Mockler TC

References (2)

Title : Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.) - Ming_2013_Genome.Biol_14_R41
Author(s) : Ming R , VanBuren R , Liu Y , Yang M , Han Y , Li LT , Zhang Q , Kim MJ , Schatz MC , Campbell M , Li J , Bowers JE , Tang H , Lyons E , Ferguson AA , Narzisi G , Nelson DR , Blaby-Haas CE , Gschwend AR , Jiao Y , Der JP , Zeng F , Han J , Min XJ , Hudson KA , Singh R , Grennan AK , Karpowicz SJ , Watling JR , Ito K , Robinson SA , Hudson ME , Yu Q , Mockler TC , Carroll A , Zheng Y , Sunkar R , Jia R , Chen N , Arro J , Wai CM , Wafula E , Spence A , Xu L , Zhang J , Peery R , Haus MJ , Xiong W , Walsh JA , Wu J , Wang ML , Zhu YJ , Paull RE , Britt AB , Du C , Downie SR , Schuler MA , Michael TP , Long SP , Ort DR , Schopf JW , Gang DR , Jiang N , Yandell M , dePamphilis CW , Merchant SS , Paterson AH , Buchanan BB , Li S , Shen-Miller J
Ref : Genome Biol , 14 :R41 , 2013
Abstract : BACKGROUND: Sacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan. RESULTS: The genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101x and 5.2x. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment. CONCLUSIONS: The slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.
ESTHER : Ming_2013_Genome.Biol_14_R41
PubMedSearch : Ming_2013_Genome.Biol_14_R41
PubMedID: 23663246
Gene_locus related to this paper: nelnu-a0a1u8aj84 , nelnu-a0a1u8bpe4 , nelnu-a0a1u7z9m9 , nelnu-a0a1u7ywy5 , nelnu-a0a1u8aik2 , nelnu-a0a1u7zmb5 , nelnu-a0a1u8a7m7 , nelnu-a0a1u8b0n9 , nelnu-a0a1u8b461 , nelnu-a0a1u7zzj3 , nelnu-a0a1u8ave7 , nelnu-a0a1u7yn26

Title : Genome sequencing and analysis of the model grass Brachypodium distachyon. -
Author(s) : Vogel JP , Garvin DF , Mockler TC , Schmutz J , Rokhsar D , Bevan MW , Barry K , Lucas S , Harmon-Smith M , Lail K , Tice H , Grimwood J , McKenzie N , Huo N , Gu YQ , Lazo GR , Anderson OD , You FM , Luo MC , Dvorak J , Wright J , Febrer M , Idziak D , Hasterok R , Lindquist E , Wang M , Fox SE , Priest HD , Filichkin SA , Givan SA , Bryant DW , Chang JH , Wu H , Wu W , Hsia AP , Schnable PS , Kalyanaraman A , Barbazuk B , Michael TP , Hazen SP , Bragg JN , Laudencia-Chingcuanco D , Weng Y , Haberer G , Spannagl M , Mayer K , Rattei T , Mitros T , Lee SJ , Rose JK , Mueller LA , York TL , Wicker T , Buchmann JP , Tanskanen J , Schulman AH , Gundlach H , Bevan M , de Oliveira AC , Maia Lda C , Belknap W , Jiang N , Lai J , Zhu L , Ma J , Sun C , Pritham E , Salse J , Murat F , Abrouk M , Bruggmann R , Messing J , Fahlgren N , Sullivan CM , Carrington JC , Chapman EJ , May GD , Zhai J , Ganssmann M , Gurazada SG , German M , Meyers BC , Green PJ , Tyler L , Wu J , Thomson J , Chen S , Scheller HV , Harholt J , Ulvskov P , Kimbrel JA , Bartley LE , Cao P , Jung KH , Sharma MK , Vega-Sanchez M , Ronald P , Dardick CD , De Bodt S , Verelst W , Inz D , Heese M , Schnittger A , Yang X , Kalluri UC , Tuskan GA , Hua Z , Vierstra RD , Cui Y , Ouyang S , Sun Q , Liu Z , Yilmaz A , Grotewold E , Sibout R , Hematy K , Mouille G , Hofte H , Michael T , Pelloux J , O'Connor D , Schnable J , Rowe S , Harmon F , Cass CL , Sedbrook JC , Byrne ME , Walsh S , Higgins J , Li P , Brutnell T , Unver T , Budak H , Belcram H , Charles M , Chalhoub B , Baxter I
Ref : Nature , 463 :763 , 2010
PubMedID: 20148030
Gene_locus related to this paper: bradi-i1grm0 , bradi-i1gx82 , bradi-i1hb80 , bradi-i1hkv6 , bradi-i1hpu6 , bradi-i1i3e4 , bradi-i1i9i0 , bradi-i1i435 , bradi-i1ix93 , bradi-i1gsk6 , bradi-i1hk44 , bradi-i1hk45 , bradi-i1hnk7 , bradi-i1hsd5 , bradi-i1huy4 , bradi-i1huy9 , bradi-i1huz0 , bradi-i1gxx9 , bradi-i1hl25 , bradi-i1hcw7 , bradi-i1hyv6 , bradi-i1hyb5 , bradi-i1hvr8 , bradi-i1hmu2 , bradi-i1hf05 , bradi-i1gry7 , bradi-i1hf06 , bradi-i1i5z8 , bradi-i1icy3 , bradi-i1j1h3 , bradi-i1h1e3 , bradi-i1hvr9 , bradi-a0a0q3r7i7 , bradi-i1i377 , bradi-i1hjg5 , bradi-i1h3i9 , bradi-i1gsg5 , bradi-a0a0q3mph9 , bradi-i1h682 , bradi-a0a0q3lc91 , bradi-i1gx49 , bradi-i1i839 , bradi-a0a2k2dsp5 , bradi-i1gsb5