Frey P

References (3)

Title : Obligate biotrophy features unraveled by the genomic analysis of rust fungi - Duplessis_2011_Proc.Natl.Acad.Sci.U.S.A_108_9166
Author(s) : Duplessis S , Cuomo CA , Lin YC , Aerts A , Tisserant E , Veneault-Fourrey C , Joly DL , Hacquard S , Amselem J , Cantarel BL , Chiu R , Coutinho PM , Feau N , Field M , Frey P , Gelhaye E , Goldberg J , Grabherr MG , Kodira CD , Kohler A , Kues U , Lindquist EA , Lucas SM , Mago R , Mauceli E , Morin E , Murat C , Pangilinan JL , Park R , Pearson M , Quesneville H , Rouhier N , Sakthikumar S , Salamov AA , Schmutz J , Selles B , Shapiro H , Tanguay P , Tuskan GA , Henrissat B , Van de Peer Y , Rouze P , Ellis JG , Dodds PN , Schein JE , Zhong S , Hamelin RC , Grigoriev IV , Szabo LJ , Martin F
Ref : Proc Natl Acad Sci U S A , 108 :9166 , 2011
Abstract : Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.
ESTHER : Duplessis_2011_Proc.Natl.Acad.Sci.U.S.A_108_9166
PubMedSearch : Duplessis_2011_Proc.Natl.Acad.Sci.U.S.A_108_9166
PubMedID: 21536894
Gene_locus related to this paper: pucgt-e3k840 , pucgt-e3kaq6 , pucgt-e3kw59 , pucgt-e3kz16 , pucgt-e3l9v6 , pucgt-e3l279 , pucgt-h6qt25 , mellp-f4reh4 , mellp-f4rhc8 , mellp-f4reh2 , mellp-f4r3y0 , mellp-f4rz15 , mellp-f4rz64 , mellp-f4rl14 , mellp-f4rz66 , mellp-f4s751 , mellp-f4s2g6 , pucgt-e3l1z7 , pucgt-e3l803 , pucgt-e3kst2 , pucgt-e3kst5 , mellp-f4ru03 , pucgt-e3l1z8 , pucgt-e3ktz7 , pucgt-e3jun4 , mellp-f4rl65 , mellp-f4rz16 , mellp-f4ru02 , mellp-f4sav4 , mellp-f4sav3 , mellp-f4s1j0 , mellp-f4rkp0 , mellp-f4s483 , pucgt-e3kzu5 , pucgt-h6qtq8 , mellp-f4r5l5 , pucgt-e3krw7 , pucgt-e3l7w5 , pucgt-e3k2w6 , pucgt-e3kfg2 , pucgt-kex1

Title : Search for dual function inhibitors for Alzheimer's disease: synthesis and biological activity of acetylcholinesterase inhibitors of pyridinium-type and their Abeta fibril formation inhibition capacity - Kapkova_2006_Bioorg.Med.Chem_14_472
Author(s) : Kapkova P , Alptuzun V , Frey P , Erciyas E , Holzgrabe U
Ref : Bioorganic & Medicinal Chemistry , 14 :472 , 2006
Abstract : Alzheimer's disease (AD) represents the most common neurodegenerative disorder, which is expressed through decline of mental function. Current treatment approaches include acetylcholinesterase inhibitors and NMDA-receptor partial antagonists. The most explored recent approaches that are closely related to the pathogenesis of this disease based on formally articulated amyloid hypothesis are: Abeta fibril formation inhibitors, amyloid precursor protein, and secretase inhibitors. [Scarpini, E.; Scheltens, P.; Feldman, H. Lancet Neurol.2003, 2, 539] In view of the development of new AChE inhibitors as drugs capable of reducing the symptoms of AD, the capacity of newly synthesized AChE inhibitors of pyridinium-type to inhibit the AChE was examined and compared to those of other inhibitors of this type presented earlier. [Kapkova, P.; Stiefl, N.; Surig, U.; Engels, B.; Baumann, K.; Holzgrabe, U. Arch. Pharm. Pharm. Med. Chem.2003, 336, 523; Alptuzun, V.; Kapkova, P.; Baumann, K.; Erciyas, E.; Holzgrabe, U. J. Pharm. Pharmacol.2003, 55, 1397] Furthermore, the anti-Abeta fibril formation property of AChE inhibitors of pyridinium- and bispyridinium-type was evaluated to expand their activity profile and to reveal potential additive pharmacological effects which may reinforce their therapeutic application besides their capacity of increasing acetylcholine levels. Abeta fibril formation studies were performed by means of thioflavin T fluorescence assay.
ESTHER : Kapkova_2006_Bioorg.Med.Chem_14_472
PubMedSearch : Kapkova_2006_Bioorg.Med.Chem_14_472
PubMedID: 16198581

Title : Neuropeptide alterations in the hippocampal formation and cortex of transgenic mice overexpressing beta-amyloid precursor protein (APP) with the Swedish double mutation (APP23) - Diez_2003_Neurobiol.Dis_14_579
Author(s) : Diez M , Danner S , Frey P , Sommer B , Staufenbiel M , Wiederhold KH , Hokfelt T
Ref : Neurobiol Dis , 14 :579 , 2003
Abstract : The role of neuropeptides and the significance of peptidergic mechanisms in neurodegenerative diseases are still unclear. In the periphery, nerve injury results in dramatic changes in the expression of neuropeptides. An important question regards to what extent similar changes occur, and similar mechanisms operate, after lesions and/or degeneration in the brain. The purpose of this work is, therefore, to study neuropeptides with regard to their presence and distribution in the APP23 mouse (HuAPP(751) K670M/N671L under the murine Thy-1 promoter), a model for Alzheimer's disease, or cerebral amyloidosis, using the immunohistochemical technique. In addition, tyrosine hydroxylase and acetylcholinesterase were analyzed. This study shows marked neuropeptide changes in the hippocampal formation and the ventral cortex, whereas the dorsolateral neocortex was less affected. There was a considerable variation with regard to peptide expression among animals of the same age which was related to the variation in Abeta deposition. Dystrophic and varicose fibers containing galanin, neuropeptide Y, enkephalin, and especially cholecystokinin were commonly seen in close proximity to amyloid plaques. In addition, generalized changes were observed, such as increases of enkephalin and neuropeptide Y in stratum lacunosum moleculare and of neuropeptide Y, enkephalin, and dynorphin in mossy fibers. In contrast, cholecystokinin was decreased in mossy fibers. Comparatively small differences were observed between wild-type and transgenic mice with regard to tyrosine hydroxylase (noradrenergic but also dopaminergic fibers) and acetylcholine esterase (mainly cholinergic fibers). The increase of neuropeptides in dystrophic fibers in this model may represent a response to nerve injury caused by the amyloid accumulation and may reflect attempts to counteract degeneration by initiating protective and/or regenerative processes.
ESTHER : Diez_2003_Neurobiol.Dis_14_579
PubMedSearch : Diez_2003_Neurobiol.Dis_14_579
PubMedID: 14678773