Peng H

References (25)

Title : Novel anti-neuroinflammatory pyranone-carbamate derivatives as selective butyrylcholinesterase inhibitors for treating Alzheimer's disease - Yu_2024_J.Enzyme.Inhib.Med.Chem_39_2313682
Author(s) : Yu C , Liu X , Ma B , Xu J , Chen Y , Dai C , Peng H , Zha D
Ref : J Enzyme Inhib Med Chem , 39 :2313682 , 2024
Abstract : Butyrylcholinesterase (BuChE) and neuroinflammation have recently emerged as promising therapeutic directions for Alzheimer's disease (AD). Herein, we synthesised 19 novel pyranone-carbamate derivatives and evaluated their activities against cholinesterases and neuroinflammation. The optimal compound 7p exhibited balanced BuChE inhibitory activity (eqBuChE IC(50) = 4.68 nM; huBuChE IC(50) = 9.12 nM) and anti-neuroinflammatory activity (NO inhibition = 28.82% at 10 microM, comparable to hydrocortisone). Enzyme kinetic and docking studies confirmed compound 7p was a mix-type BuChE inhibitor. Additionally, compound 7p displayed favourable drug-likeness properties in silico prediction, and exhibited high BBB permeability in the PAMPA-BBB assay. Compound 7p had good safety in vivo as verified by an acute toxicity assay (LD(50) > 1000 mg/kg). Most importantly, compound 7p effectively mitigated cognitive and memory impairments in the scopolamine-induced mouse model, showing comparable effects to Rivastigmine. Therefore, we envisioned that compound 7p could serve as a promising lead compound for treating AD.
ESTHER : Yu_2024_J.Enzyme.Inhib.Med.Chem_39_2313682
PubMedSearch : Yu_2024_J.Enzyme.Inhib.Med.Chem_39_2313682
PubMedID: 38362862

Title : GehB Inactivates Lipoproteins to Delay the Healing of Acute Wounds Infected with Staphylococcus aureus - Wang_2023_Curr.Microbiol_81_36
Author(s) : Wang K , Cai X , Rao Y , Liu L , Hu Z , Peng H , Wang Y , Yang Y , Rao X , Nie K , Shang W
Ref : Curr Microbiol , 81 :36 , 2023
Abstract : Staphylococcus aureus is one of the most prevalent bacteria found in acute wounds. S. aureus produces many virulence factors and extracellular enzymes that contribute to bacterial survival, dissemination, and pathogenicity. Lipase GehB is a glycerol ester hydrolase that hydrolyzes triglycerides to facilitate the evasion of S. aureus from host immune recognition. However, the role and mechanism of lipase GehB in skin acute wound healing after S. aureus infection remain unclear. In this study, we found that the gehB gene deletion mutant (USA300deltagehB) stimulated significantly higher levels of pro-inflammatory cytokines in RAW264.7 and Toll-like receptor 2 (TLR2)-transfected HEK293 cells than the wild-type USA300 strain did. Recombinant GehB-His treated lipoprotein (Lpp) reduced stimulation of TLR2-dependent TNF-alpha production by RAW264.7 macrophages. GehB delayed the skin acute wound healing in BALB/c mice infected with S. aureus, while wound healing was similar in C57BL/6 TLR2(-/-) mice infected with either wild-type USA300 or USA300deltagehB. In BALB/c mice, we also observed more bacterial survival, less leukocyte recruitment, lower IL-8 production, and adipocyte differentiation in USA300-infected skin acute wound tissues than those in USA300deltagehB-challenged ones. Our data indicated that GehB inactivates lipoproteins to shield S. aureus from innate immune killing, resulting in delayed the healing of skin acute wounds infected with S. aureus.
ESTHER : Wang_2023_Curr.Microbiol_81_36
PubMedSearch : Wang_2023_Curr.Microbiol_81_36
PubMedID: 38063939

Title : Improving the activity and thermostability of PETase from Ideonella sakaiensis through modulating its post-translational glycan modification - Deng_2023_Commun.Biol_6_39
Author(s) : Deng B , Yue Y , Yang J , Yang M , Xing Q , Peng H , Wang F , Li M , Ma L , Zhai C
Ref : Commun Biol , 6 :39 , 2023
Abstract : The large-scale preparation of Polyehylene terephthalate (PET) hydrolysing enzymes in low-cost is critical for the biodegradation of PET in industry. In the present study, we demonstrate that the post-translational glycosylation of Pichia pastoris makes it a remarkable host for the heterologous expression of PETase from Ideonella sakaiensis 201-F6 (IsPETase). Taking advantage of the abundant N- and O-linked glycosylation sites in IsPETase and the efficient post-translational modification in endoplasmic reticulum, IsPETase is heavily glycosylated during secretory expression with P. pastoris, which improves the specific activity and thermostability of the enzyme dramatically. Moreover, the specific activity of IsPETase increased further after the bulky N-linked polysaccharide chains were eliminated by Endo-beta-N-acetylglucosaminidase H (Endo H). Importantly, the partially deglycosylated IsPETase still maintained high thermostability because of the remaining mono- and oligo-saccharide residues on the protein molecules. Consequently, the partially deglycosylated IsPETase was able to be applied at 50 degreesC and depolymerized raw, untreated PET flakes completely in 2 to 3 days. This platform was also applied for the preparation of a famous variant of IsPETase, Fast-PETase, and the same result was achieved. Partially deglycosylated Fast-PETase demonstrates elevated efficiency in degrading postconsumer-PET trays under 55 degreesC than 50 degreesC, the reported optimal temperature of Fast-PETase. The present study provides a strategy to modulate thermostable IsPETase through glycosylation engineering and paves the way for promoting PET biodegradation from laboratories to factories.
ESTHER : Deng_2023_Commun.Biol_6_39
PubMedSearch : Deng_2023_Commun.Biol_6_39
PubMedID: 36639437
Gene_locus related to this paper: idesa-peth

Title : Fotagliptin monotherapy with alogliptin as an active comparator in patients with uncontrolled type 2 diabetes mellitus: a randomized, multicenter, double-blind, placebo-controlled, phase 3 trial - Xu_2023_BMC.Med_21_388
Author(s) : Xu M , Sun K , Xu W , Wang C , Yan D , Li S , Cong L , Pi Y , Song W , Sun Q , Xiao R , Peng W , Wang J , Peng H , Zhang Y , Duan P , Zhang M , Liu J , Huang Q , Li X , Bao Y , Zeng T , Wang K , Qin L , Wu C , Deng C , Huang C , Yan S , Zhang W , Li M , Sun L , Wang Y , Li H , Wang G , Pang S , Zheng X , Wang H , Wang F , Su X , Ma Y , Li Z , Xie Z , Xu N , Ni L , Zhang L , Deng X , Pan T , Dong Q , Wu X , Shen X , Zhang X , Zou Q , Jiang C , Xi J , Ma J , Sun J , Yan L
Ref : BMC Med , 21 :388 , 2023
Abstract : BACKGROUND: Dipeptidyl peptidase-4 inhibitors (DPP-4i) have become firmly established in treatment algorithms and national guidelines for improving glycemic control in type 2 diabetes mellitus (T2DM).To report the findings from a multicenter, randomized, double-blind, placebo-controlled phase 3 clinical trial, which was designed to assess the efficacy and safety of a novel DPP-4 inhibitor fotagliptin in treatment-naive patients with T2DM. METHODS: Patients with T2DM were randomized to receive fotagliptin (n = 230), alogliptin (n = 113) or placebo (n = 115) at a 2:1:1 ratio for 24 weeks of double-blind treatment period, followed by an open-label treatment period, making up a total of 52 weeks. The primary efficacy endpoint was to determine the superiority of fotagliptin over placebo in the change of HbA1c from baseline to Week 24. All serious or significant adverse events were recorded. RESULTS: After 24 weeks, mean decreases in HbA1c from baseline were -0.70% for fotagliptin, -0.72% for alogliptin and -0.26% for placebo. Estimated mean treatment differences in HbA1c were -0.44% (95% confidence interval [CI]: -0.62% to -0.27%) for fotagliptin versus placebo, and -0.46% (95% CI: -0.67% to -0.26%) for alogliptin versus placebo, and 0.02% (95%CI: -0.16% to 0.19%; upper limit of 95%CI < margin of 0.4%) for fotagliptin versus alogliptin. So fotagliptin was non-inferior to alogliptin. Compared with subjects with placebo (15.5%), significantly more patients with fotagliptin (37.0%) and alogliptin (35.5%) achieved HbA1c < 7.0% after 24 weeks of treatment. During the whole 52 weeks of treatment, the overall incidence of hypoglycemia was low for both of the fotagliptin and alogliptin groups (1.0% each). No drug-related serious adverse events were observed in any treatment group. CONCLUSIONS: In summary, the study demonstrated improvement in glycemic control and a favorable safety profile for fotagliptin in treatment-naive patients with T2DM. TRIAL REGISTRATION: NCT05782192.
ESTHER : Xu_2023_BMC.Med_21_388
PubMedSearch : Xu_2023_BMC.Med_21_388
PubMedID: 37814306

Title : Endocannabinoid dysfunction in neurological disease: neuro-ocular DAGLA-related syndrome (NODRS) - Bainbridge_2022_Brain__
Author(s) : Bainbridge MN , Mazumder A , Ogasawara D , Abou Jamra R , Bernard G , Bertini E , Burglen L , Cope H , Crawford A , Derksen A , Dure L , Gantz E , Koch-Hogrebe M , Hurst ACE , Mahida S , Marshall P , Micalizzi A , Novelli A , Peng H , Rodriguez D , Robbins SL , Rutledge SL , Scalise R , Schliesske S , Shashi V , Srivastava S , Thiffault I , Topol S , Qebibo L , Wieczorek D , Cravatt B , Haricharan S , Torkamani A , Friedman J
Ref : Brain , : , 2022
Abstract : The endocannabinoid system is a highly conserved and ubiquitous signaling pathway with broad ranging effects. Despite critical pathway functions, gene variants have not previously been conclusively linked to human disease. We identified nine children from eight families with heterozygous, de novo truncating variants in the last exon of DAGLA with a neuro-ocular phenotype characterized by developmental delay, ataxia, and complex oculomotor abnormality. All children displayed paroxysms of nystagmus or eye deviation accompanied by compensatory head posture and worsened incoordination most frequently after waking. RNAseq showed clear expression of the truncated transcript and no differences were found between mutant and wild type DAGLA activity. Immunofluorescence staining of patient-derived fibroblasts and HEK cells expressing the mutant protein showed distinct perinuclear aggregation not detected in control samples. This report establishes truncating variants in the last DAGLA exon as the cause of a unique pediatric syndrome. Because enzymatic activity was preserved, the observed mis-localization of the truncated protein may account for the observed phenotype. Potential mechanisms include DAGLA haploinsufficiency at the plasma membrane or dominant negative effect. To our knowledge, this is the first report directly linking an endocannabinoid system component with human genetic disease and sets the stage for potential future therapeutic avenues.
ESTHER : Bainbridge_2022_Brain__
PubMedSearch : Bainbridge_2022_Brain__
PubMedID: 35737950
Gene_locus related to this paper: human-DAGLA

Title : A symbiotic gut bacterium enhances Aedes albopictus resistance to insecticide - Wang_2022_PLoS.Negl.Trop.Dis_16_e0010208
Author(s) : Wang H , Liu H , Peng H , Wang Y , Zhang C , Guo X , Liu L , Lv W , Cheng P , Gong M
Ref : PLoS Negl Trop Dis , 16 :e0010208 , 2022
Abstract : BACKGROUND: The increasing insecticide resistance of Aedes albopictus puts many countries in Asia and Africa, including China, at great risk of a mosquito-borne virus epidemic. To date, a growing number of researches have focused on the relationship between intestinal symbiotic bacteria and their hosts' resistance to insecticides. This provides a novel aspect to the study of resistant mechanisms. METHODS/FINDINGS: This study reveals significant composition and dynamic changes in the intestinal symbiotic bacteria of Ae. albopictus between the resistant and susceptible strains based on full-length sequencing technology. The relative abundance of Serratia oryzae was significantly higher in the resistance strain than in the susceptible strains; also, the relative abundance of S. oryzae was significantly higher in deltamethrin-induced Ae. albopictus than in their counterpart. These suggested that S. oryzae may be involved in the development of insecticide resistance in Ae. albopictus. To explore the insecticide resistance mechanism, adult mosquitoes were fed with GFP-tagged S. oryzae, which resulted in stable bacterial enrichment in the mosquito gut without affecting the normal physiology, longevity, oviposition, and hatching rates of the host. The resistance measurements were made based on bioassays as per the WHO guidelines. The results showed that the survival rate of S. oryzae-enriched Ae. albopictus was significantly higher than the untreated mosquitoes, indicating the enhanced resistance of S. oryzae-enriched Ae. albopictus. Also, the activities of three metabolic detoxification enzymes in S. oryzae-enriched mosquitoes were increased to varying degrees. Meanwhile, the activity of extracellular enzymes released by S. oryzae was measured, but only carboxylesterase activity was detected. HPLC and UHPLC were respectively used to measure deltamethrin residue concentration and metabolite qualitative analysis, showing that the deltamethrin degradation efficiency of S. oryzae was positively correlated with time and bacterial amount. Deltamethrin was broken down into 1-Oleoyl-2-hydroxy-sn-glycero-3-PE and 2',2'-Dibromo-2'-deoxyguanosine. Transcriptome analysis revealed that 9 cytochrome P450s, 8 GSTs and 7 CarEs genes were significantly upregulated. CONCLUSIONS: S. oryzae can be accumulated into adult Ae. albopictus by artificial feeding, which enhances deltamethrin resistance by inducing the metabolic detoxification genes and autocrine metabolic enzymes. S. oryzae is vertically transmitted in Ae. albopictus population. Importantly, S. oryzae can degrade deltamethrin in vitro, and use deltamethrin as the sole carbon source for their growths. Therefore, in the future, S. oryzae may also be commercially used to break down the residual insecticides in the farmland and lakes to protect the environment.
ESTHER : Wang_2022_PLoS.Negl.Trop.Dis_16_e0010208
PubMedSearch : Wang_2022_PLoS.Negl.Trop.Dis_16_e0010208
PubMedID: 35245311

Title : Defining the Chemical Additives Driving In Vitro Toxicities of Plastics - Chen_2022_Environ.Sci.Technol__
Author(s) : Chen W , Gong Y , McKie M , Almuhtaram H , Sun J , Barrett H , Yang D , Wu M , Andrews RC , Peng H
Ref : Environ Sci Technol , : , 2022
Abstract : Increases in the global use of plastics have caused concerns regarding potential adverse effects on human health. Plastic products contain hundreds of potentially toxic chemical additives, yet the exact chemicals which drive toxicity currently remain unknown. In this study, we employed nontargeted analysis and in vitro bioassays to identify the toxicity drivers in plastics. A total of 56 chemical additives were tentatively identified in five commonly used plastic polymer pellets (i.e., PP, LDPE, HDPE, PET, and PVC) by employing suspect screening and nontargeted analysis. Phthalates and organophosphates were found to be dominant in PVC pellets. Triphenyl phosphate and 2-ethylhexyl diphenyl phosphate accounted for a high amount (53.6%) of the inhibition effect of PVC pellet extract on human carboxylesterase 1 (hCES1) activity. Inspired by the high abundances of chemical additives in PVC pellets, six different end-user PVC-based products including three widely used PVC water pipes were further examined. Among them, extracts of PVC pipe exerted the strongest PPARgamma activity and cell viability suppression. Organotins were identified as the primary drivers to these in vitro toxicities induced by the PVC pipe extracts. This study clearly delineates specific chemical additives responsible for hCES1 inhibition, PPARgamma activity, and cell viability suppression associated with plastic.
ESTHER : Chen_2022_Environ.Sci.Technol__
PubMedSearch : Chen_2022_Environ.Sci.Technol__
PubMedID: 36173153

Title : Analysis of transcript-wide profile regulated by microsatellite instability of colorectal cancer - Xu_2022_Ann.Transl.Med_10_169
Author(s) : Xu Y , Wang X , Chu Y , Li J , Wang W , Hu X , Zhou F , Zhang H , Zhou L , Kuai R , Jin Y , Yang D , Peng H
Ref : Ann Transl Med , 10 :169 , 2022
Abstract : BACKGROUND: Microsatellite instability-high (MSI-H) is a form of genomic instability present in 15% of colorectal cancer (CRC) cases. Several differential gene analyses have been conducted on CRC; however, none have specifically explored the differentially expressed genes in MSI-H CRC. Research on the different gene expressions between MSI-H CRC and microsatellite stable (MSS) CRC, and their different patterns of metastasis will provide invaluable insights for diagnosis, prognosis, and treatment. METHODS: In this study, the differential expression of 46,602 genes were analyzed across 613 different tissue samples from The Cancer Genome Atlas (TCGA)-colon adenocarcinoma (COAD) and TCGA-rectum adenocarcinoma (READ) as part of a gene association analysis. R package TCGAbiolinks (version 2.18.0) was used to download the data set, and DESeq2 (version 1.30.1) was used for the differential gene analysis. The resulting genes were then analyzed for shared pathways with R package clusterProfiler (version 3.0.4). RESULTS: A total of 237 significantly differentially expressed genes (P(adj)<0.05) were found between MSI-H and MSS CRC. Differentially expressed genes include insulin like growth factor 2 (IGF2) and fibroblast growth factor 3 (FGF3), and the enriched pathways mostly involve hearing, digestive regulation, and neurogenesis.463 differentially expressed genes were found between metastatic and non-metastatic CRC. Notably differentially expressed genes in metastatic CRC include DEAD-box helicase 53 (DDX53) and adiponectin, C1Q and collagen domain containing (ADIPOQ), and enriched pathways include the immune system, cell adhesion, and cell signaling. For MSI-H CRC, a total of 34 genes were significantly differently expressed between metastatic and non-metastatic CRC. These include notum, palmitoleoyl-protein carboxylesterase (NOTUM), serpin family B member 2 (SERPINB2), and several keratin (KRT) genes, and the pathway analysis showed the major enrichment of the hormonal and secretion and regulation pathways. Of the differentially expressed genes in metastatic CRC, 25 were immunity related and include fatty acid binding protein 4 (FABP4), and the pathway analysis showed the enrichment of humoral immunity and lymphocyte regulation. CONCLUSIONS: Of the biologically plausible differentially expressed genes, the most notable were NOTUM, KRT6A, KRT14, SERPINB2, and serum amyloid A1 (SAA1). NOTUM, KRT6A, and KRT14 are active in the Wnt pathway. All five are also involved in various inflammation pathways.
ESTHER : Xu_2022_Ann.Transl.Med_10_169
PubMedSearch : Xu_2022_Ann.Transl.Med_10_169
PubMedID: 35280417

Title : A Roadmap to the Structure-Related Metabolism Pathways of Per- and Polyfluoroalkyl Substances in the Early Life Stages of Zebrafish (Danio rerio) - Han_2021_Environ.Health.Perspect_129_77004
Author(s) : Han J , Gu W , Barrett H , Yang D , Tang S , Sun J , Liu J , Krause HM , Houck KA , Peng H
Ref : Environmental Health Perspectives , 129 :77004 , 2021
Abstract : BACKGROUND: Thousands of per- and polyfluoroalkyl substances (PFAS) with diverse structures have been detected in the ambient environment. Apart from a few well-studied PFAS, the structure-related toxicokinetics of a broader set of PFAS remain unclear. OBJECTIVES: To understand the toxicokinetics of PFAS, we attempted to characterize the metabolism pathways of 74 structurally diverse PFAS samples from the U.S. Environmental Protection Agency's PFAS screening library. METHODS: Using the early life stages of zebrafish (Danio rerio) as a model, we determined the bioconcentration factors and phenotypic toxicities of 74 PFAS. Then, we applied high-resolution mass spectrometry-based nontargeted analysis to identify metabolites of PFAS in zebrafish larvae after 5 d of exposure by incorporating retention time and mass spectra. In vitro enzymatic activity experiments with human recombinant liver carboxylesterase (hCES1) were employed to validate the structure-related hydrolysis of 11 selected PFAS. RESULTS: Our findings identified five structural categories of PFAS prone to metabolism. The metabolism pathways of PFAS were highly related to their structures as exemplified by fluorotelomer alcohols that the predominance of beta-oxidation or taurine conjugation pathways were primarily determined by the number of hydrocarbons. Hydrolysis was identified as a major metabolism pathway for diverse PFAS, and perfluoroalkyl carboxamides showed the highest in vivo hydrolysis rates, followed by carboxyesters and sulfonamides. The hydrolysis of PFAS was verified with recombinant hCES1, with strong substrate preferences toward perfluoroalkyl carboxamides. CONCLUSIONS: We suggest that the roadmap of the structure-related metabolism pathways of PFAS established in this study would provide a starting point to inform the potential health risks of other PFAS.
ESTHER : Han_2021_Environ.Health.Perspect_129_77004
PubMedSearch : Han_2021_Environ.Health.Perspect_129_77004
PubMedID: 34288731

Title : A Novel Egr-1-Agrin Pathway and Potential Implications for Regulation of Synaptic Physiology and Homeostasis at the Neuromuscular Junction - MacDonald_2017_Front.Aging.Neurosci_9_258
Author(s) : MacDonald R , Barbat-Artigas S , Cho C , Peng H , Shang J , Moustaine A , Carbonetto S , Robitaille R , Chalifour LE , Paudel H
Ref : Front Aging Neurosci , 9 :258 , 2017
Abstract : Synaptic transmission requires intricate coordination of the components involved in processing of incoming signals, formation and stabilization of synaptic machinery, neurotransmission and in all related signaling pathways. Changes to any of these components cause synaptic imbalance and disruption of neuronal circuitry. Extensive studies at the neuromuscular junction (NMJ) have greatly aided in the current understanding of synapses and served to elucidate the underlying physiology as well as associated adaptive and homeostatic processes. The heparan sulfate proteoglycan agrin is a vital component of the NMJ, mediating synaptic formation and maintenance in both brain and muscle, but very little is known about direct control of its expression. Here, we investigated the relationship between agrin and transcription factor early growth response-1 (Egr-1), as Egr-1 regulates the expression of many genes involved in synaptic homeostasis and plasticity. Using chromatin immunoprecipitation (ChIP), cell culture with cell lines derived from brain and muscle, and animal models, we show that Egr-1 binds to the AGRN gene locus and suppresses its expression. When compared with wild type (WT), mice deficient in Egr-1 (Egr-1-/-) display a marked increase in AGRN mRNA and agrin full-length and cleavage fragment protein levels, including the 22 kDa, C-terminal fragment in brain and muscle tissue homogenate. Because agrin is a crucial component of the NMJ, we explored possible physiological implications of the Egr-1-agrin relationship. In the diaphragm, Egr-1-/- mice display increased NMJ motor endplate density, individual area and area of innervation. In addition to increased density, soleus NMJs also display an increase in fragmented and faint endplates in Egr-1-/- vs. WT mice. Moreover, the soleus NMJ electrophysiology of Egr-1-/- mice revealed increased quantal content and motor testing showed decreased movement and limb muscle strength compared with WT. This study provides evidence for the potential involvement of a novel Egr-1-agrin pathway in synaptic homeostatic and compensatory mechanisms at the NMJ. Synaptic homeostasis is greatly affected by the process of aging. These and other data suggest that changes in Egr-1 expression may directly or indirectly promote age-related pathologies.
ESTHER : MacDonald_2017_Front.Aging.Neurosci_9_258
PubMedSearch : MacDonald_2017_Front.Aging.Neurosci_9_258
PubMedID: 28824419

Title : Monoclonal antibodies to human butyrylcholinesterase reactive with butyrylcholinesterase in animal plasma - Peng_2016_Chem.Biol.Interact_243_82
Author(s) : Peng H , Brimijoin S , Hrabovska A , Krejci E , Blake TA , Johnson RC , Masson P , Lockridge O
Ref : Chemico-Biological Interactions , 243 :82 , 2016
Abstract : Five mouse anti-human butyrylcholinesterase (BChE) monoclonal antibodies bind tightly to native human BChE with nanomolar dissociation constants. Pairing analysis in the Octet system identified the monoclonal antibodies that bind to overlapping and independent epitopes on human BChE. The nucleotide and amino acid sequences of 4 monoclonal antibodies are deposited in GenBank. Our goal was to determine which of the 5 monoclonal antibodies recognize BChE in the plasma of animals. Binding of monoclonal antibodies 11D8, B2 18-5, B2 12-1, mAb2 and 3E8 to BChE in animal plasma was measured using antibody immobilized on Pansorbin cells and on Dynabeads Protein G. A third method visualized binding by the shift of BChE activity bands on nondenaturing gels stained for BChE activity. Gels were counterstained for carboxylesterase activity. The three methods agreed that B2 18-5 and mAb2 have broad species specificity, but the other monoclonal antibodies interacted only with human BChE, the exception being 3E8, which also bound chicken BChE. B2 18-5 and mAb2 recognized BChE in human, rhesus monkey, horse, cat, and tiger plasma. A weak response was found with rabbit BChE. Monoclonal mAb2, but not B2 18-5, bound pig and bovine BChE. Gels stained for carboxylesterase activity confirmed that plasma from humans, monkey, pig, chicken, and cow does not contain carboxylesterase, but plasma from horse, cat, tiger, rabbit, guinea pig, mouse, and rat has carboxylesterase. Rabbit plasma carboxylesterase hydrolyzes butyrylthiocholine. In conclusion monoclonal antibodies B2 18-5 and mAb2 can be used to immuno extract BChE from the plasma of humans, monkey and other animals.
ESTHER : Peng_2016_Chem.Biol.Interact_243_82
PubMedSearch : Peng_2016_Chem.Biol.Interact_243_82
PubMedID: 26585590

Title : Origin of polyproline-rich peptides in human butyrylcholinesterase tetramers - Peng_2016_Chem.Biol.Interact_259_63
Author(s) : Peng H , Schopfer LM , Lockridge O
Ref : Chemico-Biological Interactions , 259 :63 , 2016
Abstract : The human butyrylcholinesterase (HuBChE) tetramer is composed of 4 identical subunits and a noncovalently bound polyproline-rich peptide. In a previous report we identified lamellipodin as the source of the polyproline-rich peptides in HuBChE tetramers purified from plasma. Our current goal was to identify proteins in addition to lamellipodin that donate polyproline-rich peptides to plasma HuBChE tetramers. Peptides were released from 1 mg of pure plasma-derived HuBChE tetramers by boiling. Mass spectrometry identified 74 polyproline-rich peptides. MALDI-TOF mass spectra and spectral counting of the LC-MS/MS data supported the conclusion that lamellipodin accounted for 70% of the polyproline-rich peptides. Additional precursor proteins were matched through BLASTp searches, suggesting but not proving, that 20 proteins including UDP-N-acetyl glucosamine transferase ALG13 homolog, leiomodin 2, and zinc finger homeobox protein 2 are sources of polyproline-rich peptides found in HuBChE tetramers. Eighteen polyproline-rich peptides had no match in the human protein database. In conclusion, HuBChE assembles into tetramers through interaction of its C-terminal domain with polyproline peptides derived from a variety of proteins.
ESTHER : Peng_2016_Chem.Biol.Interact_259_63
PubMedSearch : Peng_2016_Chem.Biol.Interact_259_63
PubMedID: 26876904

Title : Monoclonal Antibodies That Recognize Various Folding States of Pure Human Butyrylcholinesterase Can Immunopurify Butyrylcholinesterase from Human Plasma Stored at Elevated Temperatures - Peng_2016_ACS.Omega_1_1182
Author(s) : Peng H , Blake TA , Johnson RC , Dafferner AJ , Brimijoin S , Lockridge O
Ref : ACS Omega , 1 :1182 , 2016
Abstract : Human plasma to be analyzed for exposure to cholinesterase inhibitors is stored at 4 degrees C or lower to prevent denaturation of human butyrylcholinesterase (HuBChE), the biomarker of exposure. Currently published protocols immunopurify HuBChE using antibodies that bind native HuBChE before analysis by mass spectrometry. It is anticipated that the plasma collected from human casualties may be stored nonideally at elevated temperatures of up to 45 degrees C for days or maybe weeks. At 45 degrees C, the plasma loses 50% of its HuBChE activity in 8 days and 95% in 40 days. Our goal was to identify a set of monoclonal antibodies that could be used to immunopurify HuBChE from plasma stored at 45 degrees C. The folding states of pure human HuBChE stored at 4 and 45 degrees C and boiled at 100 degrees C were visualized on nondenaturing gels stained with Coomassie blue. Fully active pure HuBChE tetramers had a single band, but pure HuBChE stored at 45 degrees C had four bands, representing native, partly unfolded, aggregated, and completely denatured, boiled tetramers. The previously described monoclonal B2 18-5 captured native, partly unfolded, and aggregated HuBChE tetramers, whereas a new monoclonal, C191 developed in our laboratory, was found to selectively capture completely denatured, boiled HuBChE. The highest quantity of HuBChE protein was extracted from 45 degrees C heat-denatured human plasma when HuBChE was immunopurified with a combination of monoclonals B2 18-5 and C191. Using a mixture of these two antibodies in future emergency response assays may increase the capability to confirm exposure to cholinesterase inhibitors.
ESTHER : Peng_2016_ACS.Omega_1_1182
PubMedSearch : Peng_2016_ACS.Omega_1_1182
PubMedID: 28058292

Title : Puerarin ameliorates cognitive deficits in streptozotocin-induced diabetic rats - Liu_2016_Metab.Brain.Dis_31_417
Author(s) : Liu X , Mo Y , Gong J , Li Z , Peng H , Chen J , Wang Q , Ke Z , Xie J
Ref : Metabolic Brain Disease , 31 :417 , 2016
Abstract : Previous research has indicated that Diabetes is a high risk of learning and memory deficits. Puerarin, an isoflavonoid extracted from Kudzu roots, has been reported to possess antioxidant, anti-inflammatory, anti-apoptotic and anti-diabetic properties which are useful in the treatment of various diseases. Recently, Puerarin was found to have the effects on learning and memory performances in humans and animal models. However, up to now, there is no detailed evidence on the effect of Puerarin on diabetes-associated cognitive decline (DACD). In this study, we designed to assess the effects of Puerarin on diabetes-associated cognitive decline (DACD) using a streptozotocin (STZ)-injected rat model and exploring its potential mechanism. Diabetic rats were treated with Puerarin (100 mg/kg per d) for 7 days. The learning and memory function was evaluated by morris water maze test. The acetylcholinesterase (AChE), choline acetylase (ChAT), oxidative indicators [malondialdehyde (MDA) and superoxide dismutase (SOD)] and inflammatory cytokine (TNF-a, IL-1beta and IL-6) were measured in hippocampus by using corresponding commercial kits. mRNA and Protein levels of Bcl-2 were analyzed by RT-PCR and Westernblot. The results showed that supplementation of Puerarin improved the learning and memory performances compared with the STZ group by the morris water maze test. In addition, Puerarin supplement significantly prevented AChE and MDA activities, increased ChAT and SOD activities, and alleviated the protein level of TNF-alpha, IL-1beta and IL-6 in the hippocampus compared with the STZ group. Moreover, the pretreatment with Puerarin also significantly increased the Bcl-2 expression. It is concluded that Puerarin possesses neuroprotection to ameliorate cognitive deficits in streptozotocin-induced diabetic rats by anti-inflammatory, antioxidant and antiapototic effects.
ESTHER : Liu_2016_Metab.Brain.Dis_31_417
PubMedSearch : Liu_2016_Metab.Brain.Dis_31_417
PubMedID: 26686502

Title : Mutations in Acetylcholinesterase2 (ace2) increase the insensitivity of acetylcholinesterase to fosthiazate in the root-knot nematode Meloidogyne incognita - Huang_2016_Sci.Rep_6_38102
Author(s) : Huang WK , Wu QS , Peng H , Kong LA , Liu SM , Yin HQ , Cui RQ , Zhan LP , Cui JK , Peng DL
Ref : Sci Rep , 6 :38102 , 2016
Abstract : The root-knot nematode Meloidogyne incognita causes severe damage to continuously cropping vegetables. The control of this nematode relies heavily on organophosphate nematicides in China. Here, we described resistance to the organophosphate nematicide fosthiazate in a greenhouse-collected resistant population (RP) and a laboratory susceptible population (SP) of M. incognita. Fosthiazate was 2.74-fold less toxic to nematodes from RP than that from SP. Quantitative real-time PCR revealed that the acetylcholinesterase2 (ace2) transcription level in the RP was significantly higher than that in the SP. Eighteen nonsynonymous amino acid differences in ace2 were observed between the cDNA fragments of the RP and SP. The acetylcholinesterase (AChE) protein activity in the RP was significantly reduced compared with that in the SP. After knocking down the ace2 gene, the ace2 transcription level was significantly decreased, but no negative impact on the infection of juveniles was observed. The 50% lethal concentration of the RNAi RP population decreased 40%, but the inhibition rate of fosthiazate against AChE activity was significantly increased in RP population. Thus, the increased fosthiazate insensitivity in the M. incognita resistant population was strongly associated with mutations in ace2. These results provide valuable insights into the resistance mechanism of root-knot nematode to organophosphate nematicides.
ESTHER : Huang_2016_Sci.Rep_6_38102
PubMedSearch : Huang_2016_Sci.Rep_6_38102
PubMedID: 27897265
Gene_locus related to this paper: melin-ACHE1 , melin-ACHE2

Title : Comparison of 5 monoclonal antibodies for immunopurification of human butyrylcholinesterase on Dynabeads: K values, binding pairs, and amino acid sequences - Peng_2015_Chem.Biol.Interact_240_336
Author(s) : Peng H , Brimijoin S , Hrabovska A , Targosova K , Krejci E , Blake TA , Johnson RC , Masson P , Lockridge O
Ref : Chemico-Biological Interactions , 240 :336 , 2015
Abstract : Human butyrylcholinesterase (HuBChE) is a stoichiometric bioscavenger of nerve agents and organophosphorus pesticides. Mass spectrometry methods detect stable nerve agent adducts on the active site serine of HuBChE. The first step in sample preparation is immunopurification of HuBChE from plasma. Our goal was to identify monoclonal antibodies that could be used to immunopurify HuBChE on Dynabeads Protein G. Mouse anti-HuBChE monoclonal antibodies were obtained in the form of ascites fluid, dead hybridoma cells stored frozen at -80 degrees C for 30 years, or recently frozen hybridoma cells. RNA from 4 hybridoma cell lines was amplified by PCR for determination of their nucleotide and amino acid sequences. Full-length light and heavy chains were expressed, and the antibodies purified from culture medium. A fifth monoclonal was purchased. The 5 monoclonal antibodies were compared for ability to capture HuBChE from human plasma on Dynabeads Protein G. In addition, they were evaluated for binding affinity by Biacore and ELISA. Epitope mapping by pairing analysis was performed on the Octet Red96 instrument. The 5 monoclonal antibodies, B2 12-1, B2 18-5, 3E8, mAb2, and 11D8, had similar KD values of 10-9 M for HuBChE. Monoclonal B2 18-5 outperformed the others in the Dynabeads Protein G assay where it captured 97% of the HuBChE in 0.5 ml plasma. Pairing analysis showed that 3E8 and B2 12-1 share the same epitope, 11D8 and B2 18-5 share the same epitope, but mAb2 and B2 12-1 or mAb2 and 3E8 bind to different epitopes on HuBChE. B2 18-5 was selected for establishment of a stable CHO cell line for production of mouse anti-HuBChE monoclonal.
ESTHER : Peng_2015_Chem.Biol.Interact_240_336
PubMedSearch : Peng_2015_Chem.Biol.Interact_240_336
PubMedID: 26343001

Title : Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis - Shen_2015_Atherosclerosis_239_557
Author(s) : Shen L , Peng H , Peng R , Fan Q , Zhao S , Xu D , Morisseau C , Chiamvimonvat N , Hammock BD
Ref : Atherosclerosis , 239 :557 , 2015
Abstract : Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease.
ESTHER : Shen_2015_Atherosclerosis_239_557
PubMedSearch : Shen_2015_Atherosclerosis_239_557
PubMedID: 25733327

Title : Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution - Chen_2015_Proc.Natl.Acad.Sci.U.S.A_112_E5907
Author(s) : Chen XG , Jiang X , Gu J , Xu M , Wu Y , Deng Y , Zhang C , Bonizzoni M , Dermauw W , Vontas J , Armbruster P , Huang X , Yang Y , Zhang H , He W , Peng H , Liu Y , Wu K , Chen J , Lirakis M , Topalis P , Van Leeuwen T , Hall AB , Thorpe C , Mueller RL , Sun C , Waterhouse RM , Yan G , Tu ZJ , Fang X , James AA
Ref : Proc Natl Acad Sci U S A , 112 :E5907 , 2015
Abstract : The Asian tiger mosquito, Aedes albopictus, is a highly successful invasive species that transmits a number of human viral diseases, including dengue and Chikungunya fevers. This species has a large genome with significant population-based size variation. The complete genome sequence was determined for the Foshan strain, an established laboratory colony derived from wild mosquitoes from southeastern China, a region within the historical range of the origin of the species. The genome comprises 1,967 Mb, the largest mosquito genome sequenced to date, and its size results principally from an abundance of repetitive DNA classes. In addition, expansions of the numbers of members in gene families involved in insecticide-resistance mechanisms, diapause, sex determination, immunity, and olfaction also contribute to the larger size. Portions of integrated flavivirus-like genomes support a shared evolutionary history of association of these viruses with their vector. The large genome repertory may contribute to the adaptability and success of Ae. albopictus as an invasive species.
ESTHER : Chen_2015_Proc.Natl.Acad.Sci.U.S.A_112_E5907
PubMedSearch : Chen_2015_Proc.Natl.Acad.Sci.U.S.A_112_E5907
PubMedID: 26483478
Gene_locus related to this paper: aedae-q177c7 , aedal-a0a182gwe3 , aedal-a0a182gwt8 , aedal-a0a023eq67

Title : A novel esterase from a marine metagenomic library exhibiting salt tolerance ability - Fang_2014_J.Microbiol.Biotechnol_24_771
Author(s) : Fang Z , Li J , Wang Q , Fang W , Peng H , Zhang X , Xiao Y
Ref : J Microbiol Biotechnol , 24 :771 , 2014
Abstract : A putative lipolytic enzyme gene, named as est9x, was obtained from a marine microbial metagenome of the South China Sea. Sequence analysis showed that Est9X shares lower than 27% sequence identities with the characterized lipolytic enzymes, but possesses a catalytic triad highly conserved in lipolytic enzymes of the alpha/beta hydrolase superfamily. By phylogenetic tree construction, Est9X was grouped into a new lipase/esterase family. To understand Est9X protein in depth, it was recombinantly expressed, purified, and biochemically characterized. Within potential hydrolytic activities, only lipase/esterase activity was detected for Est9X, confirming its identity as a lipolytic enzyme. When using p-nitrophenol esters with varying lengths of fatty acid as substrates, Est9X exhibited the highest activity to the C2 substrate, indicating it is an esterase. The optimal activity of Est9X occurred at a temperature of 65 degrees C, and Est9X was pretty stable below the optimum temperature. Distinguished from other salttolerant esterases, Est9X's activity was tolerant to and even promoted by as high as 4 M NaCl. Our results imply that Est9X is a unique esterase and could be a potential candidate for industrial application under extreme conditions.
ESTHER : Fang_2014_J.Microbiol.Biotechnol_24_771
PubMedSearch : Fang_2014_J.Microbiol.Biotechnol_24_771
PubMedID: 24633233
Gene_locus related to this paper: 9bact-j9vdv8

Title : Transcription of the human microsomal epoxide hydrolase gene (EPHX1) is regulated by an HNF-4alpha\/CAR\/RXR\/PSF complex - Peng_2013_Biochim.Biophys.Acta_1829_1000
Author(s) : Peng H , Zhu QS , Zhong S , Levy D
Ref : Biochimica & Biophysica Acta , 1829 :1000 , 2013
Abstract : Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes where they are involved in cholesterol excretion and metabolism, lipid digestion and regulating numerous signaling pathways. Previous studies have demonstrated the critical role of GATA-4 and a C/EBPalpha-NF/Y complex in the regulation of the mEH gene (EPHX1). In this study we show that HNF-4alpha and CAR/RXR also bind to the proximal promoter region and regulate EPHX1 expression. Bile acids, which inhibit the expression of HNF-4alpha also decrease the expression of EPHX1. Studies also established that the binding of HNF-4alpha was essential for the activation of EPHX1 activity by CAR suggesting the formation of a complex between these adjacent factors. The nature of this regulatory complex was further explored using a biotinylated oligonucleotide of this region in conjunction with BioMag beads and mass spectrometric analysis which demonstrated the presence of an additional inhibitory factor (PSF), confirmed by co-immunoprecipitation and ChIP analyses, which interacted with DNA-bound CAR/RXR/HNF-4alpha forming a 4-component regulatory complex.
ESTHER : Peng_2013_Biochim.Biophys.Acta_1829_1000
PubMedSearch : Peng_2013_Biochim.Biophys.Acta_1829_1000
PubMedID: 23714182

Title : Astrocyte polarization and wound healing in culture: studying cell adhesion molecules - Peng_2012_Methods.Mol.Biol_814_177
Author(s) : Peng H , Carbonetto S
Ref : Methods Mol Biol , 814 :177 , 2012
Abstract : Astrocytes are highly polarized cells. This is manifest not only during development and in the adult brain, but also following injury. In response to a wound, astrocytes extend processes that participate in formation of a glial scar, which walls off lesions in the brain or spinal cord. Similarly, astrocytes in culture polarize dramatically and extend processes towards a scrape wound. This simple assay has allowed much progress in understanding the cellular events and molecular pathways in astrocyte polarization (1). Cell adhesion is essential for the early response to the wound, both with respect to process extension and cell polarization. This is evident in the involvement of members of the integrin family of cell adhesion molecules at the leading edge of the wounded astrocyte. Understanding the cellular and molecular bases of these events is likely relevant to astrocyte function during development (radial glia) as well as in wound healing.
ESTHER : Peng_2012_Methods.Mol.Biol_814_177
PubMedSearch : Peng_2012_Methods.Mol.Biol_814_177
PubMedID: 22144308

Title : Bioactive alkaloids from the plant endophytic fungus Aspergillus terreus - Ge_2010_Planta.Med_76_822
Author(s) : Ge HM , Peng H , Guo ZK , Cui JT , Song YC , Tan RX
Ref : Planta Med , 76 :822 , 2010
Abstract : One new alkaloid, named 16 alpha-hydroxy-5 N-acetylardeemin ( 1), along with seven known metabolites ( 2- 8) was isolated from the fermentation broth of an endophytic fungus, ASPERGILLUS TERREUS. The structures of these metabolites were assigned on the basis of detailed spectroscopic analysis and by comparing spectroscopic data with those in the literature. Compound 1 displayed an inhibitory effect against acetylcholinesterase. Compounds 1- 8 also showed moderate or weak cytotoxic activity against KB and HSC-T6 cell lines.
ESTHER : Ge_2010_Planta.Med_76_822
PubMedSearch : Ge_2010_Planta.Med_76_822
PubMedID: 20066611

Title : De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia - Gauthier_2010_Proc.Natl.Acad.Sci.U.S.A_107_7863
Author(s) : Gauthier J , Champagne N , Lafreniere RG , Xiong L , Spiegelman D , Brustein E , Lapointe M , Peng H , Cote M , Noreau A , Hamdan FF , Addington AM , Rapoport JL , DeLisi LE , Krebs MO , Joober R , Fathalli F , Mouaffak F , Haghighi AP , Neri C , Dube MP , Samuels ME , Marineau C , Stone EA , Awadalla P , Barker PA , Carbonetto S , Drapeau P , Rouleau GA
Ref : Proc Natl Acad Sci U S A , 107 :7863 , 2010
Abstract : Schizophrenia likely results from poorly understood genetic and environmental factors. We studied the gene encoding the synaptic protein SHANK3 in 285 controls and 185 schizophrenia patients with unaffected parents. Two de novo mutations (R1117X and R536W) were identified in two families, one being found in three affected brothers, suggesting germline mosaicism. Zebrafish and rat hippocampal neuron assays revealed behavior and differentiation defects resulting from the R1117X mutant. As mutations in SHANK3 were previously reported in autism, the occurrence of SHANK3 mutations in subjects with a schizophrenia phenotype suggests a molecular genetic link between these two neurodevelopmental disorders.
ESTHER : Gauthier_2010_Proc.Natl.Acad.Sci.U.S.A_107_7863
PubMedSearch : Gauthier_2010_Proc.Natl.Acad.Sci.U.S.A_107_7863
PubMedID: 20385823

Title : Design, synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and beta-secretase - Zhu_2009_Bioorg.Med.Chem_17_1600
Author(s) : Zhu Y , Xiao K , Ma L , Xiong B , Fu Y , Yu H , Wang W , Wang X , Hu D , Peng H , Li J , Gong Q , Chai Q , Tang X , Zhang H , Shen J
Ref : Bioorganic & Medicinal Chemistry , 17 :1600 , 2009
Abstract : To explore novel effective drugs for the treatment of Alzheimer's disease (AD), a series of dual inhibitors of acetylcholineterase (AChE) and beta-secretase (BACE-1) were designed based on the multi-target-directed ligands strategy. Among them, inhibitor 28 exhibited good dual potency in enzyme inhibitory potency assay (BACE-1: IC(50)=0.567 microM; AChE: IC(50)=1.83 microM), and also showed excellent inhibitory effects on Abeta production of APP transfected HEK293 cells (IC(50)=98.7 nM) and mild protective effect against hydrogen peroxide (H(2)O(2))-induced PC12 cell injury. Encouragingly, intracerebroventricular injection of 28 into amyloid precursor protein (APP) transgenic mice caused a 29% reduction of Abeta(1-40) production. Therefore, 28 was demonstrated as a good lead compound for the further study and more importantly, the strategy of AChE and BACE-1 dual inhibitors might be a promising direction for developing novel drugs for AD patients.
ESTHER : Zhu_2009_Bioorg.Med.Chem_17_1600
PubMedSearch : Zhu_2009_Bioorg.Med.Chem_17_1600
PubMedID: 19162488

Title : Role of non-raft cholesterol in lymphocytic choriomeningitis virus infection via alpha-dystroglycan - Shah_2006_J.Gen.Virol_87_673
Author(s) : Shah WA , Peng H , Carbonetto S
Ref : Journal of General Virology , 87 :673 , 2006
Abstract : Dystroglycan (DG) is an extracellular matrix receptor necessary for the development of metazoans from flies to humans and is also an entry route for various pathogens. Lymphocytic choriomeningitis virus (LCMV), a member of the family Arenaviridae, infects by binding to alpha-DG. Here, the role of cholesterol lipid rafts in infection by LCMV via alpha-DG was investigated. The cholesterol-sequestering drugs methyl-beta-cyclodextrin (MbetaCD), filipin and nystatin inhibited the infectivity of LCMV selectively, but did not affect infection by vesicular stomatitis virus. Cholesterol loading after depletion with MbetaCD restored infectivity to control levels. DG was not found in lipid rafts identified with the raft marker ganglioside GM1. Treatment with MbetaCD, however, enhanced the solubility of DG. This may reflect the association of DG with cholesterol outside lipid rafts and suggests that association of DG with non-raft cholesterol is critical for infection by LCMV through alpha-DG.
ESTHER : Shah_2006_J.Gen.Virol_87_673
PubMedSearch : Shah_2006_J.Gen.Virol_87_673
PubMedID: 16476990