d'Enfert C

References (3)

Title : Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88 - Pel_2007_Nat.Biotechnol_25_221
Author(s) : Pel HJ , de Winde JH , Archer DB , Dyer PS , Hofmann G , Schaap PJ , Turner G , de Vries RP , Albang R , Albermann K , Andersen MR , Bendtsen JD , Benen JA , van den Berg M , Breestraat S , Caddick MX , Contreras R , Cornell M , Coutinho PM , Danchin EG , Debets AJ , Dekker P , van Dijck PW , van Dijk A , Dijkhuizen L , Driessen AJ , d'Enfert C , Geysens S , Goosen C , Groot GS , de Groot PW , Guillemette T , Henrissat B , Herweijer M , van den Hombergh JP , van den Hondel CA , van der Heijden RT , van der Kaaij RM , Klis FM , Kools HJ , Kubicek CP , van Kuyk PA , Lauber J , Lu X , van der Maarel MJ , Meulenberg R , Menke H , Mortimer MA , Nielsen J , Oliver SG , Olsthoorn M , Pal K , van Peij NN , Ram AF , Rinas U , Roubos JA , Sagt CM , Schmoll M , Sun J , Ussery D , Varga J , Vervecken W , van de Vondervoort PJ , Wedler H , Wosten HA , Zeng AP , van Ooyen AJ , Visser J , Stam H
Ref : Nat Biotechnol , 25 :221 , 2007
Abstract : The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis.
ESTHER : Pel_2007_Nat.Biotechnol_25_221
PubMedSearch : Pel_2007_Nat.Biotechnol_25_221
PubMedID: 17259976
Gene_locus related to this paper: aspna-g3yal2 , aspnc-a2q8r7 , aspnc-a2q814 , aspnc-a2qb93 , aspnc-a2qbd3 , aspnc-a2qbh3 , aspnc-a2qbx7 , aspnc-a2qdj6 , aspnc-a2qe77 , aspnc-a2qf54 , aspnc-a2qfe9 , aspnc-a2qg33 , aspnc-a2qgj6 , aspnc-a2qgm6 , aspnc-a2qh52 , aspnc-a2qh76 , aspnc-a2qh85 , aspnc-a2qhe2 , aspnc-a2qi32 , aspnc-a2qib2 , aspnc-a2qk14 , aspnc-a2ql23 , aspnc-a2ql89 , aspnc-a2ql90 , aspnc-a2qla0 , aspnc-a2qlz0 , aspnc-a2qm14 , aspnc-a2qmk5 , aspnc-a2qms0 , aspnc-a2qn29 , aspnc-a2qn56 , aspnc-a2qn70 , aspnc-a2qnw9 , aspnc-a2qr21 , aspnc-a2qs22 , aspnc-a2qt50 , aspnc-a2qti9 , aspnc-a2qtz0 , aspnc-a2quc1 , aspnc-a2qw06 , aspnc-a2qwz6 , aspnc-a2qx92 , aspnc-a2qyf0 , aspnc-a2qys7 , aspnc-a2qz72 , aspnc-a2qzn6 , aspnc-a2qzr0 , aspnc-a2qzs1 , aspnc-a2qzx0 , aspnc-a2qzx4 , aspnc-a2r0p4 , aspnc-a2r0u0 , aspnc-a2r1p3 , aspnc-a2r1r5 , aspnc-a2r2i5 , aspnc-a2r2l0 , aspnc-a2r3s8 , aspnc-a2r4c0 , aspnc-a2r4j8 , aspnc-a2r5r4 , aspnc-a2r6g3 , aspnc-a2r6h5 , aspnc-a2r6h8 , aspnc-a2r7q1 , aspnc-a2r8r3 , aspnc-a2r8z3 , aspnc-a2r9y8 , aspnc-a2r032 , aspnc-a2r040 , aspnc-a2r273 , aspnc-a2r496 , aspnc-a2r502 , aspnc-a2ra07 , aspnc-a2rap4 , aspnc-a2raq2 , aspnc-a2rav1 , aspnc-a5aaf4 , aspnc-a5ab63 , aspnc-a5abc6 , aspnc-a5abe5 , aspnc-a5abe8 , aspnc-a5abf0 , aspnc-a5abh9 , aspnc-a5abk1 , aspnc-a5abt2 , aspnc-a5abz1 , aspnc-atg15 , aspnc-axe1 , aspnc-cuti1 , aspnc-cuti2 , aspnc-faec , aspng-a2q8w0 , aspng-a2qs46 , aspng-a2qst4 , aspng-a2qv27 , aspng-a2qzk9 , aspng-a2r0p8 , aspng-a2r225 , aspng-DAPB , aspng-DPP5 , aspng-faeb , aspni-APSC , aspni-EstA , aspni-FAEA , aspni-PAPA , aspkw-g7y0v7 , aspnc-a2qt47 , aspnc-a2qt66 , aspnc-a2r199 , aspnc-a2r871 , aspnc-a2qbp6 , aspnc-a2qqa1 , aspnc-a2qt70 , aspna-g3y5a6 , aspna-g3xpw9 , aspnc-a2qw57 , aspaw-a0a401kcz4 , aspna-alba , aspnc-kex1 , aspnc-cbpya , aspnc-a2qbg8

Title : Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae - Galagan_2005_Nature_438_1105
Author(s) : Galagan JE , Calvo SE , Cuomo C , Ma LJ , Wortman JR , Batzoglou S , Lee SI , Basturkmen M , Spevak CC , Clutterbuck J , Kapitonov V , Jurka J , Scazzocchio C , Farman M , Butler J , Purcell S , Harris S , Braus GH , Draht O , Busch S , d'Enfert C , Bouchier C , Goldman GH , Bell-Pedersen D , Griffiths-Jones S , Doonan JH , Yu J , Vienken K , Pain A , Freitag M , Selker EU , Archer DB , Penalva MA , Oakley BR , Momany M , Tanaka T , Kumagai T , Asai K , Machida M , Nierman WC , Denning DW , Caddick M , Hynes M , Paoletti M , Fischer R , Miller B , Dyer P , Sachs MS , Osmani SA , Birren BW
Ref : Nature , 438 :1105 , 2005
Abstract : The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution. It also led to an experimentally validated model of mating-type locus evolution, suggesting the potential for sexual reproduction in A. fumigatus and A. oryzae. Our analysis of sequence conservation revealed over 5,000 non-coding regions actively conserved across all three species. Within these regions, we identified potential functional elements including a previously uncharacterized TPP riboswitch and motifs suggesting regulation in filamentous fungi by Puf family genes. We further obtained comparative and experimental evidence indicating widespread translational regulation by upstream open reading frames. These results enhance our understanding of these widely studied fungi as well as provide new insight into eukaryotic genome evolution and gene regulation.
ESTHER : Galagan_2005_Nature_438_1105
PubMedSearch : Galagan_2005_Nature_438_1105
PubMedID: 16372000
Gene_locus related to this paper: emeni-axe1 , emeni-BST1 , emeni-c8vrl3 , emeni-CUTI3 , emeni-faec , emeni-ppme1 , emeni-q5aqv0 , emeni-q5ara9 , emeni-q5av79 , emeni-q5avd3 , emeni-q5awc7 , emeni-q5awq3 , emeni-q5awu9 , emeni-q5aww7 , emeni-q5ax50 , emeni-q5ay37 , emeni-q5ay57 , emeni-q5ayk9 , emeni-q5az32 , emeni-q5azl2 , emeni-q5azp1 , emeni-q5b1v2 , emeni-q5b2c1 , emeni-q5b3d2 , emeni-q5b5j7 , emeni-q5b7i6 , emeni-q5b8p6 , emeni-q5b9e7 , emeni-q5b246 , emeni-q5b446 , emeni-q5b602 , emeni-q5b938 , emeni-q5ba78 , emeni-q5bad3 , emeni-q5bar0 , emeni-q5bcd1 , emeni-q5bcd2 , emeni-q5bcf8 , emeni-q5bdr0 , emeni-q5beh9 , emeni-q5bgk7 , emeni-q7si80 , emeni-q5bdv9 , emeni-c8vu15 , 9euro-a0a3d8t644 , emeni-q5b719 , emeni-q5ax97 , emeni-tdia , emeni-afoc , emeni-dbae

Title : Glycerol dehydrogenase, encoded by gldB is essential for osmotolerance in Aspergillus nidulans - de Vries_2003_Mol.Microbiol_49_131
Author(s) : de Vries RP , Flitter SJ , van de Vondervoort PJ , Chaveroche MK , Fontaine T , Fillinger S , Ruijter GJ , d'Enfert C , Visser J
Ref : Molecular Microbiology , 49 :131 , 2003
Abstract : We have characterized the Aspergillus nidulans gldB gene encoding a NADP+-dependent glycerol dehydrogenase. A basal expression level was observed for gldB, which increased significantly under conditions of hyper-osmotic shock (1 M NaCl). Growth of strains in which gldB was disrupted was severely reduced on plates containing 1% glucose and 1 M NaCl, but these strains were able to grow on plates containing 1 M NaCl and 1% glycerol, arabitol, mannitol or erythritol. Uptake of these polyols compensated for the inability of the gldB disruptants to produce glycerol. Presence of 1% glucose in these plates prevented growth restoration by all the polyols tested with the exemption of glycerol, indicating that uptake of mannitol, arabitol and erythritol is subject to glucose repression, whereas uptake of glycerol is significantly less or not repressed. No intracellular glycerol dehydrogenase activity could be detected in the gldB disruption strains. Intracellular glycerol levels in these strains were strongly decreased compared to wild type, whereas intracellular mannitol, erythritol and arabitol levels were increased. Conidia of the gldB disruption strain did not accumulate glycerol upon germination in glucose media with or without 1 M NaCl and germ tube emergence was significantly delayed in this strain in the presence of 1 M NaCl in comparison to the wild type. These data indicate that gldB is essential for osmotolerance in A. nidulans and that the pathways for glycerol biosynthesis under osmotic stress differ between yeast and filamentous fungi.
ESTHER : de Vries_2003_Mol.Microbiol_49_131
PubMedSearch : de Vries_2003_Mol.Microbiol_49_131
PubMedID: 12823816