Aigle M

References (3)

Title : Genome evolution in yeasts - Dujon_2004_Nature_430_35
Author(s) : Dujon B , Sherman D , Fischer G , Durrens P , Casaregola S , Lafontaine I , De Montigny J , Marck C , Neuveglise C , Talla E , Goffard N , Frangeul L , Aigle M , Anthouard V , Babour A , Barbe V , Barnay S , Blanchin S , Beckerich JM , Beyne E , Bleykasten C , Boisrame A , Boyer J , Cattolico L , Confanioleri F , de Daruvar A , Despons L , Fabre E , Fairhead C , Ferry-Dumazet H , Groppi A , Hantraye F , Hennequin C , Jauniaux N , Joyet P , Kachouri R , Kerrest A , Koszul R , Lemaire M , Lesur I , Ma L , Muller H , Nicaud JM , Nikolski M , Oztas S , Ozier-Kalogeropoulos O , Pellenz S , Potier S , Richard GF , Straub ML , Suleau A , Swennen D , Tekaia F , Wesolowski-Louvel M , Westhof E , Wirth B , Zeniou-Meyer M , Zivanovic I , Bolotin-Fukuhara M , Thierry A , Bouchier C , Caudron B , Scarpelli C , Gaillardin C , Weissenbach J , Wincker P , Souciet JL
Ref : Nature , 430 :35 , 2004
Abstract : Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar lifestyle and distinct sexual and physiological properties, provide a unique opportunity to explore such mechanisms. We present here the complete, assembled genome sequences of four yeast species, selected to represent a broad evolutionary range within a single eukaryotic phylum, that after analysis proved to be molecularly as diverse as the entire phylum of chordates. A total of approximately 24,200 novel genes were identified, the translation products of which were classified together with Saccharomyces cerevisiae proteins into about 4,700 families, forming the basis for interspecific comparisons. Analysis of chromosome maps and genome redundancies reveal that the different yeast lineages have evolved through a marked interplay between several distinct molecular mechanisms, including tandem gene repeat formation, segmental duplication, a massive genome duplication and extensive gene loss.
ESTHER : Dujon_2004_Nature_430_35
PubMedSearch : Dujon_2004_Nature_430_35
PubMedID: 15229592
Gene_locus related to this paper: canga-apth1 , canga-ppme1 , canga-q6fik7 , canga-q6fiv5 , canga-q6fiw8 , canga-q6fj11 , canga-q6fjh6 , canga-q6fjl0 , canga-q6fjr8 , canga-q6fkj6 , canga-q6fkm9 , canga-q6fku7 , canga-q6fl14 , canga-q6flb5 , canga-q6fle9 , canga-q6flk8 , canga-q6fly1 , canga-q6fly9 , canga-q6fmz4 , canga-q6fnx4 , canga-q6fp28 , canga-q6fpa8 , canga-q6fpi6 , canga-q6fpv7 , canga-q6fpw6 , canga-q6fqj3 , canga-q6fr97 , canga-q6frt7 , canga-q6ftm9 , canga-q6ftu0 , canga-q6ftv9 , canga-q6ftz9 , canga-q6fuf8 , canga-q6fv41 , canga-q6fvu3 , canga-q6fw36 , canga-q6fw94 , canga-q6fwk6 , canga-q6fwm0 , canga-q6fxc7 , canga-q6fxd7 , debha-apth1 , debha-atg15 , debha-b5rtk1 , debha-b5rub4 , debha-b5rue8 , debha-b5rue9 , debha-bna7 , debha-ppme1 , debha-q6bgx3 , debha-q6bh69 , debha-q6bhb8 , debha-q6bhc1 , debha-q6bhd0 , debha-q6bhj7 , debha-q6bi97 , debha-q6biq7 , debha-q6bj53 , debha-q6bkd8 , debha-q6bks1 , debha-q6bky4 , debha-q6bm63 , debha-q6bmh3 , debha-q6bn89 , debha-q6bnj6 , debha-q6bp08 , debha-q6bpb4 , debha-q6bpc0 , debha-q6bpc6 , debha-q6bq10 , debha-q6bq11 , debha-q6bqd9 , debha-q6bqj6 , debha-q6br33 , debha-q6br93 , debha-q6brg1 , debha-q6brw7 , debha-q6bs23 , debha-q6bsc3 , debha-q6bsl8 , debha-q6bsx6 , debha-q6bta5 , debha-q6bty5 , debha-q6btz0 , debha-q6bu73 , debha-q6buk9 , debha-q6but7 , debha-q6bvc4 , debha-q6bvg4 , debha-q6bvg8 , debha-q6bvp4 , debha-q6bw82 , debha-q6bxr7 , debha-q6bxu9 , debha-q6bym5 , debha-q6byn7 , debha-q6bzj8 , debha-q6bzk2 , debha-q6bzm5 , klula-apth1 , klula-ppme1 , klula-q6cin9 , klula-q6ciu6 , klula-q6cj47 , klula-q6cjc8 , klula-q6cjq9 , klula-q6cjs1 , klula-q6cjv9 , klula-q6ckd7 , klula-q6ckk4 , klula-q6ckx4 , klula-q6cl20 , klula-q6clm1 , klula-q6cly8 , klula-q6clz7 , klula-q6cm48 , klula-q6cm49 , klula-q6cmt5 , klula-q6cn71 , klula-q6cnm1 , klula-q6cr74 , klula-q6cr90 , klula-q6crs0 , klula-q6crv8 , klula-q6crz9 , klula-q6cst8 , klula-q6csv8 , klula-q6ctp8 , klula-q6cu02 , klula-q6cu78 , klula-q6cu79 , klula-q6cuv3 , klula-q6cvd3 , klula-q6cw70 , klula-q6cw92 , klula-q6cwu7 , klula-q6cx84 , klula-q6cxa3 , klula-q6cy41 , yarli-apth1 , yarli-atg15 , yarli-BST1B , yarli-lip2 , yarli-LIP3 , yarli-LIP4 , yarli-LIP5 , yarli-LIP7 , yarli-LIP8 , yarli-lipa1 , yarli-ppme1 , yarli-q6bzp1 , yarli-q6bzv7 , yarli-q6c1f5 , yarli-q6c1f7 , yarli-q6c1r3 , yarli-q6c2z2 , yarli-q6c3h1 , yarli-q6c3i6 , yarli-q6c3l1 , yarli-q6c3u6 , yarli-q6c4h8 , yarli-q6c5j1 , yarli-q6c5m4 , yarli-q6c6m4 , yarli-q6c6p7 , yarli-q6c6v2 , yarli-q6c7h3 , yarli-q6c7i7 , yarli-q6c7j5 , yarli-q6c7y6 , yarli-q6c8m4 , yarli-q6c8q4 , yarli-q6c8u4 , yarli-q6c8y2 , yarli-q6c9r0 , yarli-q6c9r1 , yarli-q6c9u0 , yarli-q6c9v4 , yarli-q6c209 , yarli-q6c225 , yarli-q6c493 , yarli-q6c598 , yarli-q6c687 , yarli-q6c822 , yarli-q6cau6 , yarli-q6cax2 , yarli-q6caz1 , yarli-q6cb63 , yarli-q6cba7 , yarli-q6cbb1 , yarli-q6cbe6 , yarli-q6cby1 , yarli-q6ccr0 , yarli-q6cdg1 , yarli-q6cdi6 , yarli-q6cdv9 , yarli-q6ce37 , yarli-q6ceg0 , yarli-q6cep3 , yarli-q6cey5 , yarli-q6cf60 , yarli-q6cfp3 , yarli-q6cfx2 , yarli-q6cg13 , yarli-q6cg27 , yarli-q6cgj3 , yarli-q6chb8 , yarli-q6ci59 , yarli-q6c748 , canga-q6fpj0 , klula-q6cp11 , yarli-q6c4p0 , debha-q6btp5 , debha-kex1

Title : Complete DNA sequence of yeast chromosome II - Feldmann_1994_EMBO.J_13_5795
Author(s) : Feldmann H , Aigle M , Aljinovic G , Andre B , Baclet MC , Barthe C , Baur A , Becam AM , Biteau N , Boles E , Brandt T , Brendel M , Bruckner M , Bussereau F , Christiansen C , Contreras R , Crouzet M , Cziepluch C , Demolis N , Delaveau T , Doignon F , Domdey H , Dusterhus S , Dubois E , Dujon B , El Bakkoury M , Entian KD , Feurmann M , Fiers W , Fobo GM , Fritz C , Gassenhuber H , Glandsdorff N , Goffeau A , Grivell LA , de Haan M , Hein C , Herbert CJ , Hollenberg CP , Holmstrom K , Jacq C , Jacquet M , Jauniaux JC , Jonniaux JL , Kallesoe T , Kiesau P , Kirchrath L , Kotter P , Korol S , Liebl S , Logghe M , Lohan AJ , Louis EJ , Li ZY , Maat MJ , Mallet L , Mannhaupt G , Messenguy F , Miosga T , Molemans F , Muller S , Nasr F , Obermaier B , Perea J , Pierard A , Piravandi E , Pohl FM , Pohl TM , Potier S , Proft M , Purnelle B , Ramezani Rad M , Rieger M , Rose M , Schaaff-Gerstenschlager I , Scherens B , Schwarzlose C , Skala J , Slonimski PP , Smits PH , Souciet JL , Steensma HY , Stucka R , Urrestarazu A , van der Aart QJ , van Dyck L , Vassarotti A , Vetter I , Vierendeels F , Vissers S , Wagner G , de Wergifosse P , Wolfe KH , Zagulski M , Zimmermann FK , Mewes HW , Kleine K , Dsterhus S , Mller S , Pirard A , Schaaff-Gerstenschlger I
Ref : EMBO Journal , 13 :5795 , 1994
Abstract : In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches revealed that 124 ORFs (30%) correspond to genes of known function, 51 ORFs (12.5%) appear to be homologues of genes whose functions are known, 52 others (12.5%) have homologues the functions of which are not well defined and another 33 of the novel putative genes (8%) exhibit a degree of similarity which is insufficient to confidently assign function. Of the genes on chromosome II, 37-45% are thus of unpredicted function. Among the novel putative genes, we found several that are related to genes that perform differentiated functions in multicellular organisms of are involved in malignancy. In addition to a compact arrangement of potential protein coding sequences, the analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization. Alternating regional variations in average base composition correlate with variations in local gene density along chromosome II, as observed in chromosomes XI and III. We propose that functional ARS elements are preferably located in the AT-rich regions that have a spacing of approximately 110 kb. Similarly, the 13 tRNA genes and the three Ty elements of chromosome II are found in AT-rich regions. In chromosome II, the distribution of coding sequences between the two strands is biased, with a ratio of 1.3:1. An interesting aspect regarding the evolution of the eukaryotic genome is the finding that chromosome II has a high degree of internal genetic redundancy, amounting to 16% of the coding capacity.
ESTHER : Feldmann_1994_EMBO.J_13_5795
PubMedSearch : Feldmann_1994_EMBO.J_13_5795
PubMedID: 7813418
Gene_locus related to this paper: yeast-LDH1 , yeast-MCFS2 , yeast-yby9

Title : The complete DNA sequence of yeast chromosome III - Oliver_1992_Nature_357_38
Author(s) : Oliver SG , van der Aart QJ , Agostoni-Carbone ML , Aigle M , Alberghina L , Alexandraki D , Antoine G , Anwar R , Ballesta JP , Benit P , et al.
Ref : Nature , 357 :38 , 1992
Abstract : The entire DNA sequence of chromosome III of the yeast Saccharomyces cerevisiae has been determined. This is the first complete sequence analysis of an entire chromosome from any organism. The 315-kilobase sequence reveals 182 open reading frames for proteins longer than 100 amino acids, of which 37 correspond to known genes and 29 more show some similarity to sequences in databases. Of 55 new open reading frames analysed by gene disruption, three are essential genes; of 42 non-essential genes that were tested, 14 show some discernible effect on phenotype and the remaining 28 have no overt function.
ESTHER : Oliver_1992_Nature_357_38
PubMedSearch : Oliver_1992_Nature_357_38
PubMedID: 1574125
Gene_locus related to this paper: yeast-ATG15