Hao X

References (23)

Title : Personalized venlafaxine dose prediction using artificial intelligence technology: a retrospective analysis based on real-world data - Liu_2024_Int.J.Clin.Pharm__
Author(s) : Liu Y , Yu Z , Ye X , Zhang J , Hao X , Gao F , Yu J , Zhou C
Ref : Int J Clin Pharm , : , 2024
Abstract : BACKGROUND: Venlafaxine dose regimens vary considerably between individuals, requiring personalized dosing. AIM: This study aimed to identify dose-related influencing factors of venlafaxine through real-world data analysis and to construct a personalized dose model using advanced artificial intelligence techniques. METHOD: We conducted a retrospective study on patients with depression treated with venlafaxine. Significant variables were selected through a univariate analysis. Subsequently, the predictive performance of seven models (XGBoost, LightGBM, CatBoost, GBDT, ANN, TabNet, and DT) was compared. The algorithm that demonstrated optimal performance was chosen to establish the dose prediction model. Model validation used confusion matrices and ROC analysis. Additionally, a dose subgroup analysis was conducted. RESULTS: A total of 298 patients were included. TabNet was selected to establish the venlafaxine dose prediction model, which exhibited the highest performance with an accuracy of 0.80. The analysis identified seven crucial variables correlated with venlafaxine daily dose, including blood venlafaxine concentration, total protein, lymphocytes, age, globulin, cholinesterase, and blood platelet count. The area under the curve (AUC) for predicting venlafaxine doses of 75 mg, 150 mg, and 225 mg were 0.90, 0.85, and 0.90, respectively. CONCLUSION: We successfully developed a TabNet model to predict venlafaxine doses using real-world data. This model demonstrated substantial predictive accuracy, offering a personalized dosing regimen for venlafaxine. These findings provide valuable guidance for the clinical use of the drug.
ESTHER : Liu_2024_Int.J.Clin.Pharm__
PubMedSearch : Liu_2024_Int.J.Clin.Pharm__
PubMedID: 38733475

Title : Pharmacological effect and mechanism of orlistat in anti-tumor therapy: A review - Hao_2023_Medicine.(Baltimore)_102_e34671
Author(s) : Hao X , Zhu X , Tian H , Lai G , Zhang W , Zhou H , Liu S
Ref : Medicine (Baltimore) , 102 :e34671 , 2023
Abstract : Research has demonstrated that obesity is an important risk factor for cancer progression. Orlistat is a lipase inhibitor with promising therapeutic effects on obesity. In addition to being regarded as a slimming drug, a growing number of studies in recent years have suggested that orlistat has anti-tumor activities, while the underlying mechanism is still not well elucidated. This paper reviewed recent pharmacological effects and mechanisms of orlistat against tumors and found that orlistat can target cancer cells through activation or suppression of multiple signaling pathways. It can induce tumor cells apoptosis or death, interfere with tumor cells' cycles controlling, suppress fatty acid synthase activity, increase ferroptosis, inhibit tumor angiogenesis, and improve tumor cells glycolytic. Thus, this review may shed new light on anti-tumor mechanism and drug repurposing of orlistat, and anti-tumor drug development.
ESTHER : Hao_2023_Medicine.(Baltimore)_102_e34671
PubMedSearch : Hao_2023_Medicine.(Baltimore)_102_e34671
PubMedID: 37682175

Title : Acetylcholinesterase inhibitory activity of sesquiterpenoids isolated from Laggera pterodonta - Li_2023_Front.Plant.Sci_14_1074184
Author(s) : Li J , Li F , Wu G , Gui F , Li H , Xu L , Hao X , Zhao Y , Ding X , Qin X
Ref : Front Plant Sci , 14 :1074184 , 2023
Abstract : Plant-derived natural products are important resources for pesticide discovery. Acetylcholinesterase (AChE) is a well-validated pesticide target, and inhibiting AChE proves fatal for insects. Recent studies have shown that the potential of various sesquiterpenoids as AChE inhibitors. However, few studies have been conducted with eudesmane-type sesquiterpenes with AChE inhibitory effects. Therefore, in this research, we isolated two new sesquiterpenes, laggeranines A (1) and B (2), along with six known eudesmane-type sesquiterpenes (3-8) from Laggera pterodonta, and characterized their structures and the inhibitory effect they exerted on AChE. The results showed that these compounds had certain inhibitory effects on AChE in a dose-dependent manner, of which compound 5 had the best inhibitory effect with IC50 of 437.33 +/- 8.33 mM. As revealed by the Lineweaver-Burk and Dixon plots, compound 5 was observed to suppress AChE activity reversibly and competitively. Furthermore, all compounds exhibited certain toxicity levels on C. elegans. Meanwhile, these compounds had good ADMET properties. These results are significant for the discovery of new AChE targeting compounds, and also enrich the bioactivity activity repertoire of L. pterodonta.
ESTHER : Li_2023_Front.Plant.Sci_14_1074184
PubMedSearch : Li_2023_Front.Plant.Sci_14_1074184
PubMedID: 36844064

Title : Biosynthesis of trans-AT PKS-Derived Shuangdaolides Featuring a trans-acting Enzyme for Online Epoxidation - Liu_2023_ACS.Chem.Biol__
Author(s) : Liu Y , Zhou H , Zhao S , Hao X , Dai G , Zhong L , Ren X , Sui H , Zhang Y , Yan F , Bian X
Ref : ACS Chemical Biology , : , 2023
Abstract : Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) synthesize natural products with intricate structures and potent biological activities. They generally contain various unusual modules or trans-acting enzymes. Herein, we report the trans-AT PKS-derived biosynthetic pathway of the shuangdaolide with a rare internal 2-hydroxycyclopentenone moiety. The multidomain protein SdlR catalyzes the synthesis of 16,17-epoxide during polyketide chain elongation. The SdlR contains a ketoreductase, an acyl carrier protein, a flavoprotein monooxygenase, and a serine hydrolase domain. This online epoxidation occurs at unusual positions away from the thioester. Then, two tailoring enzymes, SdlB and SdlQ, convert a methylene to a carbonyl group and oxidize a hydroxyl group to a carbonyl group, respectively. The following spontaneous opening of 16,17-epoxide induces the formation of a new C-C bond to generate the 2-hydroxycyclopentenone moiety. The characterization of the shuangdaolide pathway extends the understanding of the trans-AT PKSs, facilitating the mining and identification of this class of natural products.
ESTHER : Liu_2023_ACS.Chem.Biol__
PubMedSearch : Liu_2023_ACS.Chem.Biol__
PubMedID: 37992317

Title : Organophosphate Level Evaluation for the Poisoning Treatment by Enzyme Activation Regeneration Strategy with Oxime-Functionalized ZIF-8 Nanoparticles - Shen_2023_Anal.Chem__
Author(s) : Shen A , Hao X , Li M , Zhao Y , Li Z , Hou L , Duan R , Zhang P , Zhang L , Yang Y
Ref : Analytical Chemistry , : , 2023
Abstract : In this work, two nanometal-organic frameworks (NMOFs) of ZIF-8-1 and ZIF-8-2 were designed and synthesized with a "missing linker" defects strategy by using Oxime-1 and Oxime-2 as coligands, respectively. ZIF-8-2 exhibited an excellent performance in comparison to that of ZIF-8-1 in activating and regenerating the activity of BChE suppressed by demeton-S-methyl (DSM) and could rapidly detoxify DSM in poisoned serum samples within 24 min. Additionally, the synthesized fluorescence probe of IND-BChE with high quantum yields, large Stokes shifts, and superior water solubility could be used for the detection of both butyrylcholinesterase (BChE) and DSM in a lower LOD of 0.63 mU/mL (BChE) and 0.086 microg/mL (DSM). By the difference in fluorescent intensity of IND-BChE with and without ZIF-8-2, a highly linear relationship of IND-BChE with DSM concentration was found (R(2) = 0.9889), and the LOD was 0.073 microg/mL. In addition, an intelligent detection platform of ZIF-8-2@IND-BChE@agarose hydrogel combined with a smartphone formed a point-of-care test for DSM -poisoned serum samples and also realized satisfactory results. Unlike other detection methods of nerve agents, this assay first combined an NMOF reactivator for detoxification and detection of BChE enzyme activity and then quantification of OP nerve agents, which was of great significance in treatment of organophosphate poisoning.
ESTHER : Shen_2023_Anal.Chem__
PubMedSearch : Shen_2023_Anal.Chem__
PubMedID: 37358141

Title : Ultrasensitivity Detecting AChE through "\;Covalent Assembly"\; and Signal Amplification Strategic Approaches and Applied to Screen Its Inhibitor - Zhao_2023_Anal.Chem__
Author(s) : Zhao Y , Shen A , Hao X , Li M , Hou L , Li Z , Duan R , Du M , Li X , Wang X , Zhao X , Yang Y
Ref : Analytical Chemistry , : , 2023
Abstract : An ultrasensitivity detecting assay for acetylcholinesterase (AChE) activity was developed based on "covalent assembly" and signal amplification strategic approaches. After hydrolyzing thioacetylcholine by AChE and participation of thiol in a self-inducing cascade accelerated by the Meldrum acid derivatives of 2-[bis(methylthio) methylene] malonitrile (CA-2), mercaptans triggered an intramolecular cyclization assembly by the probe of 2-(2,2-dicyanovinyl)-5-(diethylamino) phenyl 2,4-dinitrobenzenesulfonate (Sd-I) to produce strong fluorescence. The limit of detection for AChE activity was as low as 0.0048 mU/mL. The detection system also had a good detecting effect on AChE activity in human serum and could also be used to screen its inhibitors. By constructing a Sd-I@agarose hydrogel with a smartphone, a point-of-care detection of AChE activity was achieved again.
ESTHER : Zhao_2023_Anal.Chem__
PubMedSearch : Zhao_2023_Anal.Chem__
PubMedID: 36812425

Title : Hydrophobic cell surface display system of PETase as a sustainable biocatalyst for PET degradation - Jia_2022_Front.Microbiol_13_1005480
Author(s) : Jia Y , Samak NA , Hao X , Chen Z , Wen Q , Xing J
Ref : Front Microbiol , 13 :1005480 , 2022
Abstract : Remarkably, a hydrolase from Ideonella sakaiensis 201-F6, termed PETase, exhibits great potential in polyethylene terephthalate (PET) waste management due to it can efficiently degrade PET under moderate conditions. However, its low yield and poor accessibility to bulky substrates hamper its further industrial application. Herein a multigene fusion strategy is introduced for constructing a hydrophobic cell surface display (HCSD) system in Escherichia coli as a robust, recyclable, and sustainable whole-cell catalyst. The truncated outer membrane hybrid protein FadL exposed the PETase and hydrophobic protein HFBII on the surface of E. coli with efficient PET accessibility and degradation performance. E. coli containing the HCSD system changed the surface tension of the bacterial solution, resulting in a smaller contact angle (83.9 +/- 2 degrees vs. 58.5 +/- 1 degrees) of the system on the PET surface, thus giving a better opportunity for PETase to interact with PET. Furthermore, pretreatment of PET with HCSD showed rougher surfaces with greater hydrophilicity (water contact angle of 68.4 +/- 1 degrees vs. 106.1 +/- 2 degrees) than the non-pretreated ones. Moreover, the HCSD system showed excellent sustainable degradation performance for PET bottles with a higher degradation rate than free PETase. The HCSD degradation system also had excellent stability, maintaining 73% of its initial activity after 7 days of incubation at 40 degreesC and retaining 70% activity after seven cycles. This study indicates that the HCSD system could be used as a novel catalyst for efficiently accelerating PET biodegradation.
ESTHER : Jia_2022_Front.Microbiol_13_1005480
PubMedSearch : Jia_2022_Front.Microbiol_13_1005480
PubMedID: 36246227

Title : Antifeedant Mechanism of Dodonaea viscosa Saponin A Isolated from the Seeds of Dodonaea viscosa - Yu_2022_Molecules_27_4464
Author(s) : Yu H , Li J , Wu G , Tang Q , Duan X , Liu Q , Lan M , Zhao Y , Hao X , Qin X , Ding X
Ref : Molecules , 27 :4464 , 2022
Abstract : Dodonaea viscosa is a medicinal plant which has been used to treat various diseases in humans. However, the anti-insect activity of extracts from D. viscosa has not been evaluated. Here, we found that the total saponins from D. viscosa (TSDV) had strong antifeedant and growth inhibition activities against 4th-instar larvae of Spodoptera litura. The median antifeeding concentration (AFC(50)) value of TSDV on larvae was 1621.81 microg/mL. TSDV affected the detoxification enzyme system of the larvae and also exerted antifeedant activity possibly through targeting the gamma-aminobutyric acid (GABA) system. The AFC(50) concentration, the carboxylesterase activity, glutathione S-transferases activity, and cytochrome P450 content increased to 258%, 205%, and 215%, respectively, and likewise the glutamate decarboxylase activity and GABA content to 195% and 230%, respectively, in larvae which fed on TSDV. However, D. viscosa saponin A (DVSA) showed better antifeedant activity and growth inhibition activity in larvae, compared to TSDV. DVSA also exerted their antifeedant activity possibly through targeting the GABA system and subsequently affected the detoxification enzyme system. Further, DVSA directly affected the medial sensillum and the lateral sensillum of the 4th-instar larvae. Stimulation of Spodoptera litura. with DVSA elicited clear, consistent, and robust excitatory responses in a single taste cell.
ESTHER : Yu_2022_Molecules_27_4464
PubMedSearch : Yu_2022_Molecules_27_4464
PubMedID: 35889337

Title : Nematicidal activity of tirotundin and parthenolide isolated from Tithonia diversifolia and Chrysanthemum parthenium - Lan_2022_J.Environ.Sci.Health.B__1
Author(s) : Lan M , Gao X , Duan X , Li H , Yu H , Li J , Zhao Y , Hao X , Ding X , Wu G
Ref : J Environ Sci Health B , :1 , 2022
Abstract : Acetylcholinesterase (AChE) is an enzyme that catalyzes acetylcholine into choline and acetic acid. Conventional pesticides, including organophosphates and carbamates target and inhibit the activity of AChE. To obtain more pesticide precursors that meet the safety requirements, more than 200 compounds were screened. Tirotundin and parthenolide identified as potential neurotoxins to nematodes were isolated from Tithonia diversifolia and Chrysanthemum parthenium, respectively. Their IC(50) values were 6.89 +/- 0.30 and 5.51 +/- 0.23 microg/mL, respectively against the AChE isolated from Caenorhabditis elegans. AChE was inhibited in a dose-dependent manner using the two compounds. And the Lineweaver-Burk and Dixon plots indicated that tirotundin and parthenolide were reversible inhibitors against AChE, both inhibiting AChE in a mixed-type competitive manner and demonstrating these compounds may possess dual binding site AChE inhibitors. LC(50) values of tirotundin and parthenolide against C. elegans were 9.16 +/- 0.21 and 7.23 +/- 0.48 microg/mL, respectively. These results provide a certain theoretical basis for the development and utilization of novel pesticides.
ESTHER : Lan_2022_J.Environ.Sci.Health.B__1
PubMedSearch : Lan_2022_J.Environ.Sci.Health.B__1
PubMedID: 34983315

Title : Phenolic and bisamide derivatives from Aglaia odorata and their biological activities - Yang_2022_Nat.Prod.Res__1
Author(s) : Yang X , Yu Y , Wu P , Liu J , Li Y , Tao L , Tan R , Hao X , Yuan C , Yi P
Ref : Nat Prod Res , :1 , 2022
Abstract : Three new compounds (1-3), including two bisamide derivatives (1 and 2) and a lignin (3), along with 15 known compounds were isolated from Aglaia odorata. Compound 2 was a pair of enantiomers and successfully resolved into the anticipated enantiomers. Their structures were elucidated by extensive spectroscopic analysis, electronic circular dichroism (ECD) calculations, and X-ray crystallography. Three compounds showed excellent inhibitory activities on alpha-glucosidase with IC(50) values ranging from 54.48 to 240.88 microM, better than that of the positive control (acarbose, IC(50) = 590.94 microM). Moreover, compounds 3, 13, and 15 presented moderate inhibitory activities against butyrylcholinesterase. Compound 17 exhibited potent PTP1B inhibitory activity with an IC(50) value of 179.45 microM. Representative active compounds were performed for the molecular docking study. Herein, we described the isolation, structure elucidation, the inhibitory effects on three enzymes, and molecular docking of the isolates from the title plant.
ESTHER : Yang_2022_Nat.Prod.Res__1
PubMedSearch : Yang_2022_Nat.Prod.Res__1
PubMedID: 36580570

Title : Inhibitory activities of flavonoids from Eupatorium adenophorum against acetylcholinesterase - Li_2020_Pestic.Biochem.Physiol_170_104701
Author(s) : Li M , Gao X , Lan M , Liao X , Su F , Fan L , Zhao Y , Hao X , Wu G , Ding X
Ref : Pestic Biochem Physiol , 170 :104701 , 2020
Abstract : Fifteen flavonoids isolated from the Eupatorium adenophorum showed inhibitory activities against acetylcholinesterase (AChE) isolated from Caenorhabditis elegans and Spodoptera litura. Their IC(50) values ranged from 12.54 to 89.06mug/mL and 12.08 to 86.01mug/mL, respectively against the AChE isolated from the nematode and insect species. AChE was inhibited in a dose-dependent manner by all tested flavonoids, The isolated compound quercetagetin-7-O-(6-O-caffeoyl-beta-D-glucopyranoside) displayed the highest inhibitory effect against AChE from C. elegans and S. litura, with IC(50) values of 12.54 mug/mL and 12.58 mug/mL, respectively. The structure-activity relationship of flavonoids on the inhibitory activities indicated that additional phenolic hydroxyl groups in the glucose were favorable for their inhibitory effects and the degree of increase in inhibitory activity also depended on the number of phenolic hydroxyl groups. The Lineweaver-Burk and Dixon plots indicated that quercetagetin-7-O-(6-O-caffeoyl-beta-d-glucopyranoside) is a reversible inhibitor against AChE. Quercetagetin-7-O-(6-O-caffeoyl-beta-d-glucopyranoside), 5,4'-Dihydroxytlavone and quercetin-3-O-beta-d-glucopyranoside inhibited AChE in a mixed-type competitive manner and these compounds might be the dual binding site AChE inhibitors. Further, nine compounds showed poisonous effects against C. elegans and inhibitory effects on the growth and development of S. litura.
ESTHER : Li_2020_Pestic.Biochem.Physiol_170_104701
PubMedSearch : Li_2020_Pestic.Biochem.Physiol_170_104701
PubMedID: 32980054

Title : Monoterpene indole alkaloids with diverse skeletons from the stems of Rauvolfia vomitoria and their acetylcholinesterase inhibitory activities - Zhan_2020_Phytochemistry_177_112450
Author(s) : Zhan G , Miao R , Zhang F , Hao X , Zheng X , Zhang H , Zhang X , Guo Z
Ref : Phytochemistry , 177 :112450 , 2020
Abstract : Nine undescribed monoterpene indole alkaloids, rauvomitorine A-I, including an unprecedented C-9-methoxymethylene-sarpagine framework alkaloid, two rare suaveoline framework type alkaloids, and six yohimbine framework type alkaloids, as well as eleven known alkaloids, were isolated from the stems of Rauvolfia vomitoria Afzel. (Apocynaceae). The structures of the unreported alkaloids were elucidated by extensive spectroscopic analysis and single-crystal X-ray diffraction analysis with Cu Kalpha radiation. Rauvomitorine A with an unreported framework type represents the first example of C-9-methoxymethylene-sarpagine alkaloids and its plausible biosynthetic pathway was proposed. All the isolated alkaloids were evaluated their acetylcholinesterase inhibitory (AChE) activities and cytotoxicity against five cancer cell lines and some of them exhibited potential anti-AChE activities with IC50 values ranging from 49.76 to 186.62 muM. Importantly, this is the first report of the AChE inhibitory activities on suaveoline framework type alkaloids, suggesting this type of alkaloids may be valuable sources for the discovery of AChE inhibitory agents. A preliminary structure-activity relationship for AChE inhibitory activities of the isolated alkaloids is also discussed, providing some clues to designing lead compounds for AChE inhibitors.
ESTHER : Zhan_2020_Phytochemistry_177_112450
PubMedSearch : Zhan_2020_Phytochemistry_177_112450
PubMedID: 32580106

Title : Polycyclic polyprenylated acylphloroglucinols with acetylcholinesterase inhibitory activities from Hypericum perforatum - Lou_2020_Fitoterapia__104550
Author(s) : Lou H , Yi P , Hu Z , Li Y , Zeng Y , Gu W , Huang L , Yuan C , Hao X
Ref : Fitoterapia , :104550 , 2020
Abstract : Six new polycyclic polyprenylated acylphloroglucinols, hyperfols CH (1-6), along with seven known ones (7-13), were isolated from the aerial parts of Hypericum perforatum. The structures were identified on the basis of comprehensive spectroscopic data analysis including 1D and 2D NMR, and the absolute configurations of the new compounds were determined by quantum chemical electronic circular dichroism (ECD) calculations. In addition, compounds 4 and 12 exhibited moderate acetylcholinesterase (AChE) inhibitory activities, with IC50 values of 20.32 and 27.37muM, respectively.
ESTHER : Lou_2020_Fitoterapia__104550
PubMedSearch : Lou_2020_Fitoterapia__104550
PubMedID: 32173424

Title : The Effect of Protein FAM172A on Proliferation in HepG2 Cells and Investigation of the Possible Molecular Mechanism - Zhao_2019_Anal.Cell.Pathol.(Amst)_2019_5901083
Author(s) : Zhao H , Wang Y , Liu Y , Hao X , Wei H , Xie W
Ref : Anal Cell Pathol (Amst) , 2019 :5901083 , 2019
Abstract : BACKGROUND: In our previous study, we found that the FAM172A recombinant protein could promote proliferation of L02 cells. However, the underlying mechanisms are still unknown. The present study was aimed at investigating the effect of FAM172A on proliferation of HepG2 cells and exploring the possible molecular mechanisms and its role in hepatocellular carcinoma (HCC). METHODS: Cell proliferation was measured by MTT assay. Western blot test was carried out to investigate the mechanism. Rabbit antibodies against FAM172A and membrane proteins isolated from lysate of HepG2 cell were coprecipitated and the resultant precipitates were analyzed by mass spectrum. RESULTS: The MTT assay showed that recombinant protein FAM172A isoform 1 (FAM172A-1) could induce HepG2 cell proliferation at the concentration of 10-100 ng/mL, while protein FAM172A isoform 3 (FAM172A-3) was at the concentration of 80-100 ng/mL. Western blot demonstrated that both FAM172A-1 and FAM172A-3 could activate the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) pathway and the phosphatidylinositol 3-kinase/threonine-protein kinase (PI3K/Akt) pathway. Mass spectrum analysis suggested that there were some membrane proteins interacting with FAM172A. Several candidate interacting proteins might mediate proliferation signals induced by FAM172A recombinant protein, including seven membrane proteins. CONCLUSION: In conclusion, FAM172A recombinant protein could induce proliferation of HepG2 cells, in which the MAPK/ERK and PI3K/Akt signaling pathways might be involved. The role of FAM172A in HepG2 cell proliferation also indicated its possible involvement in HCC. The receptor of FAM172A on cells still needs to be exploited.
ESTHER : Zhao_2019_Anal.Cell.Pathol.(Amst)_2019_5901083
PubMedSearch : Zhao_2019_Anal.Cell.Pathol.(Amst)_2019_5901083
PubMedID: 31915594
Gene_locus related to this paper: human-f172a

Title : Characterization of the prognostic values of the NDRG family in gastric cancer - Yu_2019_Therap.Adv.Gastroenterol_12_1756284819858507
Author(s) : Yu C , Hao X , Zhang S , Hu W , Li J , Sun J , Zheng M
Ref : Therap Adv Gastroenterol , 12 :1756284819858507 , 2019
Abstract : Background: The N-myc downstream-regulated gene (NDRG) family, NDRG1-4, has been involved in a wide spectrum of biological functions in multiple cancers. However, their prognostic values remain sparse in gastric cancer (GC). Therefore, it is crucial to systematically investigate the prognostic values of the NDRG family in GC. Methods: The prognostic values of the NDRG family were evaluated by Kaplan-Meier Plotter and SurvExpress. The mRNA of the NDRG family was investigated in The Cancer Genome Atlas (TCGA). Transcription factors (TFs) and miRNAs associated with the NDRG family were predicted by NetworkAnalysis. The prognostic values of DNA methylation levels were analyzed by MethSurv. The correlation between immune cells and the NDRG family was evaluated by the Tumor Immune Estimation Resource (TIMER) database. Results: High levels of mRNA expression of NDRG2 and NDRG3 were associated with a favorable prognosis in all GCs. In HER2 (-) GC, NDRG1 was significantly associated with a poor prognosis of GC [hazard ratio (HR) = 1.65, 95% confidence interval (CI) = 1.16-2.33, p = 0.0046]. In HER2 (+) GC, NDRG4 showed a poor prognosis (HR = 1.4, 95% CI: 1.06-1.85, p = 0.017). NDRG4 was an independent prognostic factor in recurrence-free survival by TCGA cohort. The low-risk NDRG-signature group displayed a significantly favorable survival outcome than the high-risk group (HR = 1.76, 95% CI: 1.2-2.59, p = 0.00385). The phosphorylated protein NDRG1 (NDRG1_pT346) displayed a favorable overall survival and was significantly associated with HER2 and phosphorylated HER2. Epidermis development was the top biological process (BP) for coexpressed genes associated with NDRG1 and NDRG4, while mitotic nuclear division and mitotic cell processes were the top BPs for NDRG2 and NDRG3, respectively. Overall, 6 CpGs of NDRG1, 4 CpGs of NDRG2, 3 CpGs of NDRG3 and 24 CpGs of NDRG4 were associated with significant prognosis. CD4(+) T-cells showed the highest correlation with NDRG4 (correlation = 0.341, p = 2.14e(-11)). Furthermore, BCL6 in follicular helper T-cells (Tfh) cells showed the highest association with NDRG4 (correlation = 0.438, p = 00e(+)00). Conclusions: This study analyzed the multilevel prognostic values and biological roles of the NDRG family in GC.
ESTHER : Yu_2019_Therap.Adv.Gastroenterol_12_1756284819858507
PubMedSearch : Yu_2019_Therap.Adv.Gastroenterol_12_1756284819858507
PubMedID: 31384305

Title : The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis - Shen_2018_Mol.Plant_11_776
Author(s) : Shen Q , Zhang L , Liao Z , Wang S , Yan T , Shi P , Liu M , Fu X , Pan Q , Wang Y , Lv Z , Lu X , Zhang F , Jiang W , Ma Y , Chen M , Hao X , Li L , Tang Y , Lv G , Zhou Y , Sun X , Brodelius PE , Rose JKC , Tang K
Ref : Mol Plant , 11 :776 , 2018
Abstract : Artemisia annua, commonly known as sweet wormwood or Qinghao, is a shrub native to China and has long been used for medicinal purposes. A. annua is now cultivated globally as the only natural source of a potent anti-malarial compound, artemisinin. Here, we report a high-quality draft assembly of the 1.74-gigabase genome of A. annua, which is highly heterozygous, rich in repetitive sequences, and contains 63 226 protein-coding genes, one of the largest numbers among the sequenced plant species. We found that, as one of a few sequenced genomes in the Asteraceae, the A. annua genome contains a large number of genes specific to this large angiosperm clade. Notably, the expansion and functional diversification of genes encoding enzymes involved in terpene biosynthesis are consistent with the evolution of the artemisinin biosynthetic pathway. We further revealed by transcriptome profiling that A. annua has evolved the sophisticated transcriptional regulatory networks underlying artemisinin biosynthesis. Based on comprehensive genomic and transcriptomic analyses we generated transgenic A. annua lines producing high levels of artemisinin, which are now ready for large-scale production and thereby will help meet the challenge of increasing global demand of artemisinin.
ESTHER : Shen_2018_Mol.Plant_11_776
PubMedSearch : Shen_2018_Mol.Plant_11_776
PubMedID: 29703587
Gene_locus related to this paper: artan-a0a2u1ns65 , artan-a0a2u1nuf0 , artan-a0a2u1pw87 , artan-a0a2u1ql98 , artan-a0a2u1n9p7.2 , artan-a0a2u1ky94 , artan-a0a2u1pvq0 , artan-a0a2u1q8x4 , artan-a0a2u1mtd1 , artan-a0a2u1l9j8 , artan-a0a2u1lak5 , artan-a0a2u1lfl1 , artan-a0a2u1lzs1 , artan-a0a2u1m5v6 , artan-a0a2u1n4s5 , artan-a0a2u1qgg7

Title : Draft genome sequence of Halomonas sp. strain HAL1, a moderately halophilic arsenite-oxidizing bacterium isolated from gold-mine soil - Lin_2012_J.Bacteriol_194_199
Author(s) : Lin Y , Fan H , Hao X , Johnstone L , Hu Y , Wei G , Alwathnani HA , Wang G , Rensing C
Ref : Journal of Bacteriology , 194 :199 , 2012
Abstract : We report the draft genome sequence of arsenite-oxidizing Halomonas sp. strain HAL1, isolated from the soil of a gold mine. Genes encoding proteins involved in arsenic resistance and transformation, phosphate utilization and uptake, and betaine biosynthesis were identified. Their identification might help in understanding how arsenic and phosphate metabolism are intertwined.
ESTHER : Lin_2012_J.Bacteriol_194_199
PubMedSearch : Lin_2012_J.Bacteriol_194_199
PubMedID: 22156396
Gene_locus related to this paper: 9gamm-g4fal7 , 9gamm-g4f104

Title : Genome sequence of the arsenite-oxidizing strain Agrobacterium tumefaciens 5A - Hao_2012_J.Bacteriol_194_903
Author(s) : Hao X , Lin Y , Johnstone L , Liu G , Wang G , Wei G , McDermott T , Rensing C
Ref : Journal of Bacteriology , 194 :903 , 2012
Abstract : Microbial transformations of arsenic influence its mobility and toxicity. We report the draft genome sequence of the arsenite-oxidizing strain Agrobacterium tumefaciens 5A isolated from an As-contaminated soil in the Madison River Valley, MT. A large number of metal (or metalloid) resistance genes, especially contributing to arsenite oxidation, were identified.
ESTHER : Hao_2012_J.Bacteriol_194_903
PubMedSearch : Hao_2012_J.Bacteriol_194_903
PubMedID: 22275101
Gene_locus related to this paper: agrsh-f0lb16 , rhird-h0hik8

Title : Genome sequence and mutational analysis of plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286 Isolated from a zinc-lead mine tailing - Hao_2012_Appl.Environ.Microbiol_78_5384
Author(s) : Hao X , Xie P , Johnstone L , Miller SJ , Rensing C , Wei G
Ref : Applied Environmental Microbiology , 78 :5384 , 2012
Abstract : The plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286, isolated from the nodules of Robinia pseudoacacia growing in zinc-lead mine tailings, both displayed high metal resistance and enhanced the growth of Robinia plants in a metal-contaminated environment. Our goal was to determine whether bacterial metal resistance or the capacity to produce phytohormones had a larger impact on the growth of host plants under zinc stress. Eight zinc-sensitive mutants and one zinc-sensitive mutant with reduced indole-3-acetic acid (IAA) production were obtained by transposon mutagenesis. Analysis of the genome sequence and of transcription via reverse transcriptase PCR (RT-PCR) combined with transposon gene disruptions revealed that ZntA-4200 and the transcriptional regulator ZntR1 played important roles in the zinc homeostasis of A. tumefaciens CCNWGS0286. In addition, interruption of a putative oligoketide cyclase/lipid transport protein reduced IAA synthesis and also showed reduced zinc and cadmium resistance but had no influence on copper resistance. In greenhouse studies, R. pseudoacacia inoculated with A. tumefaciens CCNWGS0286 displayed a significant increase in biomass production over that without inoculation, even in a zinc-contaminated environment. Interestingly, the differences in plant biomass improvement among A. tumefaciens CCNWGS0286, A. tumefaciens C58, and zinc-sensitive mutants 12-2 (zntA::Tn5) and 15-6 (low IAA production) revealed that phytohormones, rather than genes encoding zinc resistance determinants, were the dominant factor in enhancing plant growth in contaminated soil.
ESTHER : Hao_2012_Appl.Environ.Microbiol_78_5384
PubMedSearch : Hao_2012_Appl.Environ.Microbiol_78_5384
PubMedID: 22636006
Gene_locus related to this paper: rhird-a0a067u386

Title : Draft genome sequence of plant growth-promoting rhizobium Mesorhizobium amorphae, isolated from zinc-lead mine tailings - Hao_2012_J.Bacteriol_194_736
Author(s) : Hao X , Lin Y , Johnstone L , Baltrus DA , Miller SJ , Wei G , Rensing C
Ref : Journal of Bacteriology , 194 :736 , 2012
Abstract : Here, we describe the draft genome sequence of Mesorhizobium amorphae strain CCNWGS0123, isolated from nodules of Robinia pseudoacacia growing on zinc-lead mine tailings. A large number of metal(loid) resistance genes, as well as genes reported to promote plant growth, were identified, presenting a great future potential for aiding phytoremediation in metal(loid)-contaminated soil.
ESTHER : Hao_2012_J.Bacteriol_194_736
PubMedSearch : Hao_2012_J.Bacteriol_194_736
PubMedID: 22247533
Gene_locus related to this paper: 9rhiz-g6y654 , 9rhiz-g6yin5 , 9rhiz-g6yg34

Title : Draft genome sequence of Sinorhizobium meliloti CCNWSX0020, a nitrogen-fixing symbiont with copper tolerance capability isolated from lead-zinc mine tailings - Li_2012_J.Bacteriol_194_1267
Author(s) : Li Z , Ma Z , Hao X , Wei G
Ref : Journal of Bacteriology , 194 :1267 , 2012
Abstract : Sinorhizobium meliloti CCNWSX0020 was isolated from Medicago lupulina plants growing in lead-zinc mine tailings, which can establish a symbiotic relationship with Medicago species. Also, the genome of this bacterium contains a number of protein-coding sequences related to metal tolerance. We anticipate that the genomic sequence provides valuable information to explore environmental bioremediation.
ESTHER : Li_2012_J.Bacteriol_194_1267
PubMedSearch : Li_2012_J.Bacteriol_194_1267
PubMedID: 22328762
Gene_locus related to this paper: rhime-PCAD , rhime-RB1395 , rhiml-h0fvx0

Title : Draft genome sequence of Pseudomonas psychrotolerans L19, isolated from copper alloy coins - Santo_2012_J.Bacteriol_194_1623
Author(s) : Santo CE , Lin Y , Hao X , Wei G , Rensing C , Grass G
Ref : Journal of Bacteriology , 194 :1623 , 2012
Abstract : We report the draft genome sequence of Pseudomonas psychrotolerans strain L19, isolated from a European 50-cent copper alloy coin. Multiple genes potentially involved in copper resistance were identified; however, it is unknown if these copper ion resistance determinants contribute to prolonged survival of this strain on dry metallic copper.
ESTHER : Santo_2012_J.Bacteriol_194_1623
PubMedSearch : Santo_2012_J.Bacteriol_194_1623
PubMedID: 22374955
Gene_locus related to this paper: 9psed-h0jhr8 , 9psed-h0jeb0

Title : Clinicopathologic features between multicentric occurence and intrahepatic metastasis of multiple hepatocellular carcinomas related to HBV - Wang_2009_Surg.Oncol_18_25
Author(s) : Wang J , Li Q , Sun Y , Zheng H , Cui Y , Li H , Zhou H , Hao X
Ref : Surg Oncol , 18 :25 , 2009
Abstract : AIMS: To clarify the incidence of multicentric occurrence (MO) and intrahepatic metastasis (IM) for hepatocellular carcinoma (HCC) related to hepatitis B virus (HBV) in China and to identify the differences between them. PATIENTS AND METHODS: Histopathologic features of multiple tumors in 82 cases with HCC were analyzed. The two groups, the origin was determinable as of multicentric occurrence or as of intrahepatic metastasis, were analyzed for their survival rate, disease-free survival and clinicopathologic differences. RESULTS: According to histological findings, 19.5% and 69.5% patients were considered to be MO and IM, respectively. In total 73 cases from the histopathological method were selected and divided into group MO (16 cases) and the group IM (57 cases). Analysis of stepwise regression identified that: Child's stage, cholinesterase (host factors), tumor size, histological grade and positive portal vein invasion (tumor factors) were the most important discriminating factors between MO and IM (p<0.05). As for their prognosis, Kaplan-Meier and Log rank test showed the survival rate in group MO was significantly better than that in the group IM (p=0.003). No statistical significance was found between the disease-free survival in group MO and that in group IM (p=0.141). The analysis of Cox's proportional hazards model showed that tumor type (MO or IM) and Child's stage were the important prognostic factors (p=0.002 and 0.014, respectively). CONCLUSIONS: The incidence of MO in patients with multiple HCCs related to HBV is only about 20%, which is lower than that of Japan. Child's stage, cholinesterase (host factors), tumor size, histological grade and positive portal vein invasion (tumor factors) are the most important discriminating factors between MO and IM. The prognosis of patients with MO compared to IM is significantly better and tumor type (MO or IM) and Child's stage are important prognostic factors.
ESTHER : Wang_2009_Surg.Oncol_18_25
PubMedSearch : Wang_2009_Surg.Oncol_18_25
PubMedID: 18640032