Product of hydrolysis of acetylcholine by cholinesterases.A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism.
2 moreTitle: Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Lockridge O Ref: Pharmacol Ther, 47:35, 1990 : PubMed
People with genetic variants of cholinesterase respond abnormally to succinylcholine, experiencing substantial prolongation of muscle paralysis with apnea rather than the usual 2-6 min. The structure of usual cholinesterase has been determined including the complete amino acid and nucleotide sequence. This has allowed identification of altered amino acids and nucleotides. The variant most frequently found in patients who respond abnormally to succinylcholine is atypical cholinesterase, which occurs in homozygous form in 1 out of 3500 Caucasians. Atypical cholinesterase has a single substitution at nucleotide 209 which changes aspartic acid 70 to glycine. This suggests that Asp 70 is part of the anionic site, and that the absence of this negatively charged amino acid explains the reduced affinity of atypical cholinesterase for positively charged substrates and inhibitors. The clinical consequence of reduced affinity for succinylcholine is that none of the succinylcholine is hydrolyzed in blood and a large overdose reaches the nerve-muscle junction where it causes prolonged muscle paralysis. Silent cholinesterase has a frame shift mutation at glycine 117 which prematurely terminates protein synthesis and yields no active enzyme. The K variant, named in honor of W. Kalow, has threonine in place of alanine 539. The K variant is associated with 33% lower activity. All variants arise from a single locus as there is only one gene for human cholinesterase (EC 3.1.1.8). Comparison of amino acid sequences of esterases and proteases shows that cholinesterase belongs to a new family of serine esterases which is different from the serine proteases.
        
Title: Differential inhibition of plasma cholinesterase variants using the dibutyrate analogue of pancuronium bromide Whittaker M, Britten JJ Ref: Hum Hered, 31:242, 1981 : PubMed
A steroid, the dibutyrate analogue of pancuronium bromide (9.8 X 10(-8)M), has been used as differential inhibitor in the study of the plasma cholinesterase variants. Pancuronium dibutyrate numbers have been measured for 190 individuals, and the mean values for six of the known genotypes, E1uE1u, E1uE1f, E1uE1a, E1fE1a, E1aE1a, and E1fE1f, have been calculated. Evidence is presented that a combination of the pancuronium dibutyrate number and the fluoride number give better resolution of the six genotypes than the combination of the pancuronium dibutyrate and the dibucaine number. This new differential inhibitor has real potential for revealing the probable existence of new genotypes.
        
Title: The activity of various esterase inhibitors towards atypical human serum cholinesterase Kalow W, Davies R0 Ref: Biochemical Pharmacology, 1:183, 1958 : PubMed
2 lessTitle: Effect of tetramethylammonium, choline and edrophonium on insect acetylcholinesterase: test of a kinetic model Stojan J, Marcel V, Fournier D Ref: Chemico-Biological Interactions, 119-120:137, 1999 : PubMed
Cholinesterases display a non-Michaelian behaviour with respect to substrate concentration. With the insect enzyme, there is an activation at low substrate concentrations and an inhibition at high concentrations. Previous studies allow us to propose a kinetic model involving a secondary non-productive binding site for the substrate. Unexpectedly, this secondary site has a very high affinity for the substrate when the enzyme is free. On the contrary, when the catalytic site of the enzyme is occupied a strong decrease of this affinity was observed. Moreover, a substrate molecule bound to the peripheral site results in a global decrease of the acylation and/or the deacylation step. Kinetic studies with three reversible inhibitors, tetramethylammonium, edrophonium and choline supported the kinetic model and enable its further refinement.
        
Title: Inhibition of acetylcholinesterase by hemicholiniums, conformationally constrained choline analogues. Evaluation of aryl and alkyl substituents. Comparisons with choline and (3- hydroxyphenyl)trimethylammonium Lee BH, Stelly TC, Colucci WJ, Garcia JG, Gandour RD, Quinn DM Ref: Chemical Research in Toxicology, 5:411, 1992 : PubMed
2-Substituted-2-hydroxy-4,4-dimethylmorpholiniums (hemicholiniums) inhibit acetylcholinesterase (EC 3.1.1.7)-catalyzed hydrolysis of acetylthiocholine (ATCh). The 4-substituted arenes [NH2, NHC(O)CH3, Cl, CN, and NO2] have values of inhibition constants (Ki) that range from 220 to 3690 microM, which correlate with Hammett sigma, rho approximately 0.8. The alkyl compounds, hydrogen, methyl, tert-butyl, and trifluoromethyl, have values of Ki of 550, 560, 1200, and 1200 microM, respectively. These values compare favorably with Ki = 960 microM for choline. The conformation of AChE-bound choline must be gauche to support our suggestion that hemicholiniums are conformationally constrained analogues of choline. (3-Hydroxyphenyl)trimethylammonium (5) inhibits most strongly, Ki = 0.21 microM, of the compounds examined in this study. The solvent isotope effect (H2OKi/D2OKi = 0.83 +/- 0.04) suggests that inhibition by 5 involves hydrogen bonding. The binding by AChE of the hemicholiniums of various sizes and the strong binding of 5 support an earlier proposal [Schowen, K. B., Smissman, E. E., and Stephen, W. F., Jr. (1975) J. Med. Chem. 18, 292-300] that the active site of AChE has ample space for rotation about the C-C bond in choline. Compound 5, which has one more carbon between the hydroxy and trimethylammonium than does choline, inhibits much more potently than either choline or the hemicholiniums. Compound 5 provides a correct spacer to span the trimethylammonium recognition site and the esteratic site of AChE. This aromatic spacer interacts favorably with the hydrophobic active site, and the phenolic hydroxyl probably hydrogen bonds to the histidine in the esteratic site. Choline in any conformation and the hemicholiniums are too short to make a strong hydrogen bond.
        
Title: Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Lockridge O Ref: Pharmacol Ther, 47:35, 1990 : PubMed
People with genetic variants of cholinesterase respond abnormally to succinylcholine, experiencing substantial prolongation of muscle paralysis with apnea rather than the usual 2-6 min. The structure of usual cholinesterase has been determined including the complete amino acid and nucleotide sequence. This has allowed identification of altered amino acids and nucleotides. The variant most frequently found in patients who respond abnormally to succinylcholine is atypical cholinesterase, which occurs in homozygous form in 1 out of 3500 Caucasians. Atypical cholinesterase has a single substitution at nucleotide 209 which changes aspartic acid 70 to glycine. This suggests that Asp 70 is part of the anionic site, and that the absence of this negatively charged amino acid explains the reduced affinity of atypical cholinesterase for positively charged substrates and inhibitors. The clinical consequence of reduced affinity for succinylcholine is that none of the succinylcholine is hydrolyzed in blood and a large overdose reaches the nerve-muscle junction where it causes prolonged muscle paralysis. Silent cholinesterase has a frame shift mutation at glycine 117 which prematurely terminates protein synthesis and yields no active enzyme. The K variant, named in honor of W. Kalow, has threonine in place of alanine 539. The K variant is associated with 33% lower activity. All variants arise from a single locus as there is only one gene for human cholinesterase (EC 3.1.1.8). Comparison of amino acid sequences of esterases and proteases shows that cholinesterase belongs to a new family of serine esterases which is different from the serine proteases.
        
Title: Differential inhibition of plasma cholinesterase variants using the dibutyrate analogue of pancuronium bromide Whittaker M, Britten JJ Ref: Hum Hered, 31:242, 1981 : PubMed
A steroid, the dibutyrate analogue of pancuronium bromide (9.8 X 10(-8)M), has been used as differential inhibitor in the study of the plasma cholinesterase variants. Pancuronium dibutyrate numbers have been measured for 190 individuals, and the mean values for six of the known genotypes, E1uE1u, E1uE1f, E1uE1a, E1fE1a, E1aE1a, and E1fE1f, have been calculated. Evidence is presented that a combination of the pancuronium dibutyrate number and the fluoride number give better resolution of the six genotypes than the combination of the pancuronium dibutyrate and the dibucaine number. This new differential inhibitor has real potential for revealing the probable existence of new genotypes.
        
Title: The activity of various esterase inhibitors towards atypical human serum cholinesterase Kalow W, Davies R0 Ref: Biochemical Pharmacology, 1:183, 1958 : PubMed