This family consists of abhydrolase domain-containing protein 16 A (ABHD16A). Function of its members is unknown. However, ABHD16A contains transmembrane domain and is a potential multi-pass membrane protein. BAT5 (HLA-B-associated transcript 5). Savinainen et al. showed hydrolysis of medium-chain saturated (C14:0), long-chain unsaturated (C18:1, C18:2, C20:4) monoacylglycerols (MAGs) and 15-deoxy-12,14-prostaglandin J2-2-glycerol ester (15d-PGJ2-G). Only marginal diacylglycerol (DAG), triacylglycerol (TAG), or lysophospholipase activity PANTHER PTHR12277:SF54 There are two genes ABHD16 A and B in amniotes. Shan et al. identified a nonsense mutation in the bovine ABHD16B associated with male subfertility in Holstein cattle. ABHD16B is involved in lipid biosynthesis in testis and is crucial for fertilization. ABHD16A deficiency causes a complicated form of hereditary spastic paraplegia associated with intellectual disability and cerebral anomalies (Lemire et al. 2021; Yahia et al. 2021; Miyake 2021). Substrates of ABHD include medium-chain saturated monoacylglycerols, 1-linoleylglycerol, 15-deoxy-delta12,14-prostaglandin J2-2-glycerol ester
ABHD16A (abhydrolase domain-containing protein 16A, phospholipase) encodes the major phosphatidylserine (PS) lipase in the brain. PS lipase synthesizes lysophosphatidylserine, an important signaling lipid that functions in the mammalian central nervous system. ABHD16A has not yet been associated with a human disease. In this report, we present a cohort of 11 affected individuals from six unrelated families with a complicated form of hereditary spastic paraplegia (HSP) who carry bi-allelic deleterious variants in ABHD16A. Affected individuals present with a similar phenotype consisting of global developmental delay/intellectual disability, progressive spasticity affecting the upper and lower limbs, and corpus callosum and white matter anomalies. Immunoblot analysis on extracts from fibroblasts from four affected individuals demonstrated little to no ABHD16A protein levels compared to controls. Our findings add ABHD16A to the growing list of lipid genes in which dysregulation can cause complicated forms of HSP and begin to describe the molecular etiology of this condition.
Hereditary spastic paraplegia (HSP) is a genetically and clinically heterogeneous genetic disease characterized by progressive weakness and spasticity predominantly affecting the lower limbs. Complex HSP is a subset of HSP presenting with additional neuronal and/or non-neuronal phenotypes. Here, we identify a homozygous ABHD16A nonsense variant in two affected children in a Chilean family. Very recently, two groups reported patients with biallelic ABHD16A whose clinical presentation was similar to that of our patients. By reviewing the clinical features of these reports and our patients, ABHD16A-related HSP can be characterized by early childhood onset, developmental delay, intellectual disability, speech disturbance, extrapyramidal signs, psychiatric features, no sphincter control, skeletal involvement, thin corpus callosum, and high-intensity signals in white matter on T2-weighted brain MRI. In addition, our affected siblings showed a characteristic face, sleep disturbance, and nodular and hyperpigmented skin lesions, which have not previously been reported in this condition.
Introduction: Hereditary spastic paraplegia is a clinically and genetically heterogeneous neurological entity that includes more than 80 disorders which share lower limb spasticity as a common feature. Abnormalities in multiple cellular processes are implicated in their pathogenesis, including lipid metabolism; but still 40% of the patients are undiagnosed. Our goal was to identify the disease-causing variants in Sudanese families excluded for known genetic causes and describe a novel clinico-genetic entity. Methods: We studied four patients from two unrelated consanguineous Sudanese families who manifested a neurological phenotype characterized by spasticity, psychomotor developmental delay and/or regression, and intellectual impairment. We applied next-generation sequencing, bioinformatics analysis, and Sanger sequencing to identify the genetic culprit. We then explored the consequences of the identified variants in patients-derived fibroblasts using targeted-lipidomics strategies. Results and Discussion: Two homozygous variants in ABHD16A segregated with the disease in the two studied families. ABHD16A encodes the main brain phosphatidylserine hydrolase. In vitro, we confirmed that ABHD16A loss of function reduces the levels of certain long-chain lysophosphatidylserine species while increases the levels of multiple phosphatidylserine species in patient's fibroblasts. Conclusion: ABHD16A loss of function is implicated in the pathogenesis of a novel form of complex hereditary spastic paraplegia.
Recently it was shown that a specific form of male infertility in Holstein cattle was caused by a nonsense variant in the alpha/beta-hydrolase domain-containing 16B (ABHD16B) gene resulting in a protein truncation at amino acid position 218 (p.218Q*) and loss of function. Lipidomics showed that the absence of ABHD16B influenced the content of phosphatidylcholine (PC), ceramide (Cer), diacylglycerol (DAG), and sphingomyelin (SM) in variant carrier sperm membranes. However, the exact cause of infertility in affected sires has remained unclear until now. To elucidate the cause of infertility, we analyzed (i) standard sperm parameters (i.e., total sperm number, morphological intact sperm, total sperm motility), (ii) in vitro fertilizability and effects on early embryonic development, and (iii) sperm survival rates (i.e., capacitation time). The affected spermatozoa showed no changes in the usual sperm parameters and were also capable of fertilization in vitro. Furthermore, the absence of ABHD16B did not affect early embryonic development. Based on these results, it was concluded that the affected spermatozoa appeared to be fertilizable per se. Consequently, the actual cause of the inability to fertilize could only be due to a time- and/or place-dependent process after artificial insemination and before fertilization. A process fundamental to the ability to fertilize after insemination is capacitation. Capacitation is a biochemical maturation process that spermatozoa undergo in the female genital tract and is inevitable for the successful fertilization of the oocyte. It is known that the presence and concentration of certain sperm membrane lipids are essential for the correct course of capacitation. However, precisely these lipids are absent in the membrane of spermatozoa affected by the ABHD16B truncation. Since all other causes of fertilization inability were excluded in the previous experiments, consequently, the only remaining hypothesis was that the loss of function of ABHD16B leads to a capacitation disruption. We were able to show that heterozygous and homozygous affected spermatozoa exhibit premature capacitation and therefore decay before fertilization. This effect of the loss of function of ABHD16B has not been described before and our studies now revealed why sires harboring the variant in the ABHD16B gene are infertile.
ABHD16A (abhydrolase domain-containing protein 16A, phospholipase) encodes the major phosphatidylserine (PS) lipase in the brain. PS lipase synthesizes lysophosphatidylserine, an important signaling lipid that functions in the mammalian central nervous system. ABHD16A has not yet been associated with a human disease. In this report, we present a cohort of 11 affected individuals from six unrelated families with a complicated form of hereditary spastic paraplegia (HSP) who carry bi-allelic deleterious variants in ABHD16A. Affected individuals present with a similar phenotype consisting of global developmental delay/intellectual disability, progressive spasticity affecting the upper and lower limbs, and corpus callosum and white matter anomalies. Immunoblot analysis on extracts from fibroblasts from four affected individuals demonstrated little to no ABHD16A protein levels compared to controls. Our findings add ABHD16A to the growing list of lipid genes in which dysregulation can cause complicated forms of HSP and begin to describe the molecular etiology of this condition.
Hereditary spastic paraplegia (HSP) is a genetically and clinically heterogeneous genetic disease characterized by progressive weakness and spasticity predominantly affecting the lower limbs. Complex HSP is a subset of HSP presenting with additional neuronal and/or non-neuronal phenotypes. Here, we identify a homozygous ABHD16A nonsense variant in two affected children in a Chilean family. Very recently, two groups reported patients with biallelic ABHD16A whose clinical presentation was similar to that of our patients. By reviewing the clinical features of these reports and our patients, ABHD16A-related HSP can be characterized by early childhood onset, developmental delay, intellectual disability, speech disturbance, extrapyramidal signs, psychiatric features, no sphincter control, skeletal involvement, thin corpus callosum, and high-intensity signals in white matter on T2-weighted brain MRI. In addition, our affected siblings showed a characteristic face, sleep disturbance, and nodular and hyperpigmented skin lesions, which have not previously been reported in this condition.
Introduction: Hereditary spastic paraplegia is a clinically and genetically heterogeneous neurological entity that includes more than 80 disorders which share lower limb spasticity as a common feature. Abnormalities in multiple cellular processes are implicated in their pathogenesis, including lipid metabolism; but still 40% of the patients are undiagnosed. Our goal was to identify the disease-causing variants in Sudanese families excluded for known genetic causes and describe a novel clinico-genetic entity. Methods: We studied four patients from two unrelated consanguineous Sudanese families who manifested a neurological phenotype characterized by spasticity, psychomotor developmental delay and/or regression, and intellectual impairment. We applied next-generation sequencing, bioinformatics analysis, and Sanger sequencing to identify the genetic culprit. We then explored the consequences of the identified variants in patients-derived fibroblasts using targeted-lipidomics strategies. Results and Discussion: Two homozygous variants in ABHD16A segregated with the disease in the two studied families. ABHD16A encodes the main brain phosphatidylserine hydrolase. In vitro, we confirmed that ABHD16A loss of function reduces the levels of certain long-chain lysophosphatidylserine species while increases the levels of multiple phosphatidylserine species in patient's fibroblasts. Conclusion: ABHD16A loss of function is implicated in the pathogenesis of a novel form of complex hereditary spastic paraplegia.
We have identified a Holstein sire named Tarantino who had been approved for artificial insemination that is based on normal semen characteristics (i.e., morphology, thermoresistance, motility, sperm concentration), but had no progeny after 412 first inseminations, resulting in a non-return rate (NRdev) of -29. Using whole genome association analysis and next generation sequencing, an associated nonsense variant in the alpha/beta-hydrolase domain-containing 16B gene (ABHD16B) on bovine chromosome 13 was identified. The frequency of the mutant allele in the German Holstein population was determined to be 0.0018 in 222,645 investigated cattle specimens. The mutant allele was traced back to Whirlhill Kingpin (bornFeb. 13th, 1959) as potential founder. The expression of ABHD16B was detected by Western blotting and immunohistochemistry in testis and epididymis of control bulls. A lipidome comparison of the plasma membrane of fresh semen from carriers and controls showed significant differences in the concentration of phosphatidylcholine (PC), diacylglycerol (DAG), ceramide (Cer), sphingomyelin (SM), and phosphatidylcholine (-ether) (PC O-), indicating that ABHD16B plays a role in lipid biosynthesis. The altered lipid contents may explain the reduced fertilization ability of mutated sperms.
Lysophospholipids are potent hormone-like signalling biological lipids that regulate many important biological processes in mammals (including humans). Lysophosphatidic acid and sphingosine-1-phosphate represent the best studied examples for this lipid class, and their metabolic enzymes and/or cognate receptors are currently under clinical investigation for treatment of various neurological and autoimmune diseases in humans. Over the past two decades, the lysophsophatidylserines (lyso-PSs) have emerged as yet another biologically important lysophospholipid, and deregulation in its metabolism has been linked to various human pathophysiological conditions. Despite its recent emergence, an exhaustive review summarizing recent advances on lyso-PSs and the biological pathways that this bioactive lysophospholipid regulates has been lacking. To address this, here, we summarize studies that led to the discovery of lyso-PS as a potent signalling biomolecule, and discuss the structure, its detection in biological systems, and the biodistribution of this lysophospholipid in various mammalian systems. Further, we describe in detail the enzymatic pathways that are involved in the biosynthesis and degradation of this lipid and the putative lyso-PS receptors reported in the literature. Finally, we discuss the various biological pathways directly regulated by lyso-PSs in mammals and prospect new questions for this still emerging biomedically important signalling lysophospholipid.
        
Title: Mapping the neuroanatomy of ABHD16A-ABHD12 & lysophosphatidylserines provides new insights into the pathophysiology of the human neurological disorder PHARC Singh S, Joshi A, Kamat SS Ref: Biochemistry, :, 2020 : PubMed
Lysophosphatidylserine (lyso-PS), a lysophospholipid derived from phosphatidylserine (PS), has emerged as a potent signaling lipid in mammalian physiology. In vivo, the metabolic serine hydrolases ABHD16A and ABHD12 are major lipases that biosynthesize and degrade lyso-PS respectively. Of biomedical relevance, deleterious mutations to ABHD12 causes accumulation of lyso-PS in the brain, and this deregulated lyso-PS metabolism leads to the human genetic neurological disorder PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract). While the roles of ABHD16A and ABHD12 in lyso-PS metabolism in the mammalian brain are well established, the anatomical and (sub)cellular localizations of both lipases, and the functional cross-talk between them towards regulating lyso-PS lipids remain under investigated. Here, using subcellular organelle fractionation, biochemical assays and immunofluorescence based high resolution microscopy, we show that the PS lipase ABHD16A is an endoplasmic reticulum (ER) localized enzyme, an organelle intricately regulating cellular PS levels. Further, leveraging immunohistochemical analysis using genetic ABHD16A and ABHD12 knockout mice as important controls, we map the anatomical distribution of both these lipases in tandem in the murine brain, and show for the first time, the distinct localization of these lipases to different regions and cells of the cerebellum. We complement the aforementioned immunohistochemical studies by quantitatively measuring lyso-PS concentrations in various brain regions using mass spectrometry, and find that the cerebellar lyso-PS levels are most affected by ABHD16A (decreased) or ABHD12 (increased) deletion. Taken together, our studies provide new insights into lyso-PS signaling in the cerebellum, the most atrophic brain region in human PHARC subjects.
        
Title: Sequence analysis and structure prediction of ABHD16A and the roles of the ABHD family members in human disease Xu J, Gu W, Ji K, Xu Z, Zhu H, Zheng W Ref: Open Biol, 8:, 2018 : PubMed
Abhydrolase domain containing 16A (ABHD16A) is a member of the alpha/beta hydrolase domain-containing (ABHD) protein family and is expressed in a variety of animal cells. Studies have shown that ABHD16A has acylglycerol lipase and phosphatidylserine lipase activities. Its gene location in the main histocompatibility complex (MHC) III gene cluster suggests that this protein may participate in the immunomodulation of the body. The results of studies investigating nearly 20 species of ABHDs reveal that the ABHD proteins are key factors in metabolic regulation and disease occurrence and development. In this paper, we summarize the related progress regarding the function of ABHD16A and other ABHD proteins. A prediction of the active sites and structural domains of ABHD16A and an analysis of the amino acid sites are included. Moreover, we analysed the amino acid sequences of the ABHD16A molecules in different species and provide an overview of the related functions and diseases associated with these proteins. The functions and diseases related to ABHD are systematically summarized and highlighted. Future research directions for studies investigating the functions and mechanisms of these proteins are also suggested. Further studies investigating the function of ABHD proteins may further confirm their positions as important determinants of lipid metabolism and related diseases.
Lysophosphatidylserines (lyso-PSs) are a class of signaling lipids that regulate immunological and neurological processes. The metabolism of lyso-PSs remains poorly understood in vivo. Recently, we determined that ABHD12 is a major brain lyso-PS lipase, implicating lyso-PSs in the neurological disease polyneuropathy, hearing loss, ataxia, retinitis pigmentosa and cataract (PHARC), which is caused by null mutations in the ABHD12 gene. Here, we couple activity-based profiling with pharmacological and genetic methods to annotate the poorly characterized enzyme ABHD16A as a phosphatidylserine (PS) lipase that generates lyso-PS in mammalian systems. We describe a small-molecule inhibitor of ABHD16A that depletes lyso-PSs from cells, including lymphoblasts derived from subjects with PHARC. In mouse macrophages, disruption of ABHD12 and ABHD16A respectively increases and decreases both lyso-PSs and lipopolysaccharide-induced cytokine production. Finally, Abhd16a(-/-) mice have decreased brain lyso-PSs, which runs counter to the elevation in lyso-PS in Abhd12(-/-) mice. Our findings illuminate an ABHD16A-ABHD12 axis that dynamically regulates lyso-PS metabolism in vivo, designating these enzymes as potential targets for treating neuroimmunological disorders.
BACKGROUND: Human lymphocyte antigen B-associated transcript 5 (BAT5, also known as ABHD16A) is a poorly characterized 63 kDa protein belonging to the alpha/beta-hydrolase domain (ABHD) containing family of metabolic serine hydrolases. Its natural substrates and biochemical properties are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Amino acid sequence comparison between seven mammalian BAT5 orthologs revealed that the overall primary structure was highly (>/=95%) conserved. Activity-based protein profiling (ABPP) confirmed successful generation of catalytically active human (h) and mouse (m) BAT5 in HEK293 cells, enabling further biochemical characterization. A sensitive fluorescent glycerol assay reported hBAT5-mediated hydrolysis of medium-chain saturated (C14ratio0), long-chain unsaturated (C18ratio1, C18ratio2, C20ratio4) monoacylglycerols (MAGs) and 15-deoxy-Delta12,14-prostaglandin J2-2-glycerol ester (15d-PGJ2-G). In contrast, hBAT5 possessed only marginal diacylglycerol (DAG), triacylglycerol (TAG), or lysophospholipase activity. The best MAG substrates were 1-linoleylglycerol (1-LG) and 15d-PGJ2-G, both exhibiting low-micromolar Km values. BAT5 had a neutral pH optimum and showed preference for the 1(3)- vs. 2-isomers of MAGs C18ratio1, C18ratio2 and C20ratio4. Inhibitor profiling revealed that beta-lactone-based lipase inhibitors were nanomolar inhibitors of hBAT5 activity (palmostatin B > tetrahydrolipstatin > ebelactone A). Moreover, the hormone-sensitive lipase inhibitor C7600 (5-methoxy-3-(4-phenoxyphenyl)-3H-[1], [3], [4]oxadiazol-2-one) was identified as a highly potent inhibitor (IC50 8.3 nM). Phenyl and benzyl substituted analogs of C7600 with increased BAT5 selectivity were synthesized and a preliminary SAR analysis was conducted to obtain initial insights into the active site dimensions. CONCLUSIONS/SIGNIFICANCE: This study provides an initial characterization of BAT5 activity, unveiling the biochemical and pharmacological properties with in vitro substrate preferences and inhibitor profiles. Utilization of glycerolipid substrates and sensitivity to lipase inhibitors suggest that BAT5 is a genuine lipase with preference for long-chain unsaturated MAGs and could in this capacity regulate glycerolipid metabolism in vivo as well. This preliminary SAR data should pave the way towards increasingly potent and BAT5-selective inhibitors.