Steensma HY

References (2)

Title : The Saccharomyces cerevisiae TGL2 gene encodes a protein with lipolytic activity and can complement an Escherichia coli diacylglycerol kinase disruptant - Van Heusden_1998_Yeast_14_225
Author(s) : Van Heusden GP , Nebohacova M , Overbeeke TL , Steensma HY
Ref : Yeast , 14 :225 , 1998
Abstract : Escherichia coli cells with a disrupted diacylglycerol kinase gene are unable to grow on media containing arbutin due to a lethal accumulation of diacylglycerol. In order to isolate genes from the yeast Saccharomyces cerevisiae involved in diacylglycerol metabolism we complemented an E. coli diacylglycerol kinase disruptant with a yeast genomic library and transformants were selected capable of growing in the presence of arbutin. Using this method, a gene (TGL2) was isolated coding for a protein resembling lipases from Pseudomonas. After expression of the TGL2 gene in E. coli, lipolytic activity towards triacylglycerols and diacylglycerols with short-chain fatty acids could be measured. Therefore, it is very likely that the TGL2 gene can complement the E. coli diacylglycerol kinase disruptant, because it encodes a protein that degrades the diacylglycerol accumulated after growth in the presence of arbutin. Disruption of the TGL2 gene in S. cerevisiae did not result in a detectable phenotype. The role of the Tgl2 protein in lipid degradation in yeast is still unclear.
ESTHER : Van Heusden_1998_Yeast_14_225
PubMedSearch : Van Heusden_1998_Yeast_14_225
PubMedID: 9544243
Gene_locus related to this paper: yeast-tgl2

Title : Complete DNA sequence of yeast chromosome II - Feldmann_1994_EMBO.J_13_5795
Author(s) : Feldmann H , Aigle M , Aljinovic G , Andre B , Baclet MC , Barthe C , Baur A , Becam AM , Biteau N , Boles E , Brandt T , Brendel M , Bruckner M , Bussereau F , Christiansen C , Contreras R , Crouzet M , Cziepluch C , Demolis N , Delaveau T , Doignon F , Domdey H , Dusterhus S , Dubois E , Dujon B , El Bakkoury M , Entian KD , Feurmann M , Fiers W , Fobo GM , Fritz C , Gassenhuber H , Glandsdorff N , Goffeau A , Grivell LA , de Haan M , Hein C , Herbert CJ , Hollenberg CP , Holmstrom K , Jacq C , Jacquet M , Jauniaux JC , Jonniaux JL , Kallesoe T , Kiesau P , Kirchrath L , Kotter P , Korol S , Liebl S , Logghe M , Lohan AJ , Louis EJ , Li ZY , Maat MJ , Mallet L , Mannhaupt G , Messenguy F , Miosga T , Molemans F , Muller S , Nasr F , Obermaier B , Perea J , Pierard A , Piravandi E , Pohl FM , Pohl TM , Potier S , Proft M , Purnelle B , Ramezani Rad M , Rieger M , Rose M , Schaaff-Gerstenschlager I , Scherens B , Schwarzlose C , Skala J , Slonimski PP , Smits PH , Souciet JL , Steensma HY , Stucka R , Urrestarazu A , van der Aart QJ , van Dyck L , Vassarotti A , Vetter I , Vierendeels F , Vissers S , Wagner G , de Wergifosse P , Wolfe KH , Zagulski M , Zimmermann FK , Mewes HW , Kleine K , Dsterhus S , Mller S , Pirard A , Schaaff-Gerstenschlger I
Ref : EMBO Journal , 13 :5795 , 1994
Abstract : In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches revealed that 124 ORFs (30%) correspond to genes of known function, 51 ORFs (12.5%) appear to be homologues of genes whose functions are known, 52 others (12.5%) have homologues the functions of which are not well defined and another 33 of the novel putative genes (8%) exhibit a degree of similarity which is insufficient to confidently assign function. Of the genes on chromosome II, 37-45% are thus of unpredicted function. Among the novel putative genes, we found several that are related to genes that perform differentiated functions in multicellular organisms of are involved in malignancy. In addition to a compact arrangement of potential protein coding sequences, the analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization. Alternating regional variations in average base composition correlate with variations in local gene density along chromosome II, as observed in chromosomes XI and III. We propose that functional ARS elements are preferably located in the AT-rich regions that have a spacing of approximately 110 kb. Similarly, the 13 tRNA genes and the three Ty elements of chromosome II are found in AT-rich regions. In chromosome II, the distribution of coding sequences between the two strands is biased, with a ratio of 1.3:1. An interesting aspect regarding the evolution of the eukaryotic genome is the finding that chromosome II has a high degree of internal genetic redundancy, amounting to 16% of the coding capacity.
ESTHER : Feldmann_1994_EMBO.J_13_5795
PubMedSearch : Feldmann_1994_EMBO.J_13_5795
PubMedID: 7813418
Gene_locus related to this paper: yeast-LDH1 , yeast-MCFS2 , yeast-yby9