Lv G

References (5)

Title : In-vitro metabolism of LXY18, an orally available, potent blocker of AURKB relocation in mitosis - Li_2023_J.Pharm.Biomed.Anal_232_115415
Author(s) : Li J , Choudhry N , Lv G , Nimishetti N , Reddy MC , Liu H , Allen TD , Zhang J , Yang D
Ref : J Pharm Biomed Anal , 232 :115415 , 2023
Abstract : This study investigated the metabolism of LXY18, a quinolone-based compound that suppresses tumorigenesis by blocking AURKB localization. Metabolite profiling of LXY18 in liver microsomes from six species and human S9 fractions revealed that LXY18 undergoes various conserved metabolic reactions, such as N-hydroxylation, N-oxygenation, O-dealkylation, and hydrolysis, resulting in ten metabolites. These metabolites were produced through a combination of CYP450 enzymes, and non-CYP450 enzymes including CES1, and AO. Two metabolites, M1 and M2 were authenticated by chemically synthesized standards. M1 was the hydrolyzed product catalyzed by CES1 whereas M2 was a mono-N-oxidative derivative catalyzed by a CYP450 enzyme. AO was identified as the enzyme responsible for the formation of M3 with the help of AO-specific inhibitors and LXY18 analogs, 5b and 5c. M1 was the intermediate of LXY18 to produce M7, M8, M9, and M10. LXY18 potently inhibited 2C19 with an IC(50) of 290 nM but had a negligible impact on the other CYP450s, indicating a low risk of drug-drug interaction. Altogether, the study provides valuable insights into the metabolic process of LXY18 and its suitability as a drug candidate. The data generated serves as a significant reference point for conducting further safety assessments and optimizing drug development.
ESTHER : Li_2023_J.Pharm.Biomed.Anal_232_115415
PubMedSearch : Li_2023_J.Pharm.Biomed.Anal_232_115415
PubMedID: 37120975

Title : Acupuncture therapy for Alzheimer's disease: The effectiveness and potential mechanisms - Yin_2021_Anat.Rec.(Hoboken)__
Author(s) : Yin W , Lv G , Li C , Sun J
Ref : Anatomical Record (Hoboken) , : , 2021
Abstract : Alzheimer's disease (AD) is a common neurodegenerative disease that accounts for approximately 70% of dementia. Following the global escalation of the aging process, the morbidity of AD is increasing rapidly. The current treatment for AD is mainly limited to medications, such as acetylcholinesterase inhibitors. However, the efficacy of acetylcholinesterase inhibitors in improving memory and cognitive functions is not satisfactory. It is a challenge to find an effective alternative therapy for ameliorating AD symptoms. As an important therapeutic technique in traditional Chinese medicine, acupuncture has been proved effective in treating many neurologic diseases including AD. The efficacy of acupuncture is also acknowledged by the National Institutes of Health of the United States. Here, we summarized the effectiveness of acupuncture for treating AD. Especially, the role of acupuncture at certain acupuncture points in modulating the brain function through meridians activity based on Chinese meridian theory is discussed. How acupuncture at a certain acupoint can improve AD symptoms is also described. Furthermore, the possible molecular mechanisms of acupuncture for AD are reviewed, and the role of acupuncture in modulating signaling molecules in neural protection and homeostasis is highlighted. This study may help to understand the theoretical basis and potential molecular mechanisms of acupuncture therapy for AD.
ESTHER : Yin_2021_Anat.Rec.(Hoboken)__
PubMedSearch : Yin_2021_Anat.Rec.(Hoboken)__
PubMedID: 34623030

Title : The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis - Shen_2018_Mol.Plant_11_776
Author(s) : Shen Q , Zhang L , Liao Z , Wang S , Yan T , Shi P , Liu M , Fu X , Pan Q , Wang Y , Lv Z , Lu X , Zhang F , Jiang W , Ma Y , Chen M , Hao X , Li L , Tang Y , Lv G , Zhou Y , Sun X , Brodelius PE , Rose JKC , Tang K
Ref : Mol Plant , 11 :776 , 2018
Abstract : Artemisia annua, commonly known as sweet wormwood or Qinghao, is a shrub native to China and has long been used for medicinal purposes. A. annua is now cultivated globally as the only natural source of a potent anti-malarial compound, artemisinin. Here, we report a high-quality draft assembly of the 1.74-gigabase genome of A. annua, which is highly heterozygous, rich in repetitive sequences, and contains 63 226 protein-coding genes, one of the largest numbers among the sequenced plant species. We found that, as one of a few sequenced genomes in the Asteraceae, the A. annua genome contains a large number of genes specific to this large angiosperm clade. Notably, the expansion and functional diversification of genes encoding enzymes involved in terpene biosynthesis are consistent with the evolution of the artemisinin biosynthetic pathway. We further revealed by transcriptome profiling that A. annua has evolved the sophisticated transcriptional regulatory networks underlying artemisinin biosynthesis. Based on comprehensive genomic and transcriptomic analyses we generated transgenic A. annua lines producing high levels of artemisinin, which are now ready for large-scale production and thereby will help meet the challenge of increasing global demand of artemisinin.
ESTHER : Shen_2018_Mol.Plant_11_776
PubMedSearch : Shen_2018_Mol.Plant_11_776
PubMedID: 29703587
Gene_locus related to this paper: artan-a0a2u1ns65 , artan-a0a2u1nuf0 , artan-a0a2u1pw87 , artan-a0a2u1ql98 , artan-a0a2u1n9p7.2 , artan-a0a2u1ky94 , artan-a0a2u1pvq0 , artan-a0a2u1q8x4 , artan-a0a2u1mtd1 , artan-a0a2u1l9j8 , artan-a0a2u1lak5 , artan-a0a2u1lfl1 , artan-a0a2u1lzs1 , artan-a0a2u1m5v6 , artan-a0a2u1n4s5 , artan-a0a2u1qgg7

Title : Acetylcholinesterase Inhibitors for Alzheimer's Disease Treatment Ameliorate Acetaminophen-Induced Liver Injury in Mice via Central Cholinergic System Regulation - Zhang_2016_J.Pharmacol.Exp.Ther_359_374
Author(s) : Zhang J , Zhang L , Sun X , Yang Y , Kong L , Lu C , Lv G , Wang T , Wang H , Fu F
Ref : Journal of Pharmacology & Experimental Therapeutics , 359 :374 , 2016
Abstract : Acetaminophen (APAP) is widely used as an analgesic and antipyretic agent, but it may induce acute liver injury at high doses. Alzheimer's disease patients, while treated with acetylcholinesterase inhibitor (AChEI), may take APAP when they suffer from cold or pain. It is generally recognized that inhibiting acetylcholinesterase activity may also result in liver injury. To clarify whether AChEI could deteriorate or attenuate APAP hepatotoxicity, the effects of AChEI on APAP hepatotoxicity were investigated. Male C57BL/6J mice were administrated with the muscarinic acetylcholine receptor (mAChR) blocker atropine (Atr), or classic alpha7 nicotine acetylcholine receptor (alpha7nAChR) antagonist methyllycaconitine (MLA) 1 hour before administration of AChEIs-donepezil (4 mg/kg), rivastigmine (2 mg/kg), huperzine A (0.2 mg/kg), or neostigmine (0.15 mg/kg)-followed by APAP (300 mg/kg). Eight hours later, the mice were euthanized for histopathologic examination and biochemical assay. The results demonstrated that the tested AChEIs, excluding neostigmine, could attenuate APAP-induced liver injury, accompanied by reduced reactive oxygen species formation, adenosine triphosphate and cytochrome C loss, c-Jun N-terminal kinase 2 (JNK2) phosphorylation, and cytokines. However, Atr or MLA significantly weakened the protective effect of AChEI by affecting mitochondrial function or JNK2 phosphorylation and inflammation response. These results suggest that central mAChR and alpha7nAChR, which are activated by accumulated acetylcholine resulting from AChEI, were responsible for the protective effect of AChEIs on APAP-induced liver injury. This indicates that Alzheimer's patients treated with AChEI could take APAP, as AChEI is unlikely to deteriorate the hepatotoxicity of APAP.
ESTHER : Zhang_2016_J.Pharmacol.Exp.Ther_359_374
PubMedSearch : Zhang_2016_J.Pharmacol.Exp.Ther_359_374
PubMedID: 27535978

Title : Sequence and analysis of rice chromosome 4 - Feng_2002_Nature_420_316
Author(s) : Feng Q , Zhang Y , Hao P , Wang S , Fu G , Huang Y , Li Y , Zhu J , Liu Y , Hu X , Jia P , Zhao Q , Ying K , Yu S , Tang Y , Weng Q , Zhang L , Lu Y , Mu J , Zhang LS , Yu Z , Fan D , Liu X , Lu T , Li C , Wu Y , Sun T , Lei H , Li T , Hu H , Guan J , Wu M , Zhang R , Zhou B , Chen Z , Chen L , Jin Z , Wang R , Yin H , Cai Z , Ren S , Lv G , Gu W , Zhu G , Tu Y , Jia J , Chen J , Kang H , Chen X , Shao C , Sun Y , Hu Q , Zhang X , Zhang W , Wang L , Ding C , Sheng H , Gu J , Chen S , Ni L , Zhu F , Chen W , Lan L , Lai Y , Cheng Z , Gu M , Jiang J , Li J , Hong G , Xue Y , Han B
Ref : Nature , 420 :316 , 2002
Abstract : Rice is the principal food for over half of the population of the world. With its genome size of 430 megabase pairs (Mb), the cultivated rice species Oryza sativa is a model plant for genome research. Here we report the sequence analysis of chromosome 4 of O. sativa, one of the first two rice chromosomes to be sequenced completely. The finished sequence spans 34.6 Mb and represents 97.3% of the chromosome. In addition, we report the longest known sequence for a plant centromere, a completely sequenced contig of 1.16 Mb corresponding to the centromeric region of chromosome 4. We predict 4,658 protein coding genes and 70 transfer RNA genes. A total of 1,681 predicted genes match available unique rice expressed sequence tags. Transposable elements have a pronounced bias towards the euchromatic regions, indicating a close correlation of their distributions to genes along the chromosome. Comparative genome analysis between cultivated rice subspecies shows that there is an overall syntenic relationship between the chromosomes and divergence at the level of single-nucleotide polymorphisms and insertions and deletions. By contrast, there is little conservation in gene order between rice and Arabidopsis.
ESTHER : Feng_2002_Nature_420_316
PubMedSearch : Feng_2002_Nature_420_316
PubMedID: 12447439
Gene_locus related to this paper: orysa-Q7XTC5 , orysa-Q7F959 , orysa-q7f9i3 , orysa-q7x7y5 , orysa-q7xkj9 , orysa-q7xr62 , orysa-q7xr63 , orysa-q7xr64 , orysa-q7xsg1 , orysa-q7xsq2 , orysa-Q7XTM8 , orysa-q7xts6 , orysa-q7xue7 , orysa-q7xv53 , orysa-Q7XVB5 , orysa-Q7XVG5 , orysj-q0jaf0 , orysj-q7f8x1