Tuskan GA

References (9)

Title : The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution - Lang_2018_Plant.J_93_515
Author(s) : Lang D , Ullrich KK , Murat F , Fuchs J , Jenkins J , Haas FB , Piednoel M , Gundlach H , Van Bel M , Meyberg R , Vives C , Morata J , Symeonidi A , Hiss M , Muchero W , Kamisugi Y , Saleh O , Blanc G , Decker EL , van Gessel N , Grimwood J , Hayes RD , Graham SW , Gunter LE , McDaniel SF , Hoernstein SNW , Larsson A , Li FW , Perroud PF , Phillips J , Ranjan P , Rokshar DS , Rothfels CJ , Schneider L , Shu S , Stevenson DW , Thummler F , Tillich M , Villarreal Aguilar JC , Widiez T , Wong GK , Wymore A , Zhang Y , Zimmer AD , Quatrano RS , Mayer KFX , Goodstein D , Casacuberta JM , Vandepoele K , Reski R , Cuming AC , Tuskan GA , Maumus F , Salse J , Schmutz J , Rensing SA
Ref : Plant J , 93 :515 , 2018
Abstract : The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.
ESTHER : Lang_2018_Plant.J_93_515
PubMedSearch : Lang_2018_Plant.J_93_515
PubMedID: 29237241
Gene_locus related to this paper: phypa-a9tc36 , phypa-a0a2k1kfe3 , phypa-a9sqk3 , phypa-a0a2k1ie71 , phypa-a0a2k1kg29 , phypa-a0a2k1iji3

Title : Characterization of DWARF14 Genes in Populus - Zheng_2016_Sci.Rep_6_21593
Author(s) : Zheng K , Wang X , Weighill DA , Guo HB , Xie M , Yang Y , Yang J , Wang S , Jacobson DA , Guo H , Muchero W , Tuskan GA , Chen JG
Ref : Sci Rep , 6 :21593 , 2016
Abstract : Strigolactones are a new class of plant hormones regulating shoot branching and symbiotic interactions with arbuscular mycorrhizal fungi. Studies of branching mutants in herbaceous plants have identified several key genes involved in strigolactone biosynthesis or signaling. The strigolactone signal is perceived by a member of the alpha/beta-fold hydrolase superfamily, known as DWARF14 (D14). However, little is known about D14 genes in the woody perennial plants. Here we report the identification of D14 homologs in the model woody plant Populus trichocarpa. We showed that there are two D14 homologs in P. trichocarpa, designated as PtD14a and PtD14b that are over 95% similar at the amino acid level. Expression analysis indicated that the transcript level of PtD14a is generally more abundant than that of PtD14b. However, only PtD14a was able to complement Arabidopsis d14 mutants, suggesting that PtD14a is the functional D14 ortholog. Amino acid alignment and structural modeling revealed substitutions of several highly conserved amino acids in the PtD14b protein including a phenylalanine near the catalytic triad of D14 proteins. This study lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.
ESTHER : Zheng_2016_Sci.Rep_6_21593
PubMedSearch : Zheng_2016_Sci.Rep_6_21593
PubMedID: 26875827

Title : The genome of Eucalyptus grandis - Myburg_2014_Nature_510_356
Author(s) : Myburg AA , Grattapaglia D , Tuskan GA , Hellsten U , Hayes RD , Grimwood J , Jenkins J , Lindquist E , Tice H , Bauer D , Goodstein DM , Dubchak I , Poliakov A , Mizrachi E , Kullan AR , Hussey SG , Pinard D , van der Merwe K , Singh P , van Jaarsveld I , Silva-Junior OB , Togawa RC , Pappas MR , Faria DA , Sansaloni CP , Petroli CD , Yang X , Ranjan P , Tschaplinski TJ , Ye CY , Li T , Sterck L , Vanneste K , Murat F , Soler M , Clemente HS , Saidi N , Cassan-Wang H , Dunand C , Hefer CA , Bornberg-Bauer E , Kersting AR , Vining K , Amarasinghe V , Ranik M , Naithani S , Elser J , Boyd AE , Liston A , Spatafora JW , Dharmwardhana P , Raja R , Sullivan C , Romanel E , Alves-Ferreira M , Kulheim C , Foley W , Carocha V , Paiva J , Kudrna D , Brommonschenkel SH , Pasquali G , Byrne M , Rigault P , Tibbits J , Spokevicius A , Jones RC , Steane DA , Vaillancourt RE , Potts BM , Joubert F , Barry K , Pappas GJ , Strauss SH , Jaiswal P , Grima-Pettenati J , Salse J , Van de Peer Y , Rokhsar DS , Schmutz J
Ref : Nature , 510 :356 , 2014
Abstract : Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.
ESTHER : Myburg_2014_Nature_510_356
PubMedSearch : Myburg_2014_Nature_510_356
PubMedID: 24919147
Gene_locus related to this paper: eucgr-a0a059d0n8 , eucgr-a0a059cm68 , eucgr-a0a059d783 , eucgr-a0a059af93 , eucgr-a0a059awi0 , eucgr-a0a059awt4 , eucgr-a0a059ar83 , eucgr-a0a059ayw5 , eucgr-a0a059az75 , eucgr-a0a059azj1 , eucgr-a0a059azq5 , eucgr-a0a059bkm2 , eucgr-a0a059bl38 , eucgr-a0a059a7m2 , eucgr-a0a059a6p6 , eucgr-a0a059a6p1 , eucgr-a0a059a5e9 , eucgr-a0a059cpq4 , eucgr-a0a059b8v5

Title : Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis - Tisserant_2013_Proc.Natl.Acad.Sci.U.S.A_110_20117
Author(s) : Tisserant E , Malbreil M , Kuo A , Kohler A , Symeonidi A , Balestrini R , Charron P , Duensing N , Frei dit Frey N , Gianinazzi-Pearson V , Gilbert LB , Handa Y , Herr JR , Hijri M , Koul R , Kawaguchi M , Krajinski F , Lammers PJ , Masclaux FG , Murat C , Morin E , Ndikumana S , Pagni M , Petitpierre D , Requena N , Rosikiewicz P , Riley R , Saito K , San Clemente H , Shapiro H , van Tuinen D , Becard G , Bonfante P , Paszkowski U , Shachar-Hill YY , Tuskan GA , Young JP , Sanders IR , Henrissat B , Rensing SA , Grigoriev IV , Corradi N , Roux C , Martin F
Ref : Proc Natl Acad Sci U S A , 110 :20117 , 2013
Abstract : The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.
ESTHER : Tisserant_2013_Proc.Natl.Acad.Sci.U.S.A_110_20117
PubMedSearch : Tisserant_2013_Proc.Natl.Acad.Sci.U.S.A_110_20117
PubMedID: 24277808
Gene_locus related to this paper: rhiid-u9u175 , rhiid-u9trg1 , rhiid-u9uh96 , rhiid-u9ttu4

Title : Reference genome sequence of the model plant Setaria - Bennetzen_2012_Nat.Biotechnol_30_555
Author(s) : Bennetzen JL , Schmutz J , Wang H , Percifield R , Hawkins J , Pontaroli AC , Estep M , Feng L , Vaughn JN , Grimwood J , Jenkins J , Barry K , Lindquist E , Hellsten U , Deshpande S , Wang X , Wu X , Mitros T , Triplett J , Yang X , Ye CY , Mauro-Herrera M , Wang L , Li P , Sharma M , Sharma R , Ronald PC , Panaud O , Kellogg EA , Brutnell TP , Doust AN , Tuskan GA , Rokhsar D , Devos KM
Ref : Nat Biotechnol , 30 :555 , 2012
Abstract : We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The approximately 400-Mb assembly covers approximately 80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).
ESTHER : Bennetzen_2012_Nat.Biotechnol_30_555
PubMedSearch : Bennetzen_2012_Nat.Biotechnol_30_555
PubMedID: 22580951
Gene_locus related to this paper: setit-k3xwe0 , setit-k3xfs7 , setit-k3yh36 , setit-k3zes3 , setit-k3zlj8 , setvi-a0a4u6wd58 , setit-a0a368qif6 , setit-a0a368sru6 , setit-a0a368q9x4 , setit-k3zri0 , setit-k3ysv0 , setit-k3xj49 , setit-k4ac30

Title : Obligate biotrophy features unraveled by the genomic analysis of rust fungi - Duplessis_2011_Proc.Natl.Acad.Sci.U.S.A_108_9166
Author(s) : Duplessis S , Cuomo CA , Lin YC , Aerts A , Tisserant E , Veneault-Fourrey C , Joly DL , Hacquard S , Amselem J , Cantarel BL , Chiu R , Coutinho PM , Feau N , Field M , Frey P , Gelhaye E , Goldberg J , Grabherr MG , Kodira CD , Kohler A , Kues U , Lindquist EA , Lucas SM , Mago R , Mauceli E , Morin E , Murat C , Pangilinan JL , Park R , Pearson M , Quesneville H , Rouhier N , Sakthikumar S , Salamov AA , Schmutz J , Selles B , Shapiro H , Tanguay P , Tuskan GA , Henrissat B , Van de Peer Y , Rouze P , Ellis JG , Dodds PN , Schein JE , Zhong S , Hamelin RC , Grigoriev IV , Szabo LJ , Martin F
Ref : Proc Natl Acad Sci U S A , 108 :9166 , 2011
Abstract : Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.
ESTHER : Duplessis_2011_Proc.Natl.Acad.Sci.U.S.A_108_9166
PubMedSearch : Duplessis_2011_Proc.Natl.Acad.Sci.U.S.A_108_9166
PubMedID: 21536894
Gene_locus related to this paper: pucgt-e3k840 , pucgt-e3kaq6 , pucgt-e3kw59 , pucgt-e3kz16 , pucgt-e3l9v6 , pucgt-e3l279 , pucgt-h6qt25 , mellp-f4reh4 , mellp-f4rhc8 , mellp-f4reh2 , mellp-f4r3y0 , mellp-f4rz15 , mellp-f4rz64 , mellp-f4rl14 , mellp-f4rz66 , mellp-f4s751 , mellp-f4s2g6 , pucgt-e3l1z7 , pucgt-e3l803 , pucgt-e3kst2 , pucgt-e3kst5 , mellp-f4ru03 , pucgt-e3l1z8 , pucgt-e3ktz7 , pucgt-e3jun4 , mellp-f4rl65 , mellp-f4rz16 , mellp-f4ru02 , mellp-f4sav4 , mellp-f4sav3 , mellp-f4s1j0 , mellp-f4rkp0 , mellp-f4s483 , pucgt-e3kzu5 , pucgt-h6qtq8 , mellp-f4r5l5 , pucgt-e3krw7 , pucgt-e3l7w5 , pucgt-e3k2w6 , pucgt-e3kfg2 , pucgt-kex1

Title : Genome sequencing and analysis of the model grass Brachypodium distachyon. -
Author(s) : Vogel JP , Garvin DF , Mockler TC , Schmutz J , Rokhsar D , Bevan MW , Barry K , Lucas S , Harmon-Smith M , Lail K , Tice H , Grimwood J , McKenzie N , Huo N , Gu YQ , Lazo GR , Anderson OD , You FM , Luo MC , Dvorak J , Wright J , Febrer M , Idziak D , Hasterok R , Lindquist E , Wang M , Fox SE , Priest HD , Filichkin SA , Givan SA , Bryant DW , Chang JH , Wu H , Wu W , Hsia AP , Schnable PS , Kalyanaraman A , Barbazuk B , Michael TP , Hazen SP , Bragg JN , Laudencia-Chingcuanco D , Weng Y , Haberer G , Spannagl M , Mayer K , Rattei T , Mitros T , Lee SJ , Rose JK , Mueller LA , York TL , Wicker T , Buchmann JP , Tanskanen J , Schulman AH , Gundlach H , Bevan M , de Oliveira AC , Maia Lda C , Belknap W , Jiang N , Lai J , Zhu L , Ma J , Sun C , Pritham E , Salse J , Murat F , Abrouk M , Bruggmann R , Messing J , Fahlgren N , Sullivan CM , Carrington JC , Chapman EJ , May GD , Zhai J , Ganssmann M , Gurazada SG , German M , Meyers BC , Green PJ , Tyler L , Wu J , Thomson J , Chen S , Scheller HV , Harholt J , Ulvskov P , Kimbrel JA , Bartley LE , Cao P , Jung KH , Sharma MK , Vega-Sanchez M , Ronald P , Dardick CD , De Bodt S , Verelst W , Inz D , Heese M , Schnittger A , Yang X , Kalluri UC , Tuskan GA , Hua Z , Vierstra RD , Cui Y , Ouyang S , Sun Q , Liu Z , Yilmaz A , Grotewold E , Sibout R , Hematy K , Mouille G , Hofte H , Michael T , Pelloux J , O'Connor D , Schnable J , Rowe S , Harmon F , Cass CL , Sedbrook JC , Byrne ME , Walsh S , Higgins J , Li P , Brutnell T , Unver T , Budak H , Belcram H , Charles M , Chalhoub B , Baxter I
Ref : Nature , 463 :763 , 2010
PubMedID: 20148030
Gene_locus related to this paper: bradi-i1grm0 , bradi-i1gx82 , bradi-i1hb80 , bradi-i1hkv6 , bradi-i1hpu6 , bradi-i1i3e4 , bradi-i1i9i0 , bradi-i1i435 , bradi-i1ix93 , bradi-i1gsk6 , bradi-i1hk44 , bradi-i1hk45 , bradi-i1hnk7 , bradi-i1hsd5 , bradi-i1huy4 , bradi-i1huy9 , bradi-i1huz0 , bradi-i1gxx9 , bradi-i1hl25 , bradi-i1hcw7 , bradi-i1hyv6 , bradi-i1hyb5 , bradi-i1hvr8 , bradi-i1hmu2 , bradi-i1hf05 , bradi-i1gry7 , bradi-i1hf06 , bradi-i1i5z8 , bradi-i1icy3 , bradi-i1j1h3 , bradi-i1h1e3 , bradi-i1hvr9 , bradi-a0a0q3r7i7 , bradi-i1i377 , bradi-i1hjg5 , bradi-i1h3i9 , bradi-i1gsg5 , bradi-a0a0q3mph9 , bradi-i1h682 , bradi-a0a0q3lc91 , bradi-i1gx49 , bradi-i1i839 , bradi-a0a2k2dsp5 , bradi-i1gsb5

Title : Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding - Ralph_2008_BMC.Genomics_9_57
Author(s) : Ralph SG , Chun HJ , Cooper D , Kirkpatrick R , Kolosova N , Gunter L , Tuskan GA , Douglas CJ , Holt RA , Jones SJ , Marra MA , Bohlmann J
Ref : BMC Genomics , 9 :57 , 2008
Abstract : BACKGROUND: The genus Populus includes poplars, aspens and cottonwoods, which will be collectively referred to as poplars hereafter unless otherwise specified. Poplars are the dominant tree species in many forest ecosystems in the Northern Hemisphere and are of substantial economic value in plantation forestry. Poplar has been established as a model system for genomics studies of growth, development, and adaptation of woody perennial plants including secondary xylem formation, dormancy, adaptation to local environments, and biotic interactions. RESULTS: As part of the poplar genome sequencing project and the development of genomic resources for poplar, we have generated a full-length (FL)-cDNA collection using the biotinylated CAP trapper method. We constructed four FLcDNA libraries using RNA from xylem, phloem and cambium, and green shoot tips and leaves from the P. trichocarpa Nisqually-1 genotype, as well as insect-attacked leaves of the P. trichocarpa x P. deltoides hybrid. Following careful selection of candidate cDNA clones, we used a combined strategy of paired end reads and primer walking to generate a set of 4,664 high-accuracy, sequence-verified FLcDNAs, which clustered into 3,990 putative unique genes. Mapping FLcDNAs to the poplar genome sequence combined with BLAST comparisons to previously predicted protein coding sequences in the poplar genome identified 39 FLcDNAs that likely localize to gaps in the current genome sequence assembly. Another 173 FLcDNAs mapped to the genome sequence but were not included among the previously predicted genes in the poplar genome. Comparative sequence analysis against Arabidopsis thaliana and other species in the non-redundant database of GenBank revealed that 11.5% of the poplar FLcDNAs display no significant sequence similarity to other plant proteins. By mapping the poplar FLcDNAs against transcriptome data previously obtained with a 15.5 K cDNA microarray, we identified 153 FLcDNA clones for genes that were differentially expressed in poplar leaves attacked by forest tent caterpillars. CONCLUSION: This study has generated a high-quality FLcDNA resource for poplar and the third largest FLcDNA collection published to date for any plant species. We successfully used the FLcDNA sequences to reassess gene prediction in the poplar genome sequence, perform comparative sequence annotation, and identify differentially expressed transcripts associated with defense against insects. The FLcDNA sequences will be essential to the ongoing curation and annotation of the poplar genome, in particular for targeting gaps in the current genome assembly and further improvement of gene predictions. The physical FLcDNA clones will serve as useful reagents for functional genomics research in areas such as analysis of gene functions in defense against insects and perennial growth. Sequences from this study have been deposited in NCBI GenBank under the accession numbers EF144175 to EF148838.
ESTHER : Ralph_2008_BMC.Genomics_9_57
PubMedSearch : Ralph_2008_BMC.Genomics_9_57
PubMedID: 18230180
Gene_locus related to this paper: poptr-a9pbm5 , poptr-a9pfp5 , poptr-a9pgl0 , poptr-a9ph43 , poptr-a9ph71 , poptr-a9pha7 , poptr-b9gnp9 , poptr-b9gyq1 , poptr-b9hxr7 , poptr-b9i9p8 , poptr-a9pfa7 , poptr-a9pch4 , poptr-a9pfg4

Title : The genome of black cottonwood, Populus trichocarpa (Torr. &\; Gray) - Tuskan_2006_Science_313_1596
Author(s) : Tuskan GA , Difazio S , Jansson S , Bohlmann J , Grigoriev I , Hellsten U , Putnam N , Ralph S , Rombauts S , Salamov A , Schein J , Sterck L , Aerts A , Bhalerao RR , Bhalerao RP , Blaudez D , Boerjan W , Brun A , Brunner A , Busov V , Campbell M , Carlson J , Chalot M , Chapman J , Chen GL , Cooper D , Coutinho PM , Couturier J , Covert S , Cronk Q , Cunningham R , Davis J , Degroeve S , Dejardin A , dePamphilis C , Detter J , Dirks B , Dubchak I , Duplessis S , Ehlting J , Ellis B , Gendler K , Goodstein D , Gribskov M , Grimwood J , Groover A , Gunter L , Hamberger B , Heinze B , Helariutta Y , Henrissat B , Holligan D , Holt R , Huang W , Islam-Faridi N , Jones S , Jones-Rhoades M , Jorgensen R , Joshi C , Kangasjarvi J , Karlsson J , Kelleher C , Kirkpatrick R , Kirst M , Kohler A , Kalluri U , Larimer F , Leebens-Mack J , Leple JC , Locascio P , Lou Y , Lucas S , Martin F , Montanini B , Napoli C , Nelson DR , Nelson C , Nieminen K , Nilsson O , Pereda V , Peter G , Philippe R , Pilate G , Poliakov A , Razumovskaya J , Richardson P , Rinaldi C , Ritland K , Rouze P , Ryaboy D , Schmutz J , Schrader J , Segerman B , Shin H , Siddiqui A , Sterky F , Terry A , Tsai CJ , Uberbacher E , Unneberg P , Vahala J , Wall K , Wessler S , Yang G , Yin T , Douglas C , Marra M , Sandberg G , Van de Peer Y , Rokhsar D
Ref : Science , 313 :1596 , 2006
Abstract : We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.
ESTHER : Tuskan_2006_Science_313_1596
PubMedSearch : Tuskan_2006_Science_313_1596
PubMedID: 16973872
Gene_locus related to this paper: burvg-a4jw31 , delas-a9c1v9 , poptr-a9pfp5 , poptr-a9ph43 , poptr-a9ph71 , poptr-a9pha7 , poptr-b9giq0 , poptr-b9gjs0 , poptr-b9gl72 , poptr-b9gmx8 , poptr-b9gnp9 , poptr-b9gny4 , poptr-b9grg2 , poptr-b9gsc2 , poptr-b9gvp3 , poptr-b9gvs3 , poptr-b9gwn9 , poptr-b9gy32 , poptr-b9gyq1 , poptr-b9gys8 , poptr-b9h0h0 , poptr-b9h4j2 , poptr-b9h6c2 , poptr-b9h6c5 , poptr-b9h6l8 , poptr-b9h8c9 , poptr-b9h301 , poptr-b9h579 , poptr-b9hbl2 , poptr-b9hbw5 , poptr-b9hcn9 , poptr-b9hee0 , poptr-b9hee2 , poptr-b9hee5 , poptr-b9hee6 , poptr-b9hef3 , poptr-b9hfa7 , poptr-b9hfd3 , poptr-b9hfi6 , poptr-b9hft8 , poptr-b9hg83 , poptr-b9hif5 , poptr-b9hll5 , poptr-b9hmd0 , poptr-b9hnv3 , poptr-b9hqr6 , poptr-b9hqr7 , poptr-b9hrv7 , poptr-b9hs66 , poptr-b9huf0 , poptr-b9hur3 , poptr-b9hux1 , poptr-b9hwp2 , poptr-b9hxr7 , poptr-b9hyk8 , poptr-b9hyx2 , poptr-b9i2q8 , poptr-b9i5b8 , poptr-b9i5j8 , poptr-b9i5j9 , poptr-b9i5k0 , poptr-b9i6b6 , poptr-b9i7b7 , poptr-b9i9p8 , poptr-b9i484 , poptr-b9i994 , poptr-b9ial3 , poptr-b9ial4 , poptr-b9ib28 , poptr-b9ibr8 , poptr-b9id97 , poptr-b9idr4 , poptr-b9iid9 , poptr-b9iip0 , poptr-b9ik80 , poptr-b9ik90 , poptr-b9il63 , poptr-b9ink7 , poptr-b9iqa0 , poptr-b9iqd5 , poptr-b9mwf1 , poptr-b9mwi8 , poptr-b9n0c6 , poptr-b9n0n1 , poptr-b9n0n4 , poptr-b9n0z5 , poptr-b9n1t8 , poptr-b9n1z3 , poptr-b9n3m7 , poptr-b9n233 , poptr-b9n236 , poptr-b9n395 , poptr-b9nd33 , poptr-b9nd34 , poptr-b9ndi6 , poptr-b9ndj5 , poptr-b9p9i8 , poptr-a9pfa7 , poptr-b9hdp2 , poptr-b9inj0 , poptr-b9n5g7 , poptr-b9i8q4 , poptr-u5g0r4 , poptr-u5gf59 , poptr-u7e1l9 , poptr-b9hj61 , poptr-b9hwd0 , poptr-u5fz17 , poptr-a0a2k2brq1 , poptr-a0a2k2b9i6 , poptr-a0a2k1x9y8 , poptr-a9pch4 , poptr-a0a2k1wwt1 , poptr-a0a2k1wv10 , poptr-a0a2k2a850 , poptr-a0a2k2asj6 , poptr-a0a2k1x6k1 , poptr-u5fv96 , poptr-a0a2k2blg2 , poptr-a0a2k1xpi3 , poptr-a0a2k1xpj0 , poptr-a0a2k2b331 , poptr-a0a2k2byl7 , poptr-b9iek5 , poptr-a9pfg4 , poptr-a0a2k1xzs5 , poptr-b9gga9 , poptr-b9guw6 , poptr-b9hff2