Hao P

References (3)

Title : Complete sequencing and pan-genomic analysis of Lactobacillus delbrueckii subsp. bulgaricus reveal its genetic basis for industrial yogurt production - Hao_2011_PLoS.One_6_e15964
Author(s) : Hao P , Zheng H , Yu Y , Ding G , Gu W , Chen S , Yu Z , Ren S , Oda M , Konno T , Wang S , Li X , Ji ZS , Zhao G
Ref : PLoS ONE , 6 :e15964 , 2011
Abstract : Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus) is an important species of Lactic Acid Bacteria (LAB) used for cheese and yogurt fermentation. The genome of Lb. bulgaricus 2038, an industrial strain mainly used for yogurt production, was completely sequenced and compared against the other two ATCC collection strains of the same subspecies. Specific physiological properties of strain 2038, such as lysine biosynthesis, formate production, aspartate-related carbon-skeleton intermediate metabolism, unique EPS synthesis and efficient DNA restriction/modification systems, are all different from those of the collection strains that might benefit the industrial production of yogurt. Other common features shared by Lb. bulgaricus strains, such as efficient protocooperation with Streptococcus thermophilus and lactate production as well as well-equipped stress tolerance mechanisms may account for it being selected originally for yogurt fermentation industry. Multiple lines of evidence suggested that Lb. bulgaricus 2038 was genetically closer to the common ancestor of the subspecies than the other two sequenced collection strains, probably due to a strict industrial maintenance process for strain 2038 that might have halted its genome decay and sustained a gene network suitable for large scale yogurt production.
ESTHER : Hao_2011_PLoS.One_6_e15964
PubMedSearch : Hao_2011_PLoS.One_6_e15964
PubMedID: 21264216
Gene_locus related to this paper: lacda-q1g8l1 , lacdl-pip

Title : Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris - Qian_2005_Genome.Res_15_757
Author(s) : Qian W , Jia Y , Ren SX , He YQ , Feng JX , Lu LF , Sun Q , Ying G , Tang DJ , Tang H , Wu W , Hao P , Wang L , Jiang BL , Zeng S , Gu WY , Lu G , Rong L , Tian Y , Yao Z , Fu G , Chen B , Fang R , Qiang B , Chen Z , Zhao GP , Tang JL , He C
Ref : Genome Res , 15 :757 , 2005
Abstract : Xanthomonas campestris pathovar campestris (Xcc) is the causative agent of crucifer black rot disease, which causes severe losses in agricultural yield world-wide. This bacterium is a model organism for studying plant-bacteria interactions. We sequenced the complete genome of Xcc 8004 (5,148,708 bp), which is highly conserved relative to that of Xcc ATCC 33913. Comparative genomics analysis indicated that, in addition to a significant genomic-scale rearrangement cross the replication axis between two IS1478 elements, loss and acquisition of blocks of genes, rather than point mutations, constitute the main genetic variation between the two Xcc strains. Screening of a high-density transposon insertional mutant library (16,512 clones) of Xcc 8004 against a host plant (Brassica oleraceae) identified 75 nonredundant, single-copy insertions in protein-coding sequences (CDSs) and intergenic regions. In addition to known virulence factors, full virulence was found to require several additional metabolic pathways and regulatory systems, such as fatty acid degradation, type IV secretion system, cell signaling, and amino acids and nucleotide metabolism. Among the identified pathogenicity-related genes, three of unknown function were found in Xcc 8004-specific chromosomal segments, revealing a direct correlation between genomic dynamics and Xcc virulence. The present combination of comparative and functional genomic analyses provides valuable information about the genetic basis of Xcc pathogenicity, which may offer novel insight toward the development of efficient methods for prevention of this important plant disease.
ESTHER : Qian_2005_Genome.Res_15_757
PubMedSearch : Qian_2005_Genome.Res_15_757
PubMedID: 15899963
Gene_locus related to this paper: xanax-DHAA , xanax-ENTF2 , xanax-GAA , xanax-PTRB , xanax-XAC0515 , xanax-XAC0628 , xanax-XAC0736 , xanax-XAC0753 , xanax-XAC1713 , xanca-acvB , xanca-BIOH , xanca-CATD , xanca-CPO , xanca-estA1 , xanca-impep , xanca-META , xanca-METX , xanca-PCAD , xanca-PHBC , xanca-Q8PB04 , xanca-W78 , xanca-XCC0080 , xanca-XCC0180 , xanca-XCC0243 , xanca-XCC0266 , xanca-XCC0372 , xanca-XCC0375 , xanca-XCC0753 , xanca-XCC0800 , xanca-XCC0843 , xanca-XCC1105 , xanca-XCC1734 , xanca-XCC2285 , xanca-XCC2374 , xanca-XCC2397 , xanca-XCC2405 , xanca-XCC2566 , xanca-XCC2722 , xanca-XCC2737 , xanca-XCC2811 , xanca-XCC2817 , xanca-XCC2854 , xanca-XCC2869 , xanca-XCC3028 , xanca-XCC3164 , xanca-XCC3219 , xanca-XCC3296 , xanca-XCC3320 , xanca-XCC3514 , xanca-XCC3548 , xanca-XCC3555 , xanca-XCC3623 , xanca-XCC3915 , xanca-XCC3961 , xanca-XCC3970 , xanca-XCC4016 , xanca-XCC4096 , xanca-XCC4180 , xanca-XYNB , xanca-XYNB2 , xancb-b0rq23 , xancp-q8pax3 , xancp-y2094

Title : Sequence and analysis of rice chromosome 4 - Feng_2002_Nature_420_316
Author(s) : Feng Q , Zhang Y , Hao P , Wang S , Fu G , Huang Y , Li Y , Zhu J , Liu Y , Hu X , Jia P , Zhao Q , Ying K , Yu S , Tang Y , Weng Q , Zhang L , Lu Y , Mu J , Zhang LS , Yu Z , Fan D , Liu X , Lu T , Li C , Wu Y , Sun T , Lei H , Li T , Hu H , Guan J , Wu M , Zhang R , Zhou B , Chen Z , Chen L , Jin Z , Wang R , Yin H , Cai Z , Ren S , Lv G , Gu W , Zhu G , Tu Y , Jia J , Chen J , Kang H , Chen X , Shao C , Sun Y , Hu Q , Zhang X , Zhang W , Wang L , Ding C , Sheng H , Gu J , Chen S , Ni L , Zhu F , Chen W , Lan L , Lai Y , Cheng Z , Gu M , Jiang J , Li J , Hong G , Xue Y , Han B
Ref : Nature , 420 :316 , 2002
Abstract : Rice is the principal food for over half of the population of the world. With its genome size of 430 megabase pairs (Mb), the cultivated rice species Oryza sativa is a model plant for genome research. Here we report the sequence analysis of chromosome 4 of O. sativa, one of the first two rice chromosomes to be sequenced completely. The finished sequence spans 34.6 Mb and represents 97.3% of the chromosome. In addition, we report the longest known sequence for a plant centromere, a completely sequenced contig of 1.16 Mb corresponding to the centromeric region of chromosome 4. We predict 4,658 protein coding genes and 70 transfer RNA genes. A total of 1,681 predicted genes match available unique rice expressed sequence tags. Transposable elements have a pronounced bias towards the euchromatic regions, indicating a close correlation of their distributions to genes along the chromosome. Comparative genome analysis between cultivated rice subspecies shows that there is an overall syntenic relationship between the chromosomes and divergence at the level of single-nucleotide polymorphisms and insertions and deletions. By contrast, there is little conservation in gene order between rice and Arabidopsis.
ESTHER : Feng_2002_Nature_420_316
PubMedSearch : Feng_2002_Nature_420_316
PubMedID: 12447439
Gene_locus related to this paper: orysa-Q7XTC5 , orysa-Q7F959 , orysa-q7f9i3 , orysa-q7x7y5 , orysa-q7xkj9 , orysa-q7xr62 , orysa-q7xr63 , orysa-q7xr64 , orysa-q7xsg1 , orysa-q7xsq2 , orysa-Q7XTM8 , orysa-q7xts6 , orysa-q7xue7 , orysa-q7xv53 , orysa-Q7XVB5 , orysa-Q7XVG5 , orysj-q0jaf0 , orysj-q7f8x1