable and widely used materials. Current methodologies of plastic degradation, elimination, and recycling are flawed. In recent years, biodegradation (the usage of microorganisms for material recycling) has grown as a valid alternative to previously used methods. The evolution of bioengineering techniques and the discovery of novel microorganisms and enzymes with degradation ability have been key. One of the most produced plastics is PET, a long chain polymer of terephthalic acid (TPA) and ethylene glycol (EG) repeating monomers. Many enzymes with PET degradation activity have been discovered, characterized, and engineered in the last few years. However, classification and integrated knowledge of these enzymes are not trivial. Therefore, in this work we present a summary of currently known PET degrading enzymes, focusing on their structural and activity characteristics, and summarizing engineering efforts to improve activity. Although several high potential enzymes have been discovered, further efforts to improve activity and thermal stability are necessary.