Dong Z

References (15)

Title : Probing the functional hotspots inside protein hydrophobic pockets by in situ photochemical trifluoromethylation and mass spectrometry - Lai_2024_Chem.Sci_15_2545
Author(s) : Lai C , Tang Z , Liu Z , Luo P , Zhang W , Zhang T , Dong Z , Liu X , Yang X , Wang F
Ref : Chem Sci , 15 :2545 , 2024
Abstract : Due to the complex high-order structures and interactions of proteins within an aqueous solution, a majority of chemical functionalizations happen on the hydrophilic sites of protein external surfaces which are naturally exposed to the solution. However, the hydrophobic pockets inside proteins are crucial for ligand binding and function as catalytic centers and transporting tunnels. Herein, we describe a reagent pre-organization and in situ photochemical trifluoromethylation strategy to profile the functional sites inside the hydrophobic pockets of native proteins. Unbiased mass spectrometry profiling was applied for the characterization of trifluoromethylated sites with high sensitivity. Native proteins including myoglobin, trypsin, haloalkane dehalogenase, and human serum albumin have been engaged in this mild photochemical process and substantial hydrophobic site-specific and structure-selective trifluoromethylation substitutes are obtained without significant interference to their bioactivity and structures. Sodium triflinate is the only reagent required to functionalize the unprotected proteins with wide pH-range tolerance and high biocompatibility. This "in-pocket" activation model provides a general strategy to modify the potential binding pockets and gain essential structural insights into the functional hotspots inside protein hydrophobic pockets.
ESTHER : Lai_2024_Chem.Sci_15_2545
PubMedSearch : Lai_2024_Chem.Sci_15_2545
PubMedID: 38362424

Title : ABHD6 drives endocytosis of AMPA receptors to regulate synaptic plasticity and learning flexibility - Wei_2023_Prog.Neurobiol__102559
Author(s) : Wei M , Yang L , Su F , Liu Y , Zhao X , Luo L , Sun X , Liu S , Dong Z , Zhang Y , Shi YS , Liang J , Zhang C
Ref : Prog Neurobiol , :102559 , 2023
Abstract : Trafficking of alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs), mediated by AMPAR interacting proteins, enabled neurons to maintain tuning capabilities at rest or active state. alpha/beta-Hydrolase domain-containing 6 (ABHD6), an endocannabinoid hydrolase, was an AMPAR auxiliary subunit found to negatively regulate the surface delivery of AMPARs. While ABHD6 was found to prevent AMPAR tetramerization in endoplasmic reticulum, ABHD6 was also reported to localize at postsynaptic site. Yet, the role of ABHD6 interacting with AMPAR at postsynaptic site, and the physiological significance of ABHD6 regulating AMPAR trafficking remains elusive. Here, we generated the ABHD6 knockout (ABHD6(KO)) mice and found that deletion of ABHD6 selectively enhanced AMPAR-mediated basal synaptic responses and the surface expression of postsynaptic AMPARs. Furthermore, we found that loss of ABHD6 impaired hippocampal long-term depression (LTD) and synaptic downscaling in hippocampal synapses. AMPAR internalization assays revealed that ABHD6 was essential for neuronal activity-dependent endocytosis of surface AMPARs, which is independent of ABHD6's hydrolase activity. The defects of AMPAR endocytosis and LTD are expressed as deficits in learning flexibility in ABHD6(KO) mice. Collectively, we demonstrated that ABHD6 is an endocytic accessory protein promoting AMPAR endocytosis, thereby contributes to the formation of LTD, synaptic downscaling and reversal learning.
ESTHER : Wei_2023_Prog.Neurobiol__102559
PubMedSearch : Wei_2023_Prog.Neurobiol__102559
PubMedID: 38159878
Gene_locus related to this paper: human-ABHD6 , mouse-ABHD6

Title : Cathepsins in oral diseases: mechanisms and therapeutic implications - Jiang_2023_Front.Immunol_14_1203071
Author(s) : Jiang H , Dong Z , Xia X , Li X
Ref : Front Immunol , 14 :1203071 , 2023
Abstract : Cathepsins are a type of lysosomal globulin hydrolase and are crucial for many physiological processes, including the resorption of bone matrix, innate immunity, apoptosis, proliferation, metastasis, autophagy, and angiogenesis. Findings regarding their functions in human physiological processes and disorders have drawn extensive attention. In this review, we will focus on the relationship between cathepsins and oral diseases. We highlight the structural and functional properties of cathepsins related to oral diseases, as well as the regulatory mechanisms in tissue and cells and their therapeutic uses. Elucidating the associated mechanism between cathepsins and oral diseases is thought to be a promising strategy for the treatment of oral diseases and may be a starting point for further studies at the molecular level.
ESTHER : Jiang_2023_Front.Immunol_14_1203071
PubMedSearch : Jiang_2023_Front.Immunol_14_1203071
PubMedID: 37334378

Title : Production of Rhizopus oryzae lipase using optimized Yarrowia lipolytica expression system - Vidal_2023_FEMS.Yeast.Res_23_
Author(s) : Vidal L , Dong Z , Olofsson K , Nordberg Karlsson E , Nicaud JM
Ref : FEMS Yeast Res , 23 : , 2023
Abstract : Yarrowia lipolytica is an alternative yeast for heterologous protein production. Based on auto-cloning vectors, a set of 18 chromogenic cloning vectors was developed, each containing one of the excisable auxotrophic selective markers URA3ex, LYS5ex, and LEU2ex, and one of six different promoters: the constitutive pTEF, the phase dependent hybrid pHp4d, and the erythritol-inducible promoters from pEYK1 and pEYL1 derivatives. These vectors allowed to increase the speed of cloning of the gene of interest. In parallel, an improved new rProt recipient strain JMY8647 was developed by abolishing filamentation and introducing an auxotrophy for lysine (Lys-), providing an additional marker for genetic engineering. Using this cloning strategy, the optimal targeting sequence for Rhizopus oryzae ROL lipase secretion was determined. Among the eight targeting sequences, the SP6 signal sequence resulted in a 23% improvement in the lipase activity compared to that obtained with the wild-type ROL signal sequence. Higher specific lipase activities were obtained using hybrid erythritol-inducible promoters pHU8EYK and pEYL1-5AB, 1.9 and 2.2 times, respectively, when compared with the constitutive pTEF promoter. Two copy strains produce a 3.3 fold increase in lipase activity over the pTEF monocopy strain (266.7 versus 79.7 mU/mg).
ESTHER : Vidal_2023_FEMS.Yeast.Res_23_
PubMedSearch : Vidal_2023_FEMS.Yeast.Res_23_
PubMedID: 37496194

Title : Gut microbiome helps honeybee (Apis mellifera) resist the stress of toxic nectar plant (Bidens pilosa) exposure: Evidence for survival and immunity - Tang_2023_Environ.Microbiol__
Author(s) : Tang Q , Li W , Wang Z , Dong Z , Li X , Li J , Huang Q , Cao Z , Gong W , Zhao Y , Wang M , Guo J
Ref : Environ Microbiol , : , 2023
Abstract : Honeybee (Apis mellifera) ingestion of toxic nectar plants can threaten their health and survival. However, little is known about how to help honeybees mitigate the effects of toxic nectar plant poisoning. We exposed honeybees to different concentrations of Bidens pilosa flower extracts and found that B. pilosa exposure significantly reduced honeybee survival in a dose-dependent manner. By measuring changes in detoxification and antioxidant enzymes and the gut microbiome, we found that superoxide dismutase, glutathione-S-transferase and carboxylesterase activities were significantly activated with increasing concentrations of B. pilosa and that different concentrations of B. pilosa exposure changed the structure of the honeybee gut microbiome, causing a significant reduction in the abundance of Bartonella (p < 0.001) and an increase in Lactobacillus. Importantly, by using Germ-Free bees, we found that colonization by the gut microbes Bartonella apis and Apilactobacillus kunkeei (original classification as Lactobacillus kunkeei) significantly increased the resistance of honeybees to B. pilosa and significantly upregulated bee-associated immune genes. These results suggest that honeybee detoxification systems possess a level of resistance to the toxic nectar plant B. pilosa and that the gut microbes B. apis and A. kunkeei may augment resistance to B. pilosa stress by improving host immunity.
ESTHER : Tang_2023_Environ.Microbiol__
PubMedSearch : Tang_2023_Environ.Microbiol__
PubMedID: 37291689

Title : Fluorescence-activated droplet sorting of PET degrading microorganisms - Qiao_2022_J.Hazard.Mater_424_127417
Author(s) : Qiao Y , Hu R , Chen D , Wang L , Wang Z , Yu H , Fu Y , Li C , Dong Z , Weng YX , Du W
Ref : J Hazard Mater , 424 :127417 , 2022
Abstract : Enzymes that can decompose synthetic plastics such as polyethylene terephthalate (PET) are urgently needed. Still, a bottleneck remains due to a lack of techniques for detecting and sorting environmental microorganisms with vast diversity and abundance. Here, we developed a fluorescence-activated droplet sorting (FADS) pipeline for high-throughput screening of PET-degrading microorganisms or enzymes (PETases). The pipeline comprises three steps: generation and incubation of droplets encapsulating single cells, picoinjection of fluorescein dibenzoate (FDBz) as the fluorogenic probe, and screening of droplets to obtain PET-degrading cells. We characterized critical factors associated with this method, including specificity and sensitivity for discriminating PETase from other enzymes. We then optimized its performance and compatibility with environmental samples. The system was used to screen a wastewater sample from a PET textile mill. We successfully obtained PET-degrading species from nine different genera. Moreover, two putative PETases from isolates Kineococcus endophyticus Un-5 and Staphylococcus epidermidis Un-C2-8 were genetically derived, heterologously expressed, and preliminarily validated for PET-degrading activities. We speculate that the FADS pipeline can be widely adopted to discover new plastic-degrading microorganisms and enzymes in various environments and may be utilized in the directed evolution of degrading enzymes using synthetic biology.
ESTHER : Qiao_2022_J.Hazard.Mater_424_127417
PubMedSearch : Qiao_2022_J.Hazard.Mater_424_127417
PubMedID: 34673397

Title : Isolation and Identification of Efficient Malathion-Degrading Bacteria from Deep-Sea Hydrothermal Sediment - Ma_2022_Microorganisms_10_
Author(s) : Ma L , Dai X , Ai G , Zheng X , Zhang Y , Pan C , Hu M , Jiang C , Wang L , Dong Z
Ref : Microorganisms , 10 : , 2022
Abstract : The genetic and metabolic diversity of deep-sea microorganisms play important roles in phosphorus and sulfur cycles in the ocean, distinguishing them from terrestrial counterparts. Malathion is a representative organophosphorus component in herbicides, pesticides, and insecticides and is analogues of neurotoxic agent. Malathion has been one of the best-selling generic organophosphate insecticides from 1980 to 2012. Most of the sprayed malathion has migrated by surface runoff to ocean sinks, and it is highly toxic to aquatic organisms. Hitherto, there is no report on bacterial cultures capable of degrading malathion isolated from deep-sea sediment. In this study, eight bacterial strains, isolated from sediments from deep-sea hydrothermal regions, were identified as malathion degradators. Two of the tested strains, Pseudidiomarina homiensis strain FG2 and Pseudidiomarina sp. strain CB1, can completely degrade an initial concentration of 500 mg/L malathion within 36 h. Since the two strains have abundant carboxylesterases (CEs) genes, malathion monocarboxylic acid (MMC alpha and MMC beta) and dibasic carboxylic acid were detected as key intermediate metabolites of malathion degradation, and the pathway of malathion degradation between the two strains was identified as a passage from malathion monocarboxylic acid to malathion dicarboxylic acid.
ESTHER : Ma_2022_Microorganisms_10_
PubMedSearch : Ma_2022_Microorganisms_10_
PubMedID: 36144399

Title : Integrative assessment of biomarker responses in Mytilus galloprovincialis exposed to seawater acidification and copper ions - Qu_2022_Sci.Total.Environ_851_158146
Author(s) : Qu Y , Zhang T , Zhang R , Wang X , Zhang Q , Wang Q , Dong Z , Zhao J
Ref : Sci Total Environ , 851 :158146 , 2022
Abstract : The interactive effects of ocean acidification (OA) and copper (Cu) ions on the mussel Mytilus galloprovincialis are not well understood. The underlying mechanisms also remain obscure. In this study, individuals of M. galloprovincialis were exposed for 28 days to 25 microg/L and 50 microg/L Cu ions at two pH levels (ambient level - pH 8.1; acidified level - pH 7.6). The mussels were then monitored for 56 days to determine their recovery ability. Physiological parameters (clearance rate and respiration rate), oxidative stress and neurotoxicity biomarkers (activities of superoxide dismutase, lipid peroxidation, catalase, and acetylcholinesterase), as well as the recovery ability of these parameters, were investigated in two typical tissues (i.e., gills and digestive glands). Results showed that (1) OA affected the bioconcentration of Cu in the gills and digestive glands of the mussels; (2) both OA and Cu can lead to physiological disturbance, oxidative stress, cellular damage, energy metabolism disturbance, and neurotoxicity on M. galloprovincialis; (3) gill is more sensitive to OA and Cu than digestive gland; (4) Most of the biochemical and physiological alternations caused by Cu and OA exposures in M. galloprovincialis can be repaired by the recovery experiments; (5) integrated biomarker response (IBR) analysis demonstrated that both OA and Cu ions exposure caused survival stresses to the mussels, with the highest effect shown in the co-exposure treatment. This study highlights the necessity to include OA along with pollutants in future studies to better elucidate the risks of ecological perturbations. The work also sheds light on the recovery of marine animals after short-term environmental stresses when the natural environment has recovered.
ESTHER : Qu_2022_Sci.Total.Environ_851_158146
PubMedSearch : Qu_2022_Sci.Total.Environ_851_158146
PubMedID: 35987231

Title : Investigation of Structural Features of Two Related Lipases and the Impact on Fatty Acid Specificity in Vegetable Fats - Dong_2022_Int.J.Mol.Sci_23_
Author(s) : Dong Z , Olofsson K , Linares-Pasten JA , Nordberg Karlsson E
Ref : Int J Mol Sci , 23 : , 2022
Abstract : One of the indispensable applications of lipases in modification of oils and fats is the possibility to tailor the fatty acid content of triacylglycerols (TAGs), to meet specific requirements from various applications in food, nutrition, and cosmetic industries. Oleic acid (C18:1) and stearic acid (C18:0) are two common long fatty acids in the side chain of triglycerides in plant fats and oils that have similar chemical composition and structures, except for an unsaturated bond between C9 and C10 in oleic acid. Two lipases from Rhizomucor miehei (RML) and Rhizopus oryzae (ROL), show activity in reactions involving oleate and stearate, and share high sequence and structural identity. In this research, the preference for one of these two similar fatty acid side chains was investigated for the two lipases and was related to the respective enzyme structure. From transesterification reactions with 1:1 (molar ratio) mixed ethyl stearate (ES) and ethyl oleate (EO), both RML and ROL showed a higher activity towards EO than ES, but RML showed around 10% higher preference for ES compared with ROL. In silico results showed that stearate has a less stable interaction with the substrate binding crevice in both RML and ROL and higher tendency to freely move out of the substrate binding region, compared with oleate whose structure is more rigid due to the existence of the double bond. However, Trp88 from RML which is an Ala at the identical position in ROL shows a significant stabilization effect in the substrate interaction in RML, especially with stearate as a ligand.
ESTHER : Dong_2022_Int.J.Mol.Sci_23_
PubMedSearch : Dong_2022_Int.J.Mol.Sci_23_
PubMedID: 35806072

Title : Seawater acidification increases copper toxicity: A multi-biomarker approach with a key marine invertebrate, the Pacific Oyster Crassostrea gigas - Cao_2019_Aquat.Toxicol_210_167
Author(s) : Cao R , Zhang T , Li X , Zhao Y , Wang Q , Yang D , Qu Y , Liu H , Dong Z , Zhao J
Ref : Aquat Toxicol , 210 :167 , 2019
Abstract : Ocean acidification (OA) has been found to increase the release of free Cu(2+) in seawater. However, only a handful of studies have investigated the influence of OA on Cu accumulation and cellular toxicity in bivalve species. In this study, Pacific oysters, Crassostrea gigas, were exposed to 25 mug/L Cu(2+) at three pH levels (8.1, 7.8 and 7.6) for 14 and 28 days. Physiological and histopathological parameters [(clearance rate (CR), respiration rate (RR), histopathological damage and condition index (CI)), oxidative stress and neurotoxicity biomarkers [superoxide dismutase (SOD) and glutathione transferase (GST) activities, lipid peroxidation (LPO) and acetylcholinesterase (AChE) activity], combined with glycolytic enzyme activities [pyruvate kinase (PK) and hexokinase (HK)] were investigated in C. gigas. The bioconcentration of Cu was increased in soft tissues of Cu-exposed oysters under OA. Our results suggest that both OA and Cu could lead to physiological disturbance, oxidative stress, cellular damage, disturbance in energy metabolism and neurotoxicity in oysters. The inhibited CR, increased glycolytic enzymes activities and decreased CI suggested that the energy metabolism strategy adopted by oysters was not sustainable in the long term. Furthermore, integrated biomarker response (IBR) results found that OA and Cu exposure lead to severe stress to oysters, and co-exposure was the most stressful condition. Results from this study highlight the need to include OA in future environmental assessments of pollutants and hazardous materials to better elucidate the risks of those environmental perturbations.
ESTHER : Cao_2019_Aquat.Toxicol_210_167
PubMedSearch : Cao_2019_Aquat.Toxicol_210_167
PubMedID: 30870663

Title : The convenient Michael addition of imidazoles to acrylates catalyzed by Lipozyme TL IM from Thermomyces lanuginosus in a continuous flow microreactor - Du_2019_Org.Biomol.Chem_17_807
Author(s) : Du LH , Dong Z , Long RJ , Chen PF , Xue M , Luo XP
Ref : Org Biomol Chem , 17 :807 , 2019
Abstract : A fast and green protocol for the Michael addition of imidazoles to acrylates catalyzed by Lipozyme TL IM from Thermomyces lanuginosus in a continuous flow microreactor was developed. In contrast with existing methods, this method is simple (35 min), uses mild reaction conditions (45 degreeC) and is environmentally friendly. This enzymatic Michael addition performed in continuous flow microreactors is an innovation that may open up the use of enzymatic microreactors in imidazole analogue biotransformations.
ESTHER : Du_2019_Org.Biomol.Chem_17_807
PubMedSearch : Du_2019_Org.Biomol.Chem_17_807
PubMedID: 30629063

Title : Comparative transcriptome reveals the potential modulation mechanisms of estradiol affecting ovarian development of female Portunus trituberculatus - Liu_2019_PLoS.One_14_e0226698
Author(s) : Liu M , Pan J , Dong Z , Cheng Y , Gong J , Wu X
Ref : PLoS ONE , 14 :e0226698 , 2019
Abstract : Estradiol is an important sex steroid hormone that is involved in the regulation of crustacean ovarian development. However, the molecular regulatory mechanisms of estradiol on ovarian development are largely unknown. This study performed transcriptome sequencing of ovary, hepatopancreas, brain ganglion, eyestalk, and mandibular organ of crabs after estradiol treatment (0.1mug g-1 crab weight). A total of 23, 806 genes were annotated, and 316, 1300, 669, 142, 383 genes were expressed differently in ovary, hepatopancreas, brain ganglion, eyestalk, and mandibular organ respectively. Differentially expressed gene enrichment analysis revealed several crucial pathways including protein digestion and absorption, pancreatic secretion, insect hormone biosynthesis, drug metabolism-cytochrome P450 and signal transduction pathway. Through this study, some key genes in correlation with the ovarian development and nutrition metabolism were significantly affected by estradiol, such as vitelline membrane outer layer 1-like protein, heat shock protein 70, Wnt5, JHE-like carboxylesterase 1, cytochrome P302a1, crustacean hyperglycemic hormone, neuropeptide F2, trypsin, carboxypeptidase B, pancreatic triacylglycerol lipase-like, and lipid storage droplet protein. Moreover, RT-qPCR validation demonstrated that expression of transcripts related to ovarian development (vitelline membrane outer layer 1-like protein and cytochrome P302a1) and nutrition metabolism (trypsin, glucose dehydrogenase and lipid storage droplet protein) were significantly affected by estradiol treatment. This study not only has identified relevant genes and several pathways that are involved in estradiol regulation on ovarian development of P. trituberculatus, but also provided new insight into the understanding of the molecular function mechanisms of estradiol in crustacean.
ESTHER : Liu_2019_PLoS.One_14_e0226698
PubMedSearch : Liu_2019_PLoS.One_14_e0226698
PubMedID: 31856263

Title : Expression, purification and characterization of a functional, recombinant, cold-active lipase (LipA) from psychrotrophic Yersinia enterocolitica - Ji_2015_Protein.Expr.Purif_115_125
Author(s) : Ji X , Li S , Wang B , Zhang Q , Lin L , Dong Z , Wei Y
Ref : Protein Expr Purif , 115 :125 , 2015
Abstract : A novel cold-active lipase gene encoding 294 amino acid residues was obtained from the Yersinia enterocolitica strain KM1. Sequence alignment and phylogenetic analysis revealed that this novel lipase is a new member of the bacterial lipase family I.1. The lipase shares the conserved GXSXG motif and catalytic triad Ser85-Asp239-His261. The recombinant protein LipA was solubly and heterogeneously expressed in Escherichia coli, purified by Ni-affinity chromatography, and then characterized. LipA was active over a broad range spanning 15-60 degrees C with an optimum activity at 25 degrees C and across a wide pH range from 5.0 to 11.0 with an optimum activity at pH 7.5. The molecular weight was estimated to be 34.2KDa. The lipase could be activated by Mg(2+) and a low concentration (10%) of ethanol, dimethyl sulfoxide, methanol and acetonitrile, whereas it was strongly inhibited by Zn(2+), Cu(2+) and Mn(2+). This cold-active lipase may be a good candidate for detergents and biocatalysts at low temperature.
ESTHER : Ji_2015_Protein.Expr.Purif_115_125
PubMedSearch : Ji_2015_Protein.Expr.Purif_115_125
PubMedID: 26256062

Title : Draft genome of the wheat A-genome progenitor Triticum urartu - Ling_2013_Nature_496_87
Author(s) : Ling HQ , Zhao S , Liu D , Wang J , Sun H , Zhang C , Fan H , Li D , Dong L , Tao Y , Gao C , Wu H , Li Y , Cui Y , Guo X , Zheng S , Wang B , Yu K , Liang Q , Yang W , Lou X , Chen J , Feng M , Jian J , Zhang X , Luo G , Jiang Y , Liu J , Wang Z , Sha Y , Zhang B , Tang D , Shen Q , Xue P , Zou S , Wang X , Liu X , Wang F , Yang Y , An X , Dong Z , Zhang K , Luo MC , Dvorak J , Tong Y , Yang H , Li Z , Wang D , Zhang A
Ref : Nature , 496 :87 , 2013
Abstract : Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m)A(m)), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.
ESTHER : Ling_2013_Nature_496_87
PubMedSearch : Ling_2013_Nature_496_87
PubMedID: 23535596
Gene_locus related to this paper: triua-m8a764 , triua-m8ag96 , triua-m7zp69 , wheat-w5d1z6 , wheat-w5d232 , wheat-w5bnf5 , triua-t1nm05 , wheat-w5cae4 , triua-m7ytf7 , wheat-w5f1j8 , triua-m8ad49 , wheat-a0a077s1q2 , wheat-a0a3b6c2m6 , triua-m7zi26 , wheat-a0a3b6at77 , wheat-a0a3b6atp7

Title : Modulation of differentiation-related gene 1 expression by cell cycle blocker mimosine, revealed by proteomic analysis - Dong_2005_Mol.Cell.Proteomics_4_993
Author(s) : Dong Z , Arnold RJ , Yang Y , Park MH , Hrncirova P , Mechref Y , Novotny MV , Zhang JT
Ref : Mol Cell Proteomics , 4 :993 , 2005
Abstract : L-mimosine, a plant amino acid, can reversibly block mammalian cells at late G1 phase and has been found to affect translation of mRNAs of the cyclin-dependent kinase inhibitor p27, eIF3a (eIF3 p170), and ribonucleotide reductase M2. The effect of mimosine on the expression of these genes may be essential for the G1 phase arrest. To determine additional genes that may be early respondents to the mimosine treatment, we performed two-dimensional gel electrophoretic analysis of [35S]methionine-labeled cell lysates followed by identification of the altered protein spots by LC-tandem mass spectrometry. In this study, the synthesis of two protein spots (MIP42 and MIP17) was found to be enhanced by mimosine, whereas the formation of another protein spot (MSP17) was severely blocked following mimosine treatment. These protein spots, MIP42, MIP17, and MSP17, were identified to be differentiation-related gene 1 (Drg-1; also called RTP, cap43, rit42, Ndrg-1, and PROXY-1), deoxyhypusine-containing eIF5A intermediate, and mature hypusine-containing eIF5A, respectively. The effect of mimosine on eIF5A maturation was due to inhibition of deoxyhypusine hydroxylase, the enzyme catalyzing the final step of hypusine biosynthesis in eIF5A. The mimosine-induced expression of Drg-1 was mainly attributable to increased transcription likely by the c-Jun/AP-1 transcription factor. Because induction of Drg-1 is an early event after mimosine treatment and is observed before a notable reduction in the steady-state level of mature eIF5A, eIF5A does not appear to be involved in the modulation of Drg-1 expression.
ESTHER : Dong_2005_Mol.Cell.Proteomics_4_993
PubMedSearch : Dong_2005_Mol.Cell.Proteomics_4_993
PubMedID: 15855174