Mewes HW

References (21)

Title : Identification and Characterization of Carboxylesterases from Brachypodium distachyon Deacetylating Trichothecene Mycotoxins - Schmeitzl_2015_Toxins.(Basel)_8_
Author(s) : Schmeitzl C , Varga E , Warth B , Kugler KG , Malachova A , Michlmayr H , Wiesenberger G , Mayer KF , Mewes HW , Krska R , Schuhmacher R , Berthiller F , Adam G
Ref : Toxins (Basel) , 8 : , 2015
Abstract : Increasing frequencies of 3-acetyl-deoxynivalenol (3-ADON)-producing strains of Fusarium graminearum (3-ADON chemotype) have been reported in North America and Asia. 3-ADON is nearly nontoxic at the level of the ribosomal target and has to be deacetylated to cause inhibition of protein biosynthesis. Plant cells can efficiently remove the acetyl groups of 3-ADON, but the underlying genes are yet unknown. We therefore performed a study of the family of candidate carboxylesterases (CXE) genes of the monocot model plant Brachypodium distachyon. We report the identification and characterization of the first plant enzymes responsible for deacetylation of trichothecene toxins. The product of the BdCXE29 gene efficiently deacetylates T-2 toxin to HT-2 toxin, NX-2 to NX-3, both 3-ADON and 15-acetyl-deoxynivalenol (15-ADON) into deoxynivalenol and, to a lesser degree, also fusarenon X into nivalenol. The BdCXE52 esterase showed lower activity than BdCXE29 when expressed in yeast and accepts 3-ADON, NX-2, 15-ADON and, to a limited extent, fusarenon X as substrates. Expression of these Brachypodium genes in yeast increases the toxicity of 3-ADON, suggesting that highly similar genes existing in crop plants may act as susceptibility factors in Fusarium head blight disease.
ESTHER : Schmeitzl_2015_Toxins.(Basel)_8_
PubMedSearch : Schmeitzl_2015_Toxins.(Basel)_8_
PubMedID: 26712789

Title : The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization - Cuomo_2007_Science_317_1400
Author(s) : Cuomo CA , Guldener U , Xu JR , Trail F , Turgeon BG , Di Pietro A , Walton JD , Ma LJ , Baker SE , Rep M , Adam G , Antoniw J , Baldwin T , Calvo S , Chang YL , Decaprio D , Gale LR , Gnerre S , Goswami RS , Hammond-Kosack K , Harris LJ , Hilburn K , Kennell JC , Kroken S , Magnuson JK , Mannhaupt G , Mauceli E , Mewes HW , Mitterbauer R , Muehlbauer G , Munsterkotter M , Nelson D , O'Donnell K , Ouellet T , Qi W , Quesneville H , Roncero MI , Seong KY , Tetko IV , Urban M , Waalwijk C , Ward TJ , Yao J , Birren BW , Kistler HC
Ref : Science , 317 :1400 , 2007
Abstract : We sequenced and annotated the genome of the filamentous fungus Fusarium graminearum, a major pathogen of cultivated cereals. Very few repetitive sequences were detected, and the process of repeat-induced point mutation, in which duplicated sequences are subject to extensive mutation, may partially account for the reduced repeat content and apparent low number of paralogous (ancestrally duplicated) genes. A second strain of F. graminearum contained more than 10,000 single-nucleotide polymorphisms, which were frequently located near telomeres and within other discrete chromosomal segments. Many highly polymorphic regions contained sets of genes implicated in plant-fungus interactions and were unusually divergent, with higher rates of recombination. These regions of genome innovation may result from selection due to interactions of F. graminearum with its plant hosts.
ESTHER : Cuomo_2007_Science_317_1400
PubMedSearch : Cuomo_2007_Science_317_1400
PubMedID: 17823352
Gene_locus related to this paper: fusof-f9fxz4 , gibze-a8w610 , gibze-b1pdn0 , gibze-i1r9e6 , gibze-i1rda9 , gibze-i1rdk7 , gibze-i1rec8 , gibze-i1rgs0 , gibze-i1rgy0 , gibze-i1rh52 , gibze-i1rhi8 , gibze-i1rig9 , gibze-i1rip5 , gibze-i1rpg6 , gibze-i1rsg2 , gibze-i1rv36 , gibze-i1rxm5 , gibze-i1rxp8 , gibze-i1rxv5 , gibze-i1s1u3 , gibze-i1s3j9 , gibze-i1s6l7 , gibze-i1s8i8 , gibze-i1s9x4 , gibze-ppme1 , gibze-q4huy1 , gibze-i1rg17 , gibze-i1rb76 , gibze-i1s1m7 , gibze-i1s3z6 , gibze-i1rd78 , gibze-i1rgl9 , gibze-i1rjp7 , gibze-i1s1q6 , gibze-i1ri35 , gibze-i1rf76 , gibze-i1rhp3 , gibza-a0a016pda4 , gibza-a0a016pl96 , gibze-i1rjb5 , gibze-i1rkc4 , gibze-a0a1c3ylb1 , gibze-gra11 , gibze-fsl2

Title : Deciphering the evolution and metabolism of an anammox bacterium from a community genome - Strous_2006_Nature_440_790
Author(s) : Strous M , Pelletier E , Mangenot S , Rattei T , Lehner A , Taylor MW , Horn M , Daims H , Bartol-Mavel D , Wincker P , Barbe V , Fonknechten N , Vallenet D , Segurens B , Schenowitz-Truong C , Medigue C , Collingro A , Snel B , Dutilh BE , Op den Camp HJ , van der Drift C , Cirpus I , van de Pas-Schoonen KT , Harhangi HR , van Niftrik L , Schmid M , Keltjens J , van de Vossenberg J , Kartal B , Meier H , Frishman D , Huynen MA , Mewes HW , Weissenbach J , Jetten MS , Wagner M , Le Paslier D
Ref : Nature , 440 :790 , 2006
Abstract : Anaerobic ammonium oxidation (anammox) has become a main focus in oceanography and wastewater treatment. It is also the nitrogen cycle's major remaining biochemical enigma. Among its features, the occurrence of hydrazine as a free intermediate of catabolism, the biosynthesis of ladderane lipids and the role of cytoplasm differentiation are unique in biology. Here we use environmental genomics--the reconstruction of genomic data directly from the environment--to assemble the genome of the uncultured anammox bacterium Kuenenia stuttgartiensis from a complex bioreactor community. The genome data illuminate the evolutionary history of the Planctomycetes and allow us to expose the genetic blueprint of the organism's special properties. Most significantly, we identified candidate genes responsible for ladderane biosynthesis and biological hydrazine metabolism, and discovered unexpected metabolic versatility.
ESTHER : Strous_2006_Nature_440_790
PubMedSearch : Strous_2006_Nature_440_790
PubMedID: 16598256
Gene_locus related to this paper: 9bact-q1py93 , 9bact-q1q3k9 , 9bact-q1q414

Title : Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis - Kamper_2006_Nature_444_97
Author(s) : Kamper J , Kahmann R , Bolker M , Ma LJ , Brefort T , Saville BJ , Banuett F , Kronstad JW , Gold SE , Muller O , Perlin MH , Wosten HA , de Vries R , Ruiz-Herrera J , Reynaga-Pena CG , Snetselaar K , McCann M , Perez-Martin J , Feldbrugge M , Basse CW , Steinberg G , Ibeas JI , Holloman W , Guzman P , Farman M , Stajich JE , Sentandreu R , Gonzalez-Prieto JM , Kennell JC , Molina L , Schirawski J , Mendoza-Mendoza A , Greilinger D , Munch K , Rossel N , Scherer M , Vranes M , Ladendorf O , Vincon V , Fuchs U , Sandrock B , Meng S , Ho EC , Cahill MJ , Boyce KJ , Klose J , Klosterman SJ , Deelstra HJ , Ortiz-Castellanos L , Li W , Sanchez-Alonso P , Schreier PH , Hauser-Hahn I , Vaupel M , Koopmann E , Friedrich G , Voss H , Schluter T , Margolis J , Platt D , Swimmer C , Gnirke A , Chen F , Vysotskaia V , Mannhaupt G , Guldener U , Munsterkotter M , Haase D , Oesterheld M , Mewes HW , Mauceli EW , Decaprio D , Wade CM , Butler J , Young S , Jaffe DB , Calvo S , Nusbaum C , Galagan J , Birren BW
Ref : Nature , 444 :97 , 2006
Abstract : Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no 'true' virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.
ESTHER : Kamper_2006_Nature_444_97
PubMedSearch : Kamper_2006_Nature_444_97
PubMedID: 17080091
Gene_locus related to this paper: ustma-q4p4j7 , ustma-q4p5d2 , ustma-q4p8h8 , ustma-q4p8x7 , ustma-q4p082 , ustma-q4p194 , ustma-q4pa07 , ustma-q4pas0 , ustma-q4pbb4 , ustma-q4pg48

Title : Illuminating the evolutionary history of chlamydiae - Horn_2004_Science_304_728
Author(s) : Horn M , Collingro A , Schmitz-Esser S , Beier CL , Purkhold U , Fartmann B , Brandt P , Nyakatura GJ , Droege M , Frishman D , Rattei T , Mewes HW , Wagner M
Ref : Science , 304 :728 , 2004
Abstract : Chlamydiae are the major cause of preventable blindness and sexually transmitted disease. Genome analysis of a chlamydia-related symbiont of free-living amoebae revealed that it is twice as large as any of the pathogenic chlamydiae and had few signs of recent lateral gene acquisition. We showed that about 700 million years ago the last common ancestor of pathogenic and symbiotic chlamydiae was already adapted to intracellular survival in early eukaryotes and contained many virulence factors found in modern pathogenic chlamydiae, including a type III secretion system. Ancient chlamydiae appear to be the originators of mechanisms for the exploitation of eukaryotic cells.
ESTHER : Horn_2004_Science_304_728
PubMedSearch : Horn_2004_Science_304_728
PubMedID: 15073324
Gene_locus related to this paper: paruw-q6m9q5 , paruw-q6m9q7 , paruw-q6mcu6 , paruw-q6mev0

Title : What's in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence - Mannhaupt_2003_Nucleic.Acids.Res_31_1944
Author(s) : Mannhaupt G , Montrone C , Haase D , Mewes HW , Aign V , Hoheisel JD , Fartmann B , Nyakatura G , Kempken F , Maier J , Schulte U
Ref : Nucleic Acids Research , 31 :1944 , 2003
Abstract : The German Neurospora Genome Project has assembled sequences from ordered cosmid and BAC clones of linkage groups II and V of the genome of Neurospora crassa in 13 and 12 contigs, respectively. Including additional sequences located on other linkage groups a total of 12 Mb were subjected to a manual gene extraction and annotation process. The genome comprises a small number of repetitive elements, a low degree of segmental duplications and very few paralogous genes. The analysis of the 3218 identified open reading frames provides a first overview of the protein equipment of a filamentous fungus. Significantly, N.crassa possesses a large variety of metabolic enzymes including a substantial number of enzymes involved in the degradation of complex substrates as well as secondary metabolism. While several of these enzymes are specific for filamentous fungi many are shared exclusively with prokaryotes.
ESTHER : Mannhaupt_2003_Nucleic.Acids.Res_31_1944
PubMedSearch : Mannhaupt_2003_Nucleic.Acids.Res_31_1944
PubMedID: 12655011
Gene_locus related to this paper: neucr-apth1 , neucr-B7H23.190 , neucr-ppme1

Title : Conservation of microstructure between a sequenced region of the genome of rice and multiple segments of the genome of Arabidopsis thaliana - Mayer_2001_Genome.Res_11_1167
Author(s) : Mayer K , Murphy G , Tarchini R , Wambutt R , Volckaert G , Pohl T , Dusterhoft A , Stiekema W , Entian KD , Terryn N , Lemcke K , Haase D , Hall CR , van Dodeweerd AM , Tingey SV , Mewes HW , Bevan MW , Bancroft I
Ref : Genome Res , 11 :1167 , 2001
Abstract : The nucleotide sequence was determined for a 340-kb segment of rice chromosome 2, revealing 56 putative protein-coding genes. This represents a density of one gene per 6.1 kb, which is higher than was reported for a previously sequenced segment of the rice genome. Sixteen of the putative genes were supported by matches to ESTs. The predicted products of 29 of the putative genes showed similarity to known proteins, and a further 17 genes showed similarity only to predicted or hypothetical proteins identified in genome sequence data. The region contains a few transposable elements: one retrotransposon, and one transposon. The segment of the rice genome studied had previously been identified as representing a part of rice chromosome 2 that may be homologous to a segment of Arabidopsis chromosome 4. We confirmed the conservation of gene content and order between the two genome segments. In addition, we identified a further four segments of the Arabidopsis genome that contain conserved gene content and order. In total, 22 of the 56 genes identified in the rice genome segment were represented in this set of Arabidopsis genome segments, with at least five genes present, in conserved order, in each segment. These data are consistent with the hypothesis that the Arabidopsis genome has undergone multiple duplication events. Our results demonstrate that conservation of the genome microstructure can be identified even between monocot and dicot species. However, the frequent occurrence of duplication, and subsequent microstructure divergence, within plant genomes may necessitate the integration of subsets of genes present in multiple redundant segments to deduce evolutionary relationships and identify orthologous genes.
ESTHER : Mayer_2001_Genome.Res_11_1167
PubMedSearch : Mayer_2001_Genome.Res_11_1167
PubMedID: 11435398
Gene_locus related to this paper: orysa-Q949C9 , orysa-Q6H8G1

Title : Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs - Wiemann_2001_Genome.Res_11_422
Author(s) : Wiemann S , Weil B , Wellenreuther R , Gassenhuber J , Glassl S , Ansorge W , Boecher M , Bloecker H , Bauersachs S , Blum H , Lauber J , Duesterhoeft A , Beyer A , Koehrer K , Strack N , Mewes H-W , Ottenwaelder B , Obermaier B , Tampe J , Heubner D , Wambutt R , Korn B , Klein M , Poustka A , Bocher M , Blocker H , Dusterhoft A , Kohrer K , Mewes HW , Ottenwalder B
Ref : Genome Res , 11 :422 , 2001
Abstract : With the complete human genomic sequence being unraveled, the focus will shift to gene identification and to the functional analysis of gene products. The generation of a set of cDNAs, both sequences and physical clones, which contains the complete and noninterrupted protein coding regions of all human genes will provide the indispensable tools for the systematic and comprehensive analysis of protein function to eventually understand the molecular basis of man. Here we report the sequencing and analysis of 500 novel human cDNAs containing the complete protein coding frame. Assignment to functional categories was possible for 52% (259) of the encoded proteins, the remaining fraction having no similarities with known proteins. By aligning the cDNA sequences with the sequences of the finished chromosomes 21 and 22 we identified a number of genes that either had been completely missed in the analysis of the genomic sequences or had been wrongly predicted. Three of these genes appear to be present in several copies. We conclude that full-length cDNA sequencing continues to be crucial also for the accurate identification of genes. The set of 500 novel cDNAs, and another 1000 full-coding cDNAs of known transcripts we have identified, adds up to cDNA representations covering 2%--5 % of all human genes. We thus substantially contribute to the generation of a gene catalog, consisting of both full-coding cDNA sequences and clones, which should be made freely available and will become an invaluable tool for detailed functional studies.
ESTHER : Wiemann_2001_Genome.Res_11_422
PubMedSearch : Wiemann_2001_Genome.Res_11_422
PubMedID: 11230166
Gene_locus related to this paper: human-FAM135A , human-KANSL3 , human-NDRG2 , human-NDRG4

Title : Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana - Tabata_2000_Nature_408_823
Author(s) : Tabata S , Kaneko T , Nakamura Y , Kotani H , Kato T , Asamizu E , Miyajima N , Sasamoto S , Kimura T , Hosouchi T , Kawashima K , Kohara M , Matsumoto M , Matsuno A , Muraki A , Nakayama S , Nakazaki N , Naruo K , Okumura S , Shinpo S , Takeuchi C , Wada T , Watanabe A , Yamada M , Yasuda M , Sato S , de la Bastide M , Huang E , Spiegel L , Gnoj L , O'Shaughnessy A , Preston R , Habermann K , Murray J , Johnson D , Rohlfing T , Nelson J , Stoneking T , Pepin K , Spieth J , Sekhon M , Armstrong J , Becker M , Belter E , Cordum H , Cordes M , Courtney L , Courtney W , Dante M , Du H , Edwards J , Fryman J , Haakensen B , Lamar E , Latreille P , Leonard S , Meyer R , Mulvaney E , Ozersky P , Riley A , Strowmatt C , Wagner-McPherson C , Wollam A , Yoakum M , Bell M , Dedhia N , Parnell L , Shah R , Rodriguez M , See LH , Vil D , Baker J , Kirchoff K , Toth K , King L , Bahret A , Miller B , Marra M , Martienssen R , McCombie WR , Wilson RK , Murphy G , Bancroft I , Volckaert G , Wambutt R , Dusterhoft A , Stiekema W , Pohl T , Entian KD , Terryn N , Hartley N , Bent E , Johnson S , Langham SA , McCullagh B , Robben J , Grymonprez B , Zimmermann W , Ramsperger U , Wedler H , Balke K , Wedler E , Peters S , van Staveren M , Dirkse W , Mooijman P , Lankhorst RK , Weitzenegger T , Bothe G , Rose M , Hauf J , Berneiser S , Hempel S , Feldpausch M , Lamberth S , Villarroel R , Gielen J , Ardiles W , Bents O , Lemcke K , Kolesov G , Mayer K , Rudd S , Schoof H , Schueller C , Zaccaria P , Mewes HW , Bevan M , Fransz P
Ref : Nature , 408 :823 , 2000
Abstract : The genome of the model plant Arabidopsis thaliana has been sequenced by an international collaboration, The Arabidopsis Genome Initiative. Here we report the complete sequence of chromosome 5. This chromosome is 26 megabases long; it is the second largest Arabidopsis chromosome and represents 21% of the sequenced regions of the genome. The sequence of chromosomes 2 and 4 have been reported previously and that of chromosomes 1 and 3, together with an analysis of the complete genome sequence, are reported in this issue. Analysis of the sequence of chromosome 5 yields further insights into centromere structure and the sequence determinants of heterochromatin condensation. The 5,874 genes encoded on chromosome 5 reveal several new functions in plants, and the patterns of gene organization provide insights into the mechanisms and extent of genome evolution in plants.
ESTHER : Tabata_2000_Nature_408_823
PubMedSearch : Tabata_2000_Nature_408_823
PubMedID: 11130714
Gene_locus related to this paper: arath-At5g11650 , arath-At5g16120 , arath-at5g18630 , arath-AT5G20520 , arath-At5g21950 , arath-AT5G27320 , arath-CXE15 , arath-F1N13.220 , arath-F14F8.240 , arath-q3e9e4 , arath-q8lae9 , arath-Q8LFB7 , arath-q9ffg7 , arath-q9fij5 , arath-Q9LVU7 , arath-q66gm8 , arath-SCPL34 , arath-B9DFR3 , arath-a0a1p8bcz0

Title : Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana - Salanoubat_2000_Nature_408_820
Author(s) : Salanoubat M , Lemcke K , Rieger M , Ansorge W , Unseld M , Fartmann B , Valle G , Blocker H , Perez-Alonso M , Obermaier B , Delseny M , Boutry M , Grivell LA , Mache R , Puigdomenech P , de Simone V , Choisne N , Artiguenave F , Robert C , Brottier P , Wincker P , Cattolico L , Weissenbach J , Saurin W , Quetier F , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Benes V , Wurmbach E , Drzonek H , Erfle H , Jordan N , Bangert S , Wiedelmann R , Kranz H , Voss H , Holland R , Brandt P , Nyakatura G , Vezzi A , D'Angelo M , Pallavicini A , Toppo S , Simionati B , Conrad A , Hornischer K , Kauer G , Lohnert TH , Nordsiek G , Reichelt J , Scharfe M , Schon O , Bargues M , Terol J , Climent J , Navarro P , Collado C , Perez-Perez A , Ottenwalder B , Duchemin D , Cooke R , Laudie M , Berger-Llauro C , Purnelle B , Masuy D , de Haan M , Maarse AC , Alcaraz JP , Cottet A , Casacuberta E , Monfort A , Argiriou A , Flores M , Liguori R , Vitale D , Mannhaupt G , Haase D , Schoof H , Rudd S , Zaccaria P , Mewes HW , Mayer KF , Kaul S , Town CD , Koo HL , Tallon LJ , Jenkins J , Rooney T , Rizzo M , Walts A , Utterback T , Fujii CY , Shea TP , Creasy TH , Haas B , Maiti R , Wu D , Peterson J , Van Aken S , Pai G , Militscher J , Sellers P , Gill JE , Feldblyum TV , Preuss D , Lin X , Nierman WC , Salzberg SL , White O , Venter JC , Fraser CM , Kaneko T , Nakamura Y , Sato S , Kato T , Asamizu E , Sasamoto S , Kimura T , Idesawa K , Kawashima K , Kishida Y , Kiyokawa C , Kohara M , Matsumoto M , Matsuno A , Muraki A , Nakayama S , Nakazaki N , Shinpo S , Takeuchi C , Wada T , Watanabe A , Yamada M , Yasuda M , Tabata S
Ref : Nature , 408 :820 , 2000
Abstract : Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes.
ESTHER : Salanoubat_2000_Nature_408_820
PubMedSearch : Salanoubat_2000_Nature_408_820
PubMedID: 11130713
Gene_locus related to this paper: arath-MES17 , arath-AT3G12150 , arath-At3g61680 , arath-AT3g62590 , arath-CXE12 , arath-eds1 , arath-SCP25 , arath-F1P2.110 , arath-F1P2.140 , arath-F11F8.28 , arath-F14D17.80 , arath-F16B3.4 , arath-SCP27 , arath-At3g50790 , arath-At3g05600 , arath-PAD4 , arath-At3g51000 , arath-SCP16 , arath-gid1 , arath-GID1B , arath-Q9LUG8 , arath-Q84JS1 , arath-Q9SFF6 , arath-q9m236 , arath-q9sr22 , arath-q9sr23 , arath-SCP7 , arath-SCP14 , arath-SCP15 , arath-SCP17 , arath-SCP36 , arath-SCP37 , arath-SCP39 , arath-SCP40 , arath-SCP49 , arath-T19F11.2

Title : The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum - Ruepp_2000_Nature_407_508
Author(s) : Ruepp A , Graml W , Santos-Martinez ML , Koretke KK , Volker C , Mewes HW , Frishman D , Stocker S , Lupas AN , Baumeister W
Ref : Nature , 407 :508 , 2000
Abstract : Thermoplasma acidophilum is a thermoacidophilic archaeon that thrives at 59 degrees C and pH 2, which was isolated from self-heating coal refuse piles and solfatara fields. Species of the genus Thermoplasma do not possess a rigid cell wall, but are only delimited by a plasma membrane. Many macromolecular assemblies from Thermoplasma, primarily proteases and chaperones, have been pivotal in elucidating the structure and function of their more complex eukaryotic homologues. Our interest in protein folding and degradation led us to seek a more complete representation of the proteins involved in these pathways by determining the genome sequence of the organism. Here we have sequenced the 1,564,905-base-pair genome in just 7,855 sequencing reactions by using a new strategy. The 1,509 open reading frames identify Thermoplasma as a typical euryarchaeon with a substantial complement of bacteria-related genes; however, evidence indicates that there has been much lateral gene transfer between Thermoplasma and Sulfolobus solfataricus, a phylogenetically distant crenarchaeon inhabiting the same environment. At least 252 open reading frames, including a complete protein degradation pathway and various transport proteins, resemble Sulfolobus proteins most closely.
ESTHER : Ruepp_2000_Nature_407_508
PubMedSearch : Ruepp_2000_Nature_407_508
PubMedID: 11029001
Gene_locus related to this paper: theac-TA0228 , theac-TA0664 , theac-Ta0887 , theac-TA1047 , theac-TA1402 , theac-TA1481 , theac-TACID1.191

Title : Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana - Mayer_1999_Nature_402_769
Author(s) : Mayer K , Schuller C , Wambutt R , Murphy G , Volckaert G , Pohl T , Dusterhoft A , Stiekema W , Entian KD , Terryn N , Harris B , Ansorge W , Brandt P , Grivell L , Rieger M , Weichselgartner M , de Simone V , Obermaier B , Mache R , Muller M , Kreis M , Delseny M , Puigdomenech P , Watson M , Schmidtheini T , Reichert B , Portatelle D , Perez-Alonso M , Boutry M , Bancroft I , Vos P , Hoheisel J , Zimmermann W , Wedler H , Ridley P , Langham SA , McCullagh B , Bilham L , Robben J , Van der Schueren J , Grymonprez B , Chuang YJ , Vandenbussche F , Braeken M , Weltjens I , Voet M , Bastiaens I , Aert R , Defoor E , Weitzenegger T , Bothe G , Ramsperger U , Hilbert H , Braun M , Holzer E , Brandt A , Peters S , van Staveren M , Dirske W , Mooijman P , Klein Lankhorst R , Rose M , Hauf J , Kotter P , Berneiser S , Hempel S , Feldpausch M , Lamberth S , Van den Daele H , De Keyser A , Buysshaert C , Gielen J , Villarroel R , De Clercq R , van Montagu M , Rogers J , Cronin A , Quail M , Bray-Allen S , Clark L , Doggett J , Hall S , Kay M , Lennard N , McLay K , Mayes R , Pettett A , Rajandream MA , Lyne M , Benes V , Rechmann S , Borkova D , Blocker H , Scharfe M , Grimm M , Lohnert TH , Dose S , de Haan M , Maarse A , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Fartmann B , Granderath K , Dauner D , Herzl A , Neumann S , Argiriou A , Vitale D , Liguori R , Piravandi E , Massenet O , Quigley F , Clabauld G , Mundlein A , Felber R , Schnabl S , Hiller R , Schmidt W , Lecharny A , Aubourg S , Chefdor F , Cooke R , Berger C , Montfort A , Casacuberta E , Gibbons T , Weber N , Vandenbol M , Bargues M , Terol J , Torres A , Perez-Perez A , Purnelle B , Bent E , Johnson S , Tacon D , Jesse T , Heijnen L , Schwarz S , Scholler P , Heber S , Francs P , Bielke C , Frishman D , Haase D , Lemcke K , Mewes HW , Stocker S , Zaccaria P , Bevan M , Wilson RK , de la Bastide M , Habermann K , Parnell L , Dedhia N , Gnoj L , Schutz K , Huang E , Spiegel L , Sehkon M , Murray J , Sheet P , Cordes M , Abu-Threideh J , Stoneking T , Kalicki J , Graves T , Harmon G , Edwards J , Latreille P , Courtney L , Cloud J , Abbott A , Scott K , Johnson D , Minx P , Bentley D , Fulton B , Miller N , Greco T , Kemp K , Kramer J , Fulton L , Mardis E , Dante M , Pepin K , Hillier L , Nelson J , Spieth J , Ryan E , Andrews S , Geisel C , Layman D , Du H , Ali J , Berghoff A , Jones K , Drone K , Cotton M , Joshu C , Antonoiu B , Zidanic M , Strong C , Sun H , Lamar B , Yordan C , Ma P , Zhong J , Preston R , Vil D , Shekher M , Matero A , Shah R , Swaby IK , O'Shaughnessy A , Rodriguez M , Hoffmann J , Till S , Granat S , Shohdy N , Hasegawa A , Hameed A , Lodhi M , Johnson A , Chen E , Marra M , Martienssen R , McCombie WR
Ref : Nature , 402 :769 , 1999
Abstract : The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.
ESTHER : Mayer_1999_Nature_402_769
PubMedSearch : Mayer_1999_Nature_402_769
PubMedID: 10617198
Gene_locus related to this paper: arath-AT4G00500 , arath-AT4G16690 , arath-AT4G17480 , arath-AT4G24380 , arath-AT4g30610 , arath-o65513 , arath-o65713 , arath-LPAAT , arath-f4jt64

Title : Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. - Bevan_1998_Nature_391_485
Author(s) : Bevan M , Bancroft I , Bent E , Love K , Goodman H , Dean C , Bergkamp R , Dirkse W , van Staveren M , Stiekema W , Drost L , Ridley P , Hudson SA , Patel K , Murphy G , Piffanelli P , Wedler H , Wedler E , Wambutt R , Weitzenegger T , Pohl TM , Terryn N , Gielen J , Villarroel R , De Clerck R , van Montagu M , Lecharny A , Auborg S , Gy I , Kreis M , Lao N , Kavanagh T , Hempel S , Kotter P , Entian KD , Rieger M , Schaeffer M , Funk B , Mueller-Auer S , Silvey M , James R , Montfort A , Pons A , Puigdomenech P , Douka A , Voukelatou E , Milioni D , Hatzopoulos P , Piravandi E , Obermaier B , Hilbert H , Duesterhoft A , Moores T , Jones JDG , Eneva T , Palme K , Benes V , Rechman S , Ansorge W , Cooke R , Berger C , Delseny M , Voet M , Volckaert G , Mewes HW , Klosterman S , Schueller C , Chalwatzis N
Ref : Nature , 391 :485 , 1998
Abstract : The plant Arabidopsis thaliana (Arabidopsis) has become an important model species for the study of many aspects of plant biology. The relatively small size of the nuclear genome and the availability of extensive physical maps of the five chromosomes provide a feasible basis for initiating sequencing of the five chromosomes. The YAC (yeast artificial chromosome)-based physical map of chromosome 4 was used to construct a sequence-ready map of cosmid and BAC (bacterial artificial chromosome) clones covering a 1.9-megabase (Mb) contiguous region, and the sequence of this region is reported here. Analysis of the sequence revealed an average gene density of one gene every 4.8 kilobases (kb), and 54% of the predicted genes had significant similarity to known genes. Other interesting features were found, such as the sequence of a disease-resistance gene locus, the distribution of retroelements, the frequent occurrence of clustered gene families, and the sequence of several classes of genes not previously encountered in plants.
ESTHER : Bevan_1998_Nature_391_485
PubMedSearch : Bevan_1998_Nature_391_485
PubMedID: 9461215
Gene_locus related to this paper: arath-a4vcl8 , arath-AT4G00500 , arath-AT4g09900 , arath-AT4g12830 , arath-AT4G14290 , arath-AT4G15100 , arath-AT4G16070 , arath-AT4G16690 , arath-AT4G17150 , arath-AT4G17470 , arath-AT4G17480 , arath-AT4G17483 , arath-At4g18550 , arath-SOBR1 , arath-SOBRL , arath-AT4G24380 , arath-AT4G25770 , arath-AT4g30610 , arath-AT4G31020 , arath-AT4G36195 , arath-AT4G37150 , arath-SCP29 , arath-At3g54240 , arath-KAI2.D14L

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome IV - Jacq_1997_Nature_387_75
Author(s) : Jacq C , Alt-Morbe J , Andre B , Arnold W , Bahr A , Ballesta JP , Bargues M , Baron L , Becker A , Biteau N , Blocker H , Blugeon C , Boskovic J , Brandt P , Bruckner M , Buitrago MJ , Coster F , Delaveau T , del Rey F , Dujon B , Eide LG , Garcia-Cantalejo JM , Goffeau A , Gomez-Peris AC , Granotier C , Hanemann V , Hankeln T , Hoheisel JD , Jager W , Jimenez A , Jonniaux JL , Kramer C , Kuster H , Laamanen P , Legros Y , Louis E , Muller-Rieker S , Monnet A , Moro M , Muller-Auer S , Nussbaumer B , Paricio N , Paulin L , Perea J , Perez-Alonso M , Perez-Ortin JE , Pohl TM , Prydz H , Purnelle B , Rasmussen SW , Remacha M , Revuelta JL , Rieger M , Salom D , Saluz HP , Saiz JE , Saren AM , Schafer M , Scharfe M , Schmidt ER , Schneider C , Scholler P , Schwarz S , Soler-Mira A , Urrestarazu LA , Verhasselt P , Vissers S , Voet M , Volckaert G , Wagner G , Wambutt R , Wedler E , Wedler H , Wolfl S , Harris DE , Bowman S , Brown D , Churcher CM , Connor R , Dedman K , Gentles S , Hamlin N , Hunt S , Jones L , McDonald S , Murphy L , Niblett D , Odell C , Oliver K , Rajandream MA , Richards C , Shore L , Walsh SV , Barrell BG , Dietrich FS , Mulligan J , Allen E , Araujo R , Aviles E , Berno A , Carpenter J , Chen E , Cherry JM , Chung E , Duncan M , Hunicke-Smith S , Hyman R , Komp C , Lashkari D , Lew H , Lin D , Mosedale D , Nakahara K , Namath A , Oefner P , Oh C , Petel FX , Roberts D , Schramm S , Schroeder M , Shogren T , Shroff N , Winant A , Yelton M , Botstein D , Davis RW , Johnston M , Hillier L , Riles L , Albermann K , Hani J , Heumann K , Kleine K , Mewes HW , Zollner A , Zaccaria P
Ref : Nature , 387 :75 , 1997
Abstract : The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome IV has been determined. Apart from chromosome XII, which contains the 1-2 Mb rDNA cluster, chromosome IV is the longest S. cerevisiae chromosome. It was split into three parts, which were sequenced by a consortium from the European Community, the Sanger Centre, and groups from St Louis and Stanford in the United States. The sequence of 1,531,974 base pairs contains 796 predicted or known genes, 318 (39.9%) of which have been previously identified. Of the 478 new genes, 225 (28.3%) are homologous to previously identified genes and 253 (32%) have unknown functions or correspond to spurious open reading frames (ORFs). On average there is one gene approximately every two kilobases. Superimposed on alternating regional variations in G+C composition, there is a large central domain with a lower G+C content that contains all the yeast transposon (Ty) elements and most of the tRNA genes. Chromosome IV shares with chromosomes II, V, XII, XIII and XV some long clustered duplications which partly explain its origin.
ESTHER : Jacq_1997_Nature_387_75
PubMedSearch : Jacq_1997_Nature_387_75
PubMedID: 9169867
Gene_locus related to this paper: yeast-dlhh , yeast-ECM18 , yeast-YDL109C , yeast-YDR428C , yeast-YDR444W

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome XV - Dujon_1997_Nature_387_98
Author(s) : Dujon B , Albermann K , Aldea M , Alexandraki D , Ansorge W , Arino J , Benes V , Bohn C , Bolotin-Fukuhara M , Bordonne R , Boyer J , Camasses A , Casamayor A , Casas C , Cheret G , Cziepluch C , Daignan-Fornier B , Dang DV , de Haan M , Delius H , Durand P , Fairhead C , Feldmann H , Gaillon L , Galisson F , Gamo FJ , Gancedo C , Goffeau A , Goulding SE , Grivell LA , Habbig B , Hand NJ , Hani J , Hattenhorst U , Hebling U , Hernando Y , Herrero E , Heumann K , Hiesel R , Hilger F , Hofmann B , Hollenberg CP , Hughes B , Jauniaux JC , Kalogeropoulos A , Katsoulou C , Kordes E , Lafuente MJ , Landt O , Louis EJ , Maarse AC , Madania A , Mannhaupt G , Marck C , Martin RP , Mewes HW , Michaux G , Paces V , Parle-McDermott AG , Pearson BM , Perrin A , Pettersson B , Poch O , Pohl TM , Poirey R , Portetelle D , Pujol A , Purnelle B , Ramezani Rad M , Rechmann S , Schwager C , Schweizer M , Sor F , Sterky F , Tarassov IA , Teodoru C , Tettelin H , Thierry A , Tobiasch E , Tzermia M , Uhlen M , Unseld M , Valens M , Vandenbol M , Vetter I , Vlcek C , Voet M , Volckaert G , Voss H , Wambutt R , Wedler H , Wiemann S , Winsor B , Wolfe KH , Zollner A , Zumstein E , Kleine K
Ref : Nature , 387 :98 , 1997
Abstract : Chromosome XV was one of the last two chromosomes of Saccharomyces cerevisiae to be discovered. It is the third-largest yeast chromosome after chromosomes XII and IV, and is very similar in size to chromosome VII. It alone represents 9% of the yeast genome (8% if ribosomal DNA is included). When systematic sequencing of chromosome XV was started, 93 genes or markers were identified, and most of them were mapped. However, very little else was known about chromosome XV which, in contrast to shorter chromosomes, had not been the object of comprehensive genetic or molecular analysis. It was therefore decided to start sequencing chromosome XV only in the third phase of the European Yeast Genome Sequencing Programme, after experience was gained on chromosomes III, XI and II. The sequence of chromosome XV has been determined from a set of partly overlapping cosmid clones derived from a unique yeast strain, and physically mapped at 3.3-kilobase resolution before sequencing. As well as numerous new open reading frames (ORFs) and genes encoding tRNA or small RNA molecules, the sequence of 1,091,283 base pairs confirms the high proportion of orphan genes and reveals a number of ancestral and successive duplications with other yeast chromosomes.
ESTHER : Dujon_1997_Nature_387_98
PubMedSearch : Dujon_1997_Nature_387_98
PubMedID: 9169874
Gene_locus related to this paper: yeast-FSH3 , yeast-yo059

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome XII - Johnston_1997_Nature_387_87
Author(s) : Johnston M , Hillier L , Riles L , Albermann K , Andre B , Ansorge W , Benes V , Bruckner M , Delius H , Dubois E , Dusterhoft A , Entian KD , Floeth M , Goffeau A , Hebling U , Heumann K , Heuss-Neitzel D , Hilbert H , Hilger F , Kleine K , Kotter P , Louis EJ , Messenguy F , Mewes HW , Miosga T , Mostl D , Muller-Auer S , Nentwich U , Obermaier B , Piravandi E , Pohl TM , Portetelle D , Purnelle B , Rechmann S , Rieger M , Rinke M , Rose M , Scharfe M , Scherens B , Scholler P , Schwager C , Schwarz S , Underwood AP , Urrestarazu LA , Vandenbol M , Verhasselt P , Vierendeels F , Voet M , Volckaert G , Voss H , Wambutt , Wedler E , Wedler H , Zimmermann FK , Zollner A , Hani J , Hoheisel JD
Ref : Nature , 387 :87 , 1997
Abstract : The yeast Saccharomyces cerevisiae is the pre-eminent organism for the study of basic functions of eukaryotic cells. All of the genes of this simple eukaryotic cell have recently been revealed by an international collaborative effort to determine the complete DNA sequence of its nuclear genome. Here we describe some of the features of chromosome XII.
ESTHER : Johnston_1997_Nature_387_87
PubMedSearch : Johnston_1997_Nature_387_87
PubMedID: 9169871
Gene_locus related to this paper: yeast-ict1 , yeast-YLR118c

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome XVI - Bussey_1997_Nature_387_103
Author(s) : Bussey H , Storms RK , Ahmed A , Albermann K , Allen E , Ansorge W , Araujo R , Aparicio A , Barrell B , Badcock K , Benes V , Botstein D , Bowman S , Bruckner M , Carpenter J , Cherry JM , Chung E , Churcher C , Coster F , Davis K , Davis RW , Dietrich FS , Delius H , DiPaolo T , Dubois E , Dusterhoft A , Duncan M , Floeth M , Fortin N , Friesen JD , Fritz C , Goffeau A , Hall J , Hebling U , Heumann K , Hilbert H , Hillier L , Hunicke-Smith S , Hyman R , Johnston M , Kalman S , Kleine K , Komp C , Kurdi O , Lashkari D , Lew H , Lin A , Lin D , Louis EJ , Marathe R , Messenguy F , Mewes HW , Mirtipati S , Moestl D , Muller-Auer S , Namath A , Nentwich U , Oefner P , Pearson D , Petel FX , Pohl TM , Purnelle B , Rajandream MA , Rechmann S , Rieger M , Riles L , Roberts D , Schafer M , Scharfe M , Scherens B , Schramm S , Schroder M , Sdicu AM , Tettelin H , Urrestarazu LA , Ushinsky S , Vierendeels F , Vissers S , Voss H , Walsh SV , Wambutt R , Wang Y , Wedler E , Wedler H , Winnett E , Zhong WW , Zollner A , Vo DH , Hani J
Ref : Nature , 387 :103 , 1997
Abstract : The nucleotide sequence of the 948,061 base pairs of chromosome XVI has been determined, completing the sequence of the yeast genome. Chromosome XVI was the last yeast chromosome identified, and some of the genes mapped early to it, such as GAL4, PEP4 and RAD1 (ref. 2) have played important roles in the development of yeast biology. The architecture of this final chromosome seems to be typical of the large yeast chromosomes, and shows large duplications with other yeast chromosomes. Chromosome XVI contains 487 potential protein-encoding genes, 17 tRNA genes and two small nuclear RNA genes; 27% of the genes have significant similarities to human gene products, and 48% are new and of unknown biological function. Systematic efforts to explore gene function have begun.
ESTHER : Bussey_1997_Nature_387_103
PubMedSearch : Bussey_1997_Nature_387_103
PubMedID: 9169875
Gene_locus related to this paper: yeast-MCFS1 , yeast-YPR147C

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications - Philippsen_1997_Nature_387_93
Author(s) : Philippsen P , Kleine K , Pohlmann R , Dusterhoft A , Hamberg K , Hegemann JH , Obermaier B , Urrestarazu LA , Aert R , Albermann K , Altmann R , Andre B , Baladron V , Ballesta JP , Becam AM , Beinhauer J , Boskovic J , Buitrago MJ , Bussereau F , Coster F , Crouzet M , D'Angelo M , Dal Pero F , De Antoni A , del Rey F , Doignon F , Domdey H , Dubois E , Fiedler T , Fleig U , Floeth M , Fritz C , Gaillardin C , Garcia-Cantalejo JM , Glansdorff NN , Goffeau A , Gueldener U , Herbert C , Heumann K , Heuss-Neitzel D , Hilbert H , Hinni K , Iraqui Houssaini I , Jacquet M , Jimenez A , Jonniaux JL , Karpfinger L , Lanfranchi G , Lepingle A , Levesque H , Lyck R , Maftahi M , Mallet L , Maurer KC , Messenguy F , Mewes HW , Mosti D , Nasr F , Nicaud JM , Niedenthal RK , Pandolfo D , Pierard A , Piravandi E , Planta RJ , Pohl TM , Purnelle B , Rebischung C , Remacha M , Revuelta JL , Rinke M , Saiz JE , Sartorello F , Scherens B , Sen-Gupta M , Soler-Mira A , Urbanus JH , Valle G , van Dyck L , Verhasselt P , Vierendeels F , Vissers S , Voet M , Volckaert G , Wach A , Wambutt R , Wedler H , Zollner A , Hani J
Ref : Nature , 387 :93 , 1997
Abstract : In 1992 we started assembling an ordered library of cosmid clones from chromosome XIV of the yeast Saccharomyces cerevisiae. At that time, only 49 genes were known to be located on this chromosome and we estimated that 80% to 90% of its genes were yet to be discovered. In 1993, a team of 20 European laboratories began the systematic sequence analysis of chromosome XIV. The completed and intensively checked final sequence of 784,328 base pairs was released in April, 1996. Substantial parts had been published before or had previously been made available on request. The sequence contained 419 known or presumptive protein-coding genes, including two pseudogenes and three retrotransposons, 14 tRNA genes, and three small nuclear RNA genes. For 116 (30%) protein-coding sequences, one or more structural homologues were identified elsewhere in the yeast genome. Half of them belong to duplicated groups of 6-14 loosely linked genes, in most cases with conserved gene order and orientation (relaxed interchromosomal synteny). We have considered the possible evolutionary origins of this unexpected feature of yeast genome organization.
ESTHER : Philippsen_1997_Nature_387_93
PubMedSearch : Philippsen_1997_Nature_387_93
PubMedID: 9169873
Gene_locus related to this paper: yeast-SCYNR064C , yeast-hda1

Title : Life with 6000 genes - Goffeau_1996_Science_274_563
Author(s) : Goffeau A , Barrell BG , Bussey H , Davis RW , Dujon B , Feldmann H , Galibert F , Hoheisel JD , Jacq C , Johnston M , Louis EJ , Mewes HW , Murakami Y , Philippsen P , Tettelin H , Oliver SG
Ref : Science , 274 :546 , 1996
Abstract : The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration. The sequence of 12,068 kilobases defines 5885 potential protein-encoding genes, approximately 140 genes specifying ribosomal RNA, 40 genes for small nuclear RNA molecules, and 275 transfer RNA genes. In addition, the complete sequence provides information about the higher order organization of yeast's 16 chromosomes and allows some insight into their evolutionary history. The genome shows a considerable amount of apparent genetic redundancy, and one of the major problems to be tackled during the next stage of the yeast genome project is to elucidate the biological functions of all of these genes.
ESTHER : Goffeau_1996_Science_274_563
PubMedSearch : Goffeau_1996_Science_274_563
PubMedID: 8849441
Gene_locus related to this paper: yeast-ATG15 , yeast-SAY1

Title : Complete DNA sequence of yeast chromosome II - Feldmann_1994_EMBO.J_13_5795
Author(s) : Feldmann H , Aigle M , Aljinovic G , Andre B , Baclet MC , Barthe C , Baur A , Becam AM , Biteau N , Boles E , Brandt T , Brendel M , Bruckner M , Bussereau F , Christiansen C , Contreras R , Crouzet M , Cziepluch C , Demolis N , Delaveau T , Doignon F , Domdey H , Dusterhus S , Dubois E , Dujon B , El Bakkoury M , Entian KD , Feurmann M , Fiers W , Fobo GM , Fritz C , Gassenhuber H , Glandsdorff N , Goffeau A , Grivell LA , de Haan M , Hein C , Herbert CJ , Hollenberg CP , Holmstrom K , Jacq C , Jacquet M , Jauniaux JC , Jonniaux JL , Kallesoe T , Kiesau P , Kirchrath L , Kotter P , Korol S , Liebl S , Logghe M , Lohan AJ , Louis EJ , Li ZY , Maat MJ , Mallet L , Mannhaupt G , Messenguy F , Miosga T , Molemans F , Muller S , Nasr F , Obermaier B , Perea J , Pierard A , Piravandi E , Pohl FM , Pohl TM , Potier S , Proft M , Purnelle B , Ramezani Rad M , Rieger M , Rose M , Schaaff-Gerstenschlager I , Scherens B , Schwarzlose C , Skala J , Slonimski PP , Smits PH , Souciet JL , Steensma HY , Stucka R , Urrestarazu A , van der Aart QJ , van Dyck L , Vassarotti A , Vetter I , Vierendeels F , Vissers S , Wagner G , de Wergifosse P , Wolfe KH , Zagulski M , Zimmermann FK , Mewes HW , Kleine K , Dsterhus S , Mller S , Pirard A , Schaaff-Gerstenschlger I
Ref : EMBO Journal , 13 :5795 , 1994
Abstract : In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches revealed that 124 ORFs (30%) correspond to genes of known function, 51 ORFs (12.5%) appear to be homologues of genes whose functions are known, 52 others (12.5%) have homologues the functions of which are not well defined and another 33 of the novel putative genes (8%) exhibit a degree of similarity which is insufficient to confidently assign function. Of the genes on chromosome II, 37-45% are thus of unpredicted function. Among the novel putative genes, we found several that are related to genes that perform differentiated functions in multicellular organisms of are involved in malignancy. In addition to a compact arrangement of potential protein coding sequences, the analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization. Alternating regional variations in average base composition correlate with variations in local gene density along chromosome II, as observed in chromosomes XI and III. We propose that functional ARS elements are preferably located in the AT-rich regions that have a spacing of approximately 110 kb. Similarly, the 13 tRNA genes and the three Ty elements of chromosome II are found in AT-rich regions. In chromosome II, the distribution of coding sequences between the two strands is biased, with a ratio of 1.3:1. An interesting aspect regarding the evolution of the eukaryotic genome is the finding that chromosome II has a high degree of internal genetic redundancy, amounting to 16% of the coding capacity.
ESTHER : Feldmann_1994_EMBO.J_13_5795
PubMedSearch : Feldmann_1994_EMBO.J_13_5795
PubMedID: 7813418
Gene_locus related to this paper: yeast-LDH1 , yeast-MCFS2 , yeast-yby9

Title : Complete DNA sequence of yeast chromosome XI - Dujon_1994_Nature_369_371
Author(s) : Dujon B , Alexandraki D , Andre B , Ansorge W , Baladron V , Ballesta JP , Banrevi A , Bolle PA , Bolotin-Fukuhara M , Bossier P , Bou G , Boyer J , Bultrago MJ , Cheret G , Colleaux L , Dalgnan-Fornler B , del Rey F , Dlon C , Domdey H , Dsterhoft A , Dsterhus S , Entlan KD , Erfle H , Esteban PF , Feldmann H , Fernandes L , Robo GM , Fritz C , Fukuhara H , Gabel C , Gaillon L , Carcia-Cantalejo JM , Garcia-Ramirez JJ , Gent NE , Ghazvini M , Goffeau A , Gonzalez A , Grothues D , Guerreiro P , Hegemann J , Hewitt N , Hilger F , Hollenberg CP , Horaitis O , Indge KJ , Jacquier A , James CM , Jauniaux C , Jimenez A , Keuchel H , Kirchrath L , Kleine K , Ktter P , Legrain P , Liebl S , Louis EJ , Maia e Silva A , Marck C , Monnier AL , Mostl D , Mller S , Obermaier B , Oliver SG , Pallier C , Pascolo S , Pfeiffer F , Philippsen P , Planta RJ , Pohl FM , Pohl TM , Pohlmann R , Portetelle D , Purnelle B , Puzos V , Ramezani Rad M , Rasmussen SW , Remacha M , Revuelta JL , Richard GF , Rieger M , Rodrigues-Pousada C , Rose M , Rupp T , Santos MA , Schwager C , Sensen C , Skala J , Soares H , Sor F , Stegemann J , Tettelin H , Thierry A , Tzermia M , Urrestarazu LA , van Dyck L , Van Vliet-Reedijk JC , Valens M , Vandenbo M , Vilela C , Vissers S , von Wettstein D , Voss H , Wiemann S , Xu G , Zimmermann J , Haasemann M , Becker I , Mewes HW
Ref : Nature , 369 :371 , 1994
Abstract : The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined. In addition to a compact arrangement of potential protein coding sequences, the 666,448-base-pair sequence has revealed general chromosome patterns; in particular, alternating regional variations in average base composition correlate with variations in local gene density along the chromosome. Significant discrepancies with the previously published genetic map demonstrate the need for using independent physical mapping criteria.
ESTHER : Dujon_1994_Nature_369_371
PubMedSearch : Dujon_1994_Nature_369_371
PubMedID: 8196765
Gene_locus related to this paper: yeast-mgll