Yerrapragada S

References (5)

Title : Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF - Bourgogne_2008_Genome.Biol_9_R110
Author(s) : Bourgogne A , Garsin DA , Qin X , Singh KV , Sillanpaa J , Yerrapragada S , Ding Y , Dugan-Rocha S , Buhay C , Shen H , Chen G , Williams G , Muzny D , Maadani A , Fox KA , Gioia J , Chen L , Shang Y , Arias CA , Nallapareddy SR , Zhao M , Prakash VP , Chowdhury S , Jiang H , Gibbs RA , Murray BE , Highlander SK , Weinstock GM
Ref : Genome Biol , 9 :R110 , 2008
Abstract : BACKGROUND: Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies. RESULTS: The 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence specific to V583 was substituted by a sequence specific to OG1RF. For example, the iol operon of OG1RF replaces a possible prophage and the vanB transposon in V583. Finally, we found 16 regions that were present in V583 but missing from OG1RF, including the proposed pathogenicity island, several probable prophages, and the cpsCDEFGHIJK capsular polysaccharide operon. OG1RF was more rapidly but less frequently lethal than V583 in the mouse peritonitis model and considerably outcompeted V583 in a murine model of urinary tract infections. CONCLUSION: E. faecalis OG1RF carries a number of unique loci compared to V583, but the almost complete lack of mobile genetic elements demonstrates that this is not a defining feature of the species. Additionally, OG1RF's effects in experimental models suggest that mediators of virulence may be diverse between different E. faecalis strains and that virulence is not dependent on the presence of mobile genetic elements.
ESTHER : Bourgogne_2008_Genome.Biol_9_R110
PubMedSearch : Bourgogne_2008_Genome.Biol_9_R110
PubMedID: 18611278
Gene_locus related to this paper: entfa-EF0101 , entfa-EF0449 , entfa-EF1236 , entfa-EF2618 , entfa-q5j1l4 , entfl-e2z7d4

Title : Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032 - Gioia_2007_PLoS.One_2_e928
Author(s) : Gioia J , Yerrapragada S , Qin X , Jiang H , Igboeli OC , Muzny D , Dugan-Rocha S , Ding Y , Hawes A , Liu W , Perez L , Kovar C , Dinh H , Lee S , Nazareth L , Blyth P , Holder M , Buhay C , Tirumalai MR , Liu Y , Dasgupta I , Bokhetache L , Fujita M , Karouia F , Eswara Moorthy P , Siefert J , Uzman A , Buzumbo P , Verma A , Zwiya H , McWilliams BD , Olowu A , Clinkenbeard KD , Newcombe D , Golebiewski L , Petrosino JF , Nicholson WL , Fox GE , Venkateswaran K , Highlander SK , Weinstock GM
Ref : PLoS ONE , 2 :e928 , 2007
Abstract : BACKGROUND: Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, gamma-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. PRINCIPAL FINDINGS: The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. SIGNIFICANCE: This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.
ESTHER : Gioia_2007_PLoS.One_2_e928
PubMedSearch : Gioia_2007_PLoS.One_2_e928
PubMedID: 17895969
Gene_locus related to this paper: bacp2-a8f9m3 , bacp2-a8fa85 , bacp2-a8fgk8 , bacp2-a8fhg9 , bacp2-a8fjc9 , bacpu-AXE , bacpu-b4af62 , bacpu-b4ail3 , bacpu-b4ann4 , bacpu-b4apa9 , bacp2-a8f983 , bacp2-a8fgz0

Title : Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus - Highlander_2007_BMC.Microbiol_7_99
Author(s) : Highlander SK , Hulten KG , Qin X , Jiang H , Yerrapragada S , Mason EO, Jr. , Shang Y , Williams TM , Fortunov RM , Liu Y , Igboeli O , Petrosino J , Tirumalai M , Uzman A , Fox GE , Cardenas AM , Muzny DM , Hemphill L , Ding Y , Dugan S , Blyth PR , Buhay CJ , Dinh HH , Hawes AC , Holder M , Kovar CL , Lee SL , Liu W , Nazareth LV , Wang Q , Zhou J , Kaplan SL , Weinstock GM
Ref : BMC Microbiol , 7 :99 , 2007
Abstract : BACKGROUND: Community acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear. RESULTS: We sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Children's Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified. CONCLUSION: USA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.
ESTHER : Highlander_2007_BMC.Microbiol_7_99
PubMedSearch : Highlander_2007_BMC.Microbiol_7_99
PubMedID: 17986343
Gene_locus related to this paper: staa3-q2fkj0 , staau-LIP , staau-lipas , staau-MW0741 , staau-MW2456 , staau-q6gfm6 , staau-SA0011 , staau-SA0569 , staau-SA0572 , staau-SA0897 , staau-SA1143 , staau-SA2240 , staau-SA2306 , staau-SA2367 , staau-SA2422 , staau-SAV0321 , staau-SAV0446 , staau-SAV0457 , staau-SAV0655 , staau-SAV1014 , staau-SAV1765 , staau-SAV1793 , staau-SAV2188 , staau-SAV2350 , staau-SAV2594

Title : Chromosome rearrangement and diversification of Francisella tularensis revealed by the type B (OSU18) genome sequence - Petrosino_2006_J.Bacteriol_188_6977
Author(s) : Petrosino JF , Xiang Q , Karpathy SE , Jiang H , Yerrapragada S , Liu Y , Gioia J , Hemphill L , Gonzalez A , Raghavan TM , Uzman A , Fox GE , Highlander S , Reichard M , Morton RJ , Clinkenbeard KD , Weinstock GM
Ref : Journal of Bacteriology , 188 :6977 , 2006
Abstract : The gamma-proteobacterium Francisella tularensis is one of the most infectious human pathogens, and the highly virulent organism F. tularensis subsp. tularensis (type A) and less virulent organism F. tularensis subsp. holarctica (type B) are most commonly associated with significant disease in humans and animals. Here we report the complete genome sequence and annotation for a low-passage type B strain (OSU18) isolated from a dead beaver found near Red Rock, Okla., in 1978. A comparison of the F. tularensis subsp. holarctica sequence with that of F. tularensis subsp. tularensis strain Schu4 (P. Larsson et al., Nat. Genet. 37:153-159, 2005) highlighted genetic differences that may underlie different pathogenicity phenotypes and the evolutionary relationship between type A and type B strains. Despite extensive DNA sequence identity, the most significant difference between type A and type B isolates is the striking amount of genomic rearrangement that exists between the strains. All but two rearrangements can be attributed to homologous recombination occurring between two prominent insertion elements, ISFtu1 and ISFtu2. Numerous pseudogenes have been found in the genomes and are likely contributors to the difference in virulence between the strains. In contrast, no rearrangements have been observed between the OSU18 genome and the genome of the type B live vaccine strain (LVS), and only 448 polymorphisms have been found within non-transposase-coding sequences whose homologs are intact in OSU18. Nonconservative differences between the two strains likely include the LVS attenuating mutation(s).
ESTHER : Petrosino_2006_J.Bacteriol_188_6977
PubMedSearch : Petrosino_2006_J.Bacteriol_188_6977
PubMedID: 16980500
Gene_locus related to this paper: fratt-q5ng35 , fratt-q5nga8 , fratt-q5ngu5 , fratu-q7wvf7

Title : The genome sequence of Mannheimia haemolytica A1: insights into virulence, natural competence, and Pasteurellaceae phylogeny - Gioia_2006_J.Bacteriol_188_7257
Author(s) : Gioia J , Qin X , Jiang H , Clinkenbeard K , Lo R , Liu Y , Fox GE , Yerrapragada S , McLeod MP , McNeill TZ , Hemphill L , Sodergren E , Wang Q , Muzny DM , Homsi FJ , Weinstock GM , Highlander SK
Ref : Journal of Bacteriology , 188 :7257 , 2006
Abstract : The draft genome sequence of Mannheimia haemolytica A1, the causative agent of bovine respiratory disease complex (BRDC), is presented. Strain ATCC BAA-410, isolated from the lung of a calf with BRDC, was the DNA source. The annotated genome includes 2,839 coding sequences, 1,966 of which were assigned a function and 436 of which are unique to M. haemolytica. Through genome annotation many features of interest were identified, including bacteriophages and genes related to virulence, natural competence, and transcriptional regulation. In addition to previously described virulence factors, M. haemolytica encodes adhesins, including the filamentous hemagglutinin FhaB and two trimeric autotransporter adhesins. Two dual-function immunoglobulin-protease/adhesins are also present, as is a third immunoglobulin protease. Genes related to iron acquisition and drug resistance were identified and are likely important for survival in the host and virulence. Analysis of the genome indicates that M. haemolytica is naturally competent, as genes for natural competence and DNA uptake signal sequences (USS) are present. Comparison of competence loci and USS in other species in the family Pasteurellaceae indicates that M. haemolytica, Actinobacillus pleuropneumoniae, and Haemophilus ducreyi form a lineage distinct from other Pasteurellaceae. This observation was supported by a phylogenetic analysis using sequences of predicted housekeeping genes.
ESTHER : Gioia_2006_J.Bacteriol_188_7257
PubMedSearch : Gioia_2006_J.Bacteriol_188_7257
PubMedID: 17015664
Gene_locus related to this paper: pasha-a7jrr2 , pasha-a7js08 , pasha-a7jsd4 , pasha-a7jsj9 , pasha-a7ju47 , pasmu-q9cjt9