Obermaier B

References (8)

Title : Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs - Wiemann_2001_Genome.Res_11_422
Author(s) : Wiemann S , Weil B , Wellenreuther R , Gassenhuber J , Glassl S , Ansorge W , Boecher M , Bloecker H , Bauersachs S , Blum H , Lauber J , Duesterhoeft A , Beyer A , Koehrer K , Strack N , Mewes H-W , Ottenwaelder B , Obermaier B , Tampe J , Heubner D , Wambutt R , Korn B , Klein M , Poustka A , Bocher M , Blocker H , Dusterhoft A , Kohrer K , Mewes HW , Ottenwalder B
Ref : Genome Res , 11 :422 , 2001
Abstract : With the complete human genomic sequence being unraveled, the focus will shift to gene identification and to the functional analysis of gene products. The generation of a set of cDNAs, both sequences and physical clones, which contains the complete and noninterrupted protein coding regions of all human genes will provide the indispensable tools for the systematic and comprehensive analysis of protein function to eventually understand the molecular basis of man. Here we report the sequencing and analysis of 500 novel human cDNAs containing the complete protein coding frame. Assignment to functional categories was possible for 52% (259) of the encoded proteins, the remaining fraction having no similarities with known proteins. By aligning the cDNA sequences with the sequences of the finished chromosomes 21 and 22 we identified a number of genes that either had been completely missed in the analysis of the genomic sequences or had been wrongly predicted. Three of these genes appear to be present in several copies. We conclude that full-length cDNA sequencing continues to be crucial also for the accurate identification of genes. The set of 500 novel cDNAs, and another 1000 full-coding cDNAs of known transcripts we have identified, adds up to cDNA representations covering 2%--5 % of all human genes. We thus substantially contribute to the generation of a gene catalog, consisting of both full-coding cDNA sequences and clones, which should be made freely available and will become an invaluable tool for detailed functional studies.
ESTHER : Wiemann_2001_Genome.Res_11_422
PubMedSearch : Wiemann_2001_Genome.Res_11_422
PubMedID: 11230166
Gene_locus related to this paper: human-FAM135A , human-KANSL3 , human-NDRG2 , human-NDRG4

Title : Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana - Salanoubat_2000_Nature_408_820
Author(s) : Salanoubat M , Lemcke K , Rieger M , Ansorge W , Unseld M , Fartmann B , Valle G , Blocker H , Perez-Alonso M , Obermaier B , Delseny M , Boutry M , Grivell LA , Mache R , Puigdomenech P , de Simone V , Choisne N , Artiguenave F , Robert C , Brottier P , Wincker P , Cattolico L , Weissenbach J , Saurin W , Quetier F , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Benes V , Wurmbach E , Drzonek H , Erfle H , Jordan N , Bangert S , Wiedelmann R , Kranz H , Voss H , Holland R , Brandt P , Nyakatura G , Vezzi A , D'Angelo M , Pallavicini A , Toppo S , Simionati B , Conrad A , Hornischer K , Kauer G , Lohnert TH , Nordsiek G , Reichelt J , Scharfe M , Schon O , Bargues M , Terol J , Climent J , Navarro P , Collado C , Perez-Perez A , Ottenwalder B , Duchemin D , Cooke R , Laudie M , Berger-Llauro C , Purnelle B , Masuy D , de Haan M , Maarse AC , Alcaraz JP , Cottet A , Casacuberta E , Monfort A , Argiriou A , Flores M , Liguori R , Vitale D , Mannhaupt G , Haase D , Schoof H , Rudd S , Zaccaria P , Mewes HW , Mayer KF , Kaul S , Town CD , Koo HL , Tallon LJ , Jenkins J , Rooney T , Rizzo M , Walts A , Utterback T , Fujii CY , Shea TP , Creasy TH , Haas B , Maiti R , Wu D , Peterson J , Van Aken S , Pai G , Militscher J , Sellers P , Gill JE , Feldblyum TV , Preuss D , Lin X , Nierman WC , Salzberg SL , White O , Venter JC , Fraser CM , Kaneko T , Nakamura Y , Sato S , Kato T , Asamizu E , Sasamoto S , Kimura T , Idesawa K , Kawashima K , Kishida Y , Kiyokawa C , Kohara M , Matsumoto M , Matsuno A , Muraki A , Nakayama S , Nakazaki N , Shinpo S , Takeuchi C , Wada T , Watanabe A , Yamada M , Yasuda M , Tabata S
Ref : Nature , 408 :820 , 2000
Abstract : Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes.
ESTHER : Salanoubat_2000_Nature_408_820
PubMedSearch : Salanoubat_2000_Nature_408_820
PubMedID: 11130713
Gene_locus related to this paper: arath-MES17 , arath-AT3G12150 , arath-At3g61680 , arath-AT3g62590 , arath-CXE12 , arath-eds1 , arath-SCP25 , arath-F1P2.110 , arath-F1P2.140 , arath-F11F8.28 , arath-F14D17.80 , arath-F16B3.4 , arath-SCP27 , arath-At3g50790 , arath-At3g05600 , arath-PAD4 , arath-At3g51000 , arath-SCP16 , arath-gid1 , arath-GID1B , arath-Q9LUG8 , arath-Q84JS1 , arath-Q9SFF6 , arath-q9m236 , arath-q9sr22 , arath-q9sr23 , arath-SCP7 , arath-SCP14 , arath-SCP15 , arath-SCP17 , arath-SCP36 , arath-SCP37 , arath-SCP39 , arath-SCP40 , arath-SCP49 , arath-T19F11.2

Title : Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana - Mayer_1999_Nature_402_769
Author(s) : Mayer K , Schuller C , Wambutt R , Murphy G , Volckaert G , Pohl T , Dusterhoft A , Stiekema W , Entian KD , Terryn N , Harris B , Ansorge W , Brandt P , Grivell L , Rieger M , Weichselgartner M , de Simone V , Obermaier B , Mache R , Muller M , Kreis M , Delseny M , Puigdomenech P , Watson M , Schmidtheini T , Reichert B , Portatelle D , Perez-Alonso M , Boutry M , Bancroft I , Vos P , Hoheisel J , Zimmermann W , Wedler H , Ridley P , Langham SA , McCullagh B , Bilham L , Robben J , Van der Schueren J , Grymonprez B , Chuang YJ , Vandenbussche F , Braeken M , Weltjens I , Voet M , Bastiaens I , Aert R , Defoor E , Weitzenegger T , Bothe G , Ramsperger U , Hilbert H , Braun M , Holzer E , Brandt A , Peters S , van Staveren M , Dirske W , Mooijman P , Klein Lankhorst R , Rose M , Hauf J , Kotter P , Berneiser S , Hempel S , Feldpausch M , Lamberth S , Van den Daele H , De Keyser A , Buysshaert C , Gielen J , Villarroel R , De Clercq R , van Montagu M , Rogers J , Cronin A , Quail M , Bray-Allen S , Clark L , Doggett J , Hall S , Kay M , Lennard N , McLay K , Mayes R , Pettett A , Rajandream MA , Lyne M , Benes V , Rechmann S , Borkova D , Blocker H , Scharfe M , Grimm M , Lohnert TH , Dose S , de Haan M , Maarse A , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Fartmann B , Granderath K , Dauner D , Herzl A , Neumann S , Argiriou A , Vitale D , Liguori R , Piravandi E , Massenet O , Quigley F , Clabauld G , Mundlein A , Felber R , Schnabl S , Hiller R , Schmidt W , Lecharny A , Aubourg S , Chefdor F , Cooke R , Berger C , Montfort A , Casacuberta E , Gibbons T , Weber N , Vandenbol M , Bargues M , Terol J , Torres A , Perez-Perez A , Purnelle B , Bent E , Johnson S , Tacon D , Jesse T , Heijnen L , Schwarz S , Scholler P , Heber S , Francs P , Bielke C , Frishman D , Haase D , Lemcke K , Mewes HW , Stocker S , Zaccaria P , Bevan M , Wilson RK , de la Bastide M , Habermann K , Parnell L , Dedhia N , Gnoj L , Schutz K , Huang E , Spiegel L , Sehkon M , Murray J , Sheet P , Cordes M , Abu-Threideh J , Stoneking T , Kalicki J , Graves T , Harmon G , Edwards J , Latreille P , Courtney L , Cloud J , Abbott A , Scott K , Johnson D , Minx P , Bentley D , Fulton B , Miller N , Greco T , Kemp K , Kramer J , Fulton L , Mardis E , Dante M , Pepin K , Hillier L , Nelson J , Spieth J , Ryan E , Andrews S , Geisel C , Layman D , Du H , Ali J , Berghoff A , Jones K , Drone K , Cotton M , Joshu C , Antonoiu B , Zidanic M , Strong C , Sun H , Lamar B , Yordan C , Ma P , Zhong J , Preston R , Vil D , Shekher M , Matero A , Shah R , Swaby IK , O'Shaughnessy A , Rodriguez M , Hoffmann J , Till S , Granat S , Shohdy N , Hasegawa A , Hameed A , Lodhi M , Johnson A , Chen E , Marra M , Martienssen R , McCombie WR
Ref : Nature , 402 :769 , 1999
Abstract : The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.
ESTHER : Mayer_1999_Nature_402_769
PubMedSearch : Mayer_1999_Nature_402_769
PubMedID: 10617198
Gene_locus related to this paper: arath-AT4G00500 , arath-AT4G16690 , arath-AT4G17480 , arath-AT4G24380 , arath-AT4g30610 , arath-o65513 , arath-o65713 , arath-LPAAT , arath-f4jt64

Title : Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. - Bevan_1998_Nature_391_485
Author(s) : Bevan M , Bancroft I , Bent E , Love K , Goodman H , Dean C , Bergkamp R , Dirkse W , van Staveren M , Stiekema W , Drost L , Ridley P , Hudson SA , Patel K , Murphy G , Piffanelli P , Wedler H , Wedler E , Wambutt R , Weitzenegger T , Pohl TM , Terryn N , Gielen J , Villarroel R , De Clerck R , van Montagu M , Lecharny A , Auborg S , Gy I , Kreis M , Lao N , Kavanagh T , Hempel S , Kotter P , Entian KD , Rieger M , Schaeffer M , Funk B , Mueller-Auer S , Silvey M , James R , Montfort A , Pons A , Puigdomenech P , Douka A , Voukelatou E , Milioni D , Hatzopoulos P , Piravandi E , Obermaier B , Hilbert H , Duesterhoft A , Moores T , Jones JDG , Eneva T , Palme K , Benes V , Rechman S , Ansorge W , Cooke R , Berger C , Delseny M , Voet M , Volckaert G , Mewes HW , Klosterman S , Schueller C , Chalwatzis N
Ref : Nature , 391 :485 , 1998
Abstract : The plant Arabidopsis thaliana (Arabidopsis) has become an important model species for the study of many aspects of plant biology. The relatively small size of the nuclear genome and the availability of extensive physical maps of the five chromosomes provide a feasible basis for initiating sequencing of the five chromosomes. The YAC (yeast artificial chromosome)-based physical map of chromosome 4 was used to construct a sequence-ready map of cosmid and BAC (bacterial artificial chromosome) clones covering a 1.9-megabase (Mb) contiguous region, and the sequence of this region is reported here. Analysis of the sequence revealed an average gene density of one gene every 4.8 kilobases (kb), and 54% of the predicted genes had significant similarity to known genes. Other interesting features were found, such as the sequence of a disease-resistance gene locus, the distribution of retroelements, the frequent occurrence of clustered gene families, and the sequence of several classes of genes not previously encountered in plants.
ESTHER : Bevan_1998_Nature_391_485
PubMedSearch : Bevan_1998_Nature_391_485
PubMedID: 9461215
Gene_locus related to this paper: arath-a4vcl8 , arath-AT4G00500 , arath-AT4g09900 , arath-AT4g12830 , arath-AT4G14290 , arath-AT4G15100 , arath-AT4G16070 , arath-AT4G16690 , arath-AT4G17150 , arath-AT4G17470 , arath-AT4G17480 , arath-AT4G17483 , arath-At4g18550 , arath-SOBR1 , arath-SOBRL , arath-AT4G24380 , arath-AT4G25770 , arath-AT4g30610 , arath-AT4G31020 , arath-AT4G36195 , arath-AT4G37150 , arath-SCP29 , arath-At3g54240 , arath-KAI2.D14L

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome XII - Johnston_1997_Nature_387_87
Author(s) : Johnston M , Hillier L , Riles L , Albermann K , Andre B , Ansorge W , Benes V , Bruckner M , Delius H , Dubois E , Dusterhoft A , Entian KD , Floeth M , Goffeau A , Hebling U , Heumann K , Heuss-Neitzel D , Hilbert H , Hilger F , Kleine K , Kotter P , Louis EJ , Messenguy F , Mewes HW , Miosga T , Mostl D , Muller-Auer S , Nentwich U , Obermaier B , Piravandi E , Pohl TM , Portetelle D , Purnelle B , Rechmann S , Rieger M , Rinke M , Rose M , Scharfe M , Scherens B , Scholler P , Schwager C , Schwarz S , Underwood AP , Urrestarazu LA , Vandenbol M , Verhasselt P , Vierendeels F , Voet M , Volckaert G , Voss H , Wambutt , Wedler E , Wedler H , Zimmermann FK , Zollner A , Hani J , Hoheisel JD
Ref : Nature , 387 :87 , 1997
Abstract : The yeast Saccharomyces cerevisiae is the pre-eminent organism for the study of basic functions of eukaryotic cells. All of the genes of this simple eukaryotic cell have recently been revealed by an international collaborative effort to determine the complete DNA sequence of its nuclear genome. Here we describe some of the features of chromosome XII.
ESTHER : Johnston_1997_Nature_387_87
PubMedSearch : Johnston_1997_Nature_387_87
PubMedID: 9169871
Gene_locus related to this paper: yeast-ict1 , yeast-YLR118c

Title : The nucleotide sequence of Saccharomyces cerevisiae chromosome XIV and its evolutionary implications - Philippsen_1997_Nature_387_93
Author(s) : Philippsen P , Kleine K , Pohlmann R , Dusterhoft A , Hamberg K , Hegemann JH , Obermaier B , Urrestarazu LA , Aert R , Albermann K , Altmann R , Andre B , Baladron V , Ballesta JP , Becam AM , Beinhauer J , Boskovic J , Buitrago MJ , Bussereau F , Coster F , Crouzet M , D'Angelo M , Dal Pero F , De Antoni A , del Rey F , Doignon F , Domdey H , Dubois E , Fiedler T , Fleig U , Floeth M , Fritz C , Gaillardin C , Garcia-Cantalejo JM , Glansdorff NN , Goffeau A , Gueldener U , Herbert C , Heumann K , Heuss-Neitzel D , Hilbert H , Hinni K , Iraqui Houssaini I , Jacquet M , Jimenez A , Jonniaux JL , Karpfinger L , Lanfranchi G , Lepingle A , Levesque H , Lyck R , Maftahi M , Mallet L , Maurer KC , Messenguy F , Mewes HW , Mosti D , Nasr F , Nicaud JM , Niedenthal RK , Pandolfo D , Pierard A , Piravandi E , Planta RJ , Pohl TM , Purnelle B , Rebischung C , Remacha M , Revuelta JL , Rinke M , Saiz JE , Sartorello F , Scherens B , Sen-Gupta M , Soler-Mira A , Urbanus JH , Valle G , van Dyck L , Verhasselt P , Vierendeels F , Vissers S , Voet M , Volckaert G , Wach A , Wambutt R , Wedler H , Zollner A , Hani J
Ref : Nature , 387 :93 , 1997
Abstract : In 1992 we started assembling an ordered library of cosmid clones from chromosome XIV of the yeast Saccharomyces cerevisiae. At that time, only 49 genes were known to be located on this chromosome and we estimated that 80% to 90% of its genes were yet to be discovered. In 1993, a team of 20 European laboratories began the systematic sequence analysis of chromosome XIV. The completed and intensively checked final sequence of 784,328 base pairs was released in April, 1996. Substantial parts had been published before or had previously been made available on request. The sequence contained 419 known or presumptive protein-coding genes, including two pseudogenes and three retrotransposons, 14 tRNA genes, and three small nuclear RNA genes. For 116 (30%) protein-coding sequences, one or more structural homologues were identified elsewhere in the yeast genome. Half of them belong to duplicated groups of 6-14 loosely linked genes, in most cases with conserved gene order and orientation (relaxed interchromosomal synteny). We have considered the possible evolutionary origins of this unexpected feature of yeast genome organization.
ESTHER : Philippsen_1997_Nature_387_93
PubMedSearch : Philippsen_1997_Nature_387_93
PubMedID: 9169873
Gene_locus related to this paper: yeast-SCYNR064C , yeast-hda1

Title : Complete DNA sequence of yeast chromosome II - Feldmann_1994_EMBO.J_13_5795
Author(s) : Feldmann H , Aigle M , Aljinovic G , Andre B , Baclet MC , Barthe C , Baur A , Becam AM , Biteau N , Boles E , Brandt T , Brendel M , Bruckner M , Bussereau F , Christiansen C , Contreras R , Crouzet M , Cziepluch C , Demolis N , Delaveau T , Doignon F , Domdey H , Dusterhus S , Dubois E , Dujon B , El Bakkoury M , Entian KD , Feurmann M , Fiers W , Fobo GM , Fritz C , Gassenhuber H , Glandsdorff N , Goffeau A , Grivell LA , de Haan M , Hein C , Herbert CJ , Hollenberg CP , Holmstrom K , Jacq C , Jacquet M , Jauniaux JC , Jonniaux JL , Kallesoe T , Kiesau P , Kirchrath L , Kotter P , Korol S , Liebl S , Logghe M , Lohan AJ , Louis EJ , Li ZY , Maat MJ , Mallet L , Mannhaupt G , Messenguy F , Miosga T , Molemans F , Muller S , Nasr F , Obermaier B , Perea J , Pierard A , Piravandi E , Pohl FM , Pohl TM , Potier S , Proft M , Purnelle B , Ramezani Rad M , Rieger M , Rose M , Schaaff-Gerstenschlager I , Scherens B , Schwarzlose C , Skala J , Slonimski PP , Smits PH , Souciet JL , Steensma HY , Stucka R , Urrestarazu A , van der Aart QJ , van Dyck L , Vassarotti A , Vetter I , Vierendeels F , Vissers S , Wagner G , de Wergifosse P , Wolfe KH , Zagulski M , Zimmermann FK , Mewes HW , Kleine K , Dsterhus S , Mller S , Pirard A , Schaaff-Gerstenschlger I
Ref : EMBO Journal , 13 :5795 , 1994
Abstract : In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches revealed that 124 ORFs (30%) correspond to genes of known function, 51 ORFs (12.5%) appear to be homologues of genes whose functions are known, 52 others (12.5%) have homologues the functions of which are not well defined and another 33 of the novel putative genes (8%) exhibit a degree of similarity which is insufficient to confidently assign function. Of the genes on chromosome II, 37-45% are thus of unpredicted function. Among the novel putative genes, we found several that are related to genes that perform differentiated functions in multicellular organisms of are involved in malignancy. In addition to a compact arrangement of potential protein coding sequences, the analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization. Alternating regional variations in average base composition correlate with variations in local gene density along chromosome II, as observed in chromosomes XI and III. We propose that functional ARS elements are preferably located in the AT-rich regions that have a spacing of approximately 110 kb. Similarly, the 13 tRNA genes and the three Ty elements of chromosome II are found in AT-rich regions. In chromosome II, the distribution of coding sequences between the two strands is biased, with a ratio of 1.3:1. An interesting aspect regarding the evolution of the eukaryotic genome is the finding that chromosome II has a high degree of internal genetic redundancy, amounting to 16% of the coding capacity.
ESTHER : Feldmann_1994_EMBO.J_13_5795
PubMedSearch : Feldmann_1994_EMBO.J_13_5795
PubMedID: 7813418
Gene_locus related to this paper: yeast-LDH1 , yeast-MCFS2 , yeast-yby9

Title : Complete DNA sequence of yeast chromosome XI - Dujon_1994_Nature_369_371
Author(s) : Dujon B , Alexandraki D , Andre B , Ansorge W , Baladron V , Ballesta JP , Banrevi A , Bolle PA , Bolotin-Fukuhara M , Bossier P , Bou G , Boyer J , Bultrago MJ , Cheret G , Colleaux L , Dalgnan-Fornler B , del Rey F , Dlon C , Domdey H , Dsterhoft A , Dsterhus S , Entlan KD , Erfle H , Esteban PF , Feldmann H , Fernandes L , Robo GM , Fritz C , Fukuhara H , Gabel C , Gaillon L , Carcia-Cantalejo JM , Garcia-Ramirez JJ , Gent NE , Ghazvini M , Goffeau A , Gonzalez A , Grothues D , Guerreiro P , Hegemann J , Hewitt N , Hilger F , Hollenberg CP , Horaitis O , Indge KJ , Jacquier A , James CM , Jauniaux C , Jimenez A , Keuchel H , Kirchrath L , Kleine K , Ktter P , Legrain P , Liebl S , Louis EJ , Maia e Silva A , Marck C , Monnier AL , Mostl D , Mller S , Obermaier B , Oliver SG , Pallier C , Pascolo S , Pfeiffer F , Philippsen P , Planta RJ , Pohl FM , Pohl TM , Pohlmann R , Portetelle D , Purnelle B , Puzos V , Ramezani Rad M , Rasmussen SW , Remacha M , Revuelta JL , Richard GF , Rieger M , Rodrigues-Pousada C , Rose M , Rupp T , Santos MA , Schwager C , Sensen C , Skala J , Soares H , Sor F , Stegemann J , Tettelin H , Thierry A , Tzermia M , Urrestarazu LA , van Dyck L , Van Vliet-Reedijk JC , Valens M , Vandenbo M , Vilela C , Vissers S , von Wettstein D , Voss H , Wiemann S , Xu G , Zimmermann J , Haasemann M , Becker I , Mewes HW
Ref : Nature , 369 :371 , 1994
Abstract : The complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome XI has been determined. In addition to a compact arrangement of potential protein coding sequences, the 666,448-base-pair sequence has revealed general chromosome patterns; in particular, alternating regional variations in average base composition correlate with variations in local gene density along the chromosome. Significant discrepancies with the previously published genetic map demonstrate the need for using independent physical mapping criteria.
ESTHER : Dujon_1994_Nature_369_371
PubMedSearch : Dujon_1994_Nature_369_371
PubMedID: 8196765
Gene_locus related to this paper: yeast-mgll