Spannagl M

References (6)

Title : Ancient hybridizations among the ancestral genomes of bread wheat - Marcussen_2014_Science_345_1250092
Author(s) : Marcussen T , Sandve SR , Heier L , Spannagl M , Pfeifer M , Jakobsen KS , Wulff BB , Steuernagel B , Mayer KF , Olsen OA
Ref : Science , 345 :1250092 , 2014
Abstract : The allohexaploid bread wheat genome consists of three closely related subgenomes (A, B, and D), but a clear understanding of their phylogenetic history has been lacking. We used genome assemblies of bread wheat and five diploid relatives to analyze genome-wide samples of gene trees, as well as to estimate evolutionary relatedness and divergence times. We show that the A and B genomes diverged from a common ancestor ~7 million years ago and that these genomes gave rise to the D genome through homoploid hybrid speciation 1 to 2 million years later. Our findings imply that the present-day bread wheat genome is a product of multiple rounds of hybrid speciation (homoploid and polyploid) and lay the foundation for a new framework for understanding the wheat genome as a multilevel phylogenetic mosaic.
ESTHER : Marcussen_2014_Science_345_1250092
PubMedSearch : Marcussen_2014_Science_345_1250092
PubMedID: 25035499
Gene_locus related to this paper: horvv-m0utz9 , wheat-a0a3b6c2m6 , wheat-a0a3b5zwb6 , wheat-a0a3b6bzs8 , wheat-a0a1d5zte7 , wheat-a0a1d5uwn5

Title : Analysis of the bread wheat genome using whole-genome shotgun sequencing - Brenchley_2012_Nature_491_705
Author(s) : Brenchley R , Spannagl M , Pfeifer M , Barker GL , D'Amore R , Allen AM , McKenzie N , Kramer M , Kerhornou A , Bolser D , Kay S , Waite D , Trick M , Bancroft I , Gu Y , Huo N , Luo MC , Sehgal S , Gill B , Kianian S , Anderson O , Kersey P , Dvorak J , McCombie WR , Hall A , Mayer KF , Edwards KJ , Bevan MW , Hall N
Ref : Nature , 491 :705 , 2012
Abstract : Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop.
ESTHER : Brenchley_2012_Nature_491_705
PubMedSearch : Brenchley_2012_Nature_491_705
PubMedID: 23192148
Gene_locus related to this paper: aegta-r7w1w2 , wheat-w5asu5 , wheat-w5caq3 , wheat-w5a8u5 , wheat-a0a080yuw6 , wheat-w5d1z6 , wheat-w5d232 , wheat-w5fha9 , wheat-w5d425 , wheat-w5bnf5 , wheat-w5dsp5 , wheat-w5ia79 , wheat-w5f9d9 , wheat-w4zq98 , wheat-w5cae4 , aegta-r7w4e1 , wheat-w5gam9 , wheat-w5h0x4 , wheat-w5bda5 , wheat-w5cqa5 , wheat-w5ggq1 , wheat-w5h2c8 , wheat-w5f1j8 , wheat-a0a077rex4 , wheat-a0a1d5vkr8 , wheat-a0a1d5wx81 , wheat-a0a1d5zjt9 , wheat-a0a1d6adr6 , wheat-a0a1d6axb7 , wheat-a0a1d6s980 , wheat-a0a1d6sag1

Title : The Medicago genome provides insight into the evolution of rhizobial symbioses - Young_2011_Nature_480_520
Author(s) : Young ND , Debelle F , Oldroyd GE , Geurts R , Cannon SB , Udvardi MK , Benedito VA , Mayer KF , Gouzy J , Schoof H , Van de Peer Y , Proost S , Cook DR , Meyers BC , Spannagl M , Cheung F , De Mita S , Krishnakumar V , Gundlach H , Zhou S , Mudge J , Bharti AK , Murray JD , Naoumkina MA , Rosen B , Silverstein KA , Tang H , Rombauts S , Zhao PX , Zhou P , Barbe V , Bardou P , Bechner M , Bellec A , Berger A , Berges H , Bidwell S , Bisseling T , Choisne N , Couloux A , Denny R , Deshpande S , Dai X , Doyle JJ , Dudez AM , Farmer AD , Fouteau S , Franken C , Gibelin C , Gish J , Goldstein S , Gonzalez AJ , Green PJ , Hallab A , Hartog M , Hua A , Humphray SJ , Jeong DH , Jing Y , Jocker A , Kenton SM , Kim DJ , Klee K , Lai H , Lang C , Lin S , Macmil SL , Magdelenat G , Matthews L , McCorrison J , Monaghan EL , Mun JH , Najar FZ , Nicholson C , Noirot C , O'Bleness M , Paule CR , Poulain J , Prion F , Qin B , Qu C , Retzel EF , Riddle C , Sallet E , Samain S , Samson N , Sanders I , Saurat O , Scarpelli C , Schiex T , Segurens B , Severin AJ , Sherrier DJ , Shi R , Sims S , Singer SR , Sinharoy S , Sterck L , Viollet A , Wang BB , Wang K , Wang M , Wang X , Warfsmann J , Weissenbach J , White DD , White JD , Wiley GB , Wincker P , Xing Y , Yang L , Yao Z , Ying F , Zhai J , Zhou L , Zuber A , Denarie J , Dixon RA , May GD , Schwartz DC , Rogers J , Quetier F , Town CD , Roe BA
Ref : Nature , 480 :520 , 2011
Abstract : Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing approximately 94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.
ESTHER : Young_2011_Nature_480_520
PubMedSearch : Young_2011_Nature_480_520
PubMedID: 22089132
Gene_locus related to this paper: medtr-b7fki4 , medtr-b7fmi1 , medtr-g7itl1 , medtr-g7iu67 , medtr-g7izm0 , medtr-g7j641 , medtr-g7jtf8 , medtr-g7jtg2 , medtr-g7jtg4 , medtr-g7kem3 , medtr-g7kml3 , medtr-g7ksx5 , medtr-g7leb3 , medtr-q1s5d8 , medtr-q1s9m3 , medtr-q1t171 , medtr-g7k9e1 , medtr-g7k9e3 , medtr-g7k9e5 , medtr-g7k9e8 , medtr-g7k9e9 , medtr-g7lbp2 , medtr-g7lch3 , medtr-g7ib94 , medtr-g7ljk8 , medtr-g7i6w5 , medtr-g7kvg4 , medtr-g7iam1 , medtr-g7iam3 , medtr-g7l754 , medtr-g7jr41 , medtr-g7l4f5 , medtr-g7l755 , medtr-a0a072vyl4 , medtr-g7jwk8 , medtr-a0a072vhg0 , medtr-a0a072vrv9 , medtr-g7kmk5 , medtr-a0a072uuf6 , medtr-a0a072urp3 , medtr-g7zzc3 , medtr-g7ie19 , medtr-g7kst7 , medtr-a0a072u5k5 , medtr-a0a072v056 , medtr-scp1 , medtr-g7kyn0 , medtr-g7inw6 , medtr-g7j3q3

Title : The Arabidopsis lyrata genome sequence and the basis of rapid genome size change - Hu_2011_Nat.Genet_43_476
Author(s) : Hu TT , Pattyn P , Bakker EG , Cao J , Cheng JF , Clark RM , Fahlgren N , Fawcett JA , Grimwood J , Gundlach H , Haberer G , Hollister JD , Ossowski S , Ottilar RP , Salamov AA , Schneeberger K , Spannagl M , Wang X , Yang L , Nasrallah ME , Bergelson J , Carrington JC , Gaut BS , Schmutz J , Mayer KF , Van de Peer Y , Grigoriev IV , Nordborg M , Weigel D , Guo YL
Ref : Nat Genet , 43 :476 , 2011
Abstract : We report the 207-Mb genome sequence of the North American Arabidopsis lyrata strain MN47 based on 8.3x dideoxy sequence coverage. We predict 32,670 genes in this outcrossing species compared to the 27,025 genes in the selfing species Arabidopsis thaliana. The much smaller 125-Mb genome of A. thaliana, which diverged from A. lyrata 10 million years ago, likely constitutes the derived state for the family. We found evidence for DNA loss from large-scale rearrangements, but most of the difference in genome size can be attributed to hundreds of thousands of small deletions, mostly in noncoding DNA and transposons. Analysis of deletions and insertions still segregating in A. thaliana indicates that the process of DNA loss is ongoing, suggesting pervasive selection for a smaller genome. The high-quality reference genome sequence for A. lyrata will be an important resource for functional, evolutionary and ecological studies in the genus Arabidopsis.
ESTHER : Hu_2011_Nat.Genet_43_476
PubMedSearch : Hu_2011_Nat.Genet_43_476
PubMedID: 21478890
Gene_locus related to this paper: arall-d7kc59 , arall-d7kfz1 , arall-d7kjk9 , arall-d7kk58 , arall-d7kuj1 , arall-d7kwx5 , arall-d7kzq8 , arall-d7laf7 , arall-D7LAK6 , arall-d7ltj2 , arall-d7lu11 , arall-d7ly06 , arall-d7lyn6 , arall-d7m1k0 , arall-d7m1k1 , arall-d7m1k3 , arall-d7m1l4 , arall-d7m814 , arall-d7mbk0 , arall-d7mbn8 , arall-d7mgs1 , arall-d7mi04 , arall-d7mld7 , arall-d7mpg7 , arall-d7mul9 , arath-At2g45610 , arath-At1g05790 , arath-At1g09980 , arath-At1g18360 , arath-AT1G29120 , arath-AT1G73920 , arath-AT1G76140 , arath-AT2G05260 , arath-At2g15230 , arath-At2g24280 , arath-AT2G42690 , arath-At2g47630 , arath-AT3G12150 , arath-At3g61680 , arath-AT3g62590 , arath-AT4G00500 , arath-AT4G25770 , arath-AT4g30610 , arath-At5g11650 , arath-At5g13640 , arath-AT5G19050 , arath-AT5G20060 , arath-AT5G20520 , arath-AT5G27320 , arath-At5g42930 , arath-At5g47330 , arath-CGEP , arath-clh1 , arath-clh2 , arath-F1N13.220 , arath-F2G14.100 , arath-F12A4.4 , arath-F14O10.2 , arath-SCP27 , arath-HNL , arath-GID1B , arath-LIP2 , arath-At5g17670 , arath-pip , arath-PLA11 , arath-PLA12 , arath-PLA13 , arath-PLA15 , arath-PLA17 , arath-Q8LPF5 , arath-Q9FFZ1 , arath-Q9FJ29 , arath-Q9FKP9 , arath-Q9FNF6 , arath-q9lhe8 , arath-Q9SFF6 , arath-q84w08 , arath-SCP7 , arath-SCP8 , arath-SCP26 , arath-SCP28 , arath-SCP33 , arath-SCP40 , arath-SCPL34 , arath-At4g12230 , arath-MES14 , arath-T19F11.2 , arath-MES10 , arath-At5g11790 , arath-T26B15.8 , arath-ZW18 , arall-d7l971 , arall-d7lfd3 , arall-d7lg04 , arall-d7lg05 , arall-d7lg06 , arall-d7lg07 , arall-d7mb17 , arall-d7mb18 , arall-d7l7v2 , arall-d7l7v3 , arall-d7lst0 , arall-d7lfw9 , arall-d7mgs6 , arall-d7mur3 , arall-d7kjr5 , arall-d7l7v1 , arall-d7ls88 , arall-d7kzg6 , arall-d7kcm6 , arall-d7krm0 , arall-d7kwe4 , arall-d7lri7 , arall-d7kq26

Title : Genome sequencing and analysis of the model grass Brachypodium distachyon. -
Author(s) : Vogel JP , Garvin DF , Mockler TC , Schmutz J , Rokhsar D , Bevan MW , Barry K , Lucas S , Harmon-Smith M , Lail K , Tice H , Grimwood J , McKenzie N , Huo N , Gu YQ , Lazo GR , Anderson OD , You FM , Luo MC , Dvorak J , Wright J , Febrer M , Idziak D , Hasterok R , Lindquist E , Wang M , Fox SE , Priest HD , Filichkin SA , Givan SA , Bryant DW , Chang JH , Wu H , Wu W , Hsia AP , Schnable PS , Kalyanaraman A , Barbazuk B , Michael TP , Hazen SP , Bragg JN , Laudencia-Chingcuanco D , Weng Y , Haberer G , Spannagl M , Mayer K , Rattei T , Mitros T , Lee SJ , Rose JK , Mueller LA , York TL , Wicker T , Buchmann JP , Tanskanen J , Schulman AH , Gundlach H , Bevan M , de Oliveira AC , Maia Lda C , Belknap W , Jiang N , Lai J , Zhu L , Ma J , Sun C , Pritham E , Salse J , Murat F , Abrouk M , Bruggmann R , Messing J , Fahlgren N , Sullivan CM , Carrington JC , Chapman EJ , May GD , Zhai J , Ganssmann M , Gurazada SG , German M , Meyers BC , Green PJ , Tyler L , Wu J , Thomson J , Chen S , Scheller HV , Harholt J , Ulvskov P , Kimbrel JA , Bartley LE , Cao P , Jung KH , Sharma MK , Vega-Sanchez M , Ronald P , Dardick CD , De Bodt S , Verelst W , Inz D , Heese M , Schnittger A , Yang X , Kalluri UC , Tuskan GA , Hua Z , Vierstra RD , Cui Y , Ouyang S , Sun Q , Liu Z , Yilmaz A , Grotewold E , Sibout R , Hematy K , Mouille G , Hofte H , Michael T , Pelloux J , O'Connor D , Schnable J , Rowe S , Harmon F , Cass CL , Sedbrook JC , Byrne ME , Walsh S , Higgins J , Li P , Brutnell T , Unver T , Budak H , Belcram H , Charles M , Chalhoub B , Baxter I
Ref : Nature , 463 :763 , 2010
PubMedID: 20148030
Gene_locus related to this paper: bradi-i1grm0 , bradi-i1gx82 , bradi-i1hb80 , bradi-i1hkv6 , bradi-i1hpu6 , bradi-i1i3e4 , bradi-i1i9i0 , bradi-i1i435 , bradi-i1ix93 , bradi-i1gsk6 , bradi-i1hk44 , bradi-i1hk45 , bradi-i1hnk7 , bradi-i1hsd5 , bradi-i1huy4 , bradi-i1huy9 , bradi-i1huz0 , bradi-i1gxx9 , bradi-i1hl25 , bradi-i1hcw7 , bradi-i1hyv6 , bradi-i1hyb5 , bradi-i1hvr8 , bradi-i1hmu2 , bradi-i1hf05 , bradi-i1gry7 , bradi-i1hf06 , bradi-i1i5z8 , bradi-i1icy3 , bradi-i1j1h3 , bradi-i1h1e3 , bradi-i1hvr9 , bradi-a0a0q3r7i7 , bradi-i1i377 , bradi-i1hjg5 , bradi-i1h3i9 , bradi-i1gsg5 , bradi-a0a0q3mph9 , bradi-i1h682 , bradi-a0a0q3lc91 , bradi-i1gx49 , bradi-i1i839 , bradi-a0a2k2dsp5 , bradi-i1gsb5

Title : The Sorghum bicolor genome and the diversification of grasses - Paterson_2009_Nature_457_551
Author(s) : Paterson AH , Bowers JE , Bruggmann R , Dubchak I , Grimwood J , Gundlach H , Haberer G , Hellsten U , Mitros T , Poliakov A , Schmutz J , Spannagl M , Tang H , Wang X , Wicker T , Bharti AK , Chapman J , Feltus FA , Gowik U , Grigoriev IV , Lyons E , Maher CA , Martis M , Narechania A , Otillar RP , Penning BW , Salamov AA , Wang Y , Zhang L , Carpita NC , Freeling M , Gingle AR , Hash CT , Keller B , Klein P , Kresovich S , McCann MC , Ming R , Peterson DG , Mehboob ur R , Ware D , Westhoff P , Mayer KF , Messing J , Rokhsar DS
Ref : Nature , 457 :551 , 2009
Abstract : Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.
ESTHER : Paterson_2009_Nature_457_551
PubMedSearch : Paterson_2009_Nature_457_551
PubMedID: 19189423
Gene_locus related to this paper: sorbi-b3vtb2 , sorbi-c5wp75 , sorbi-c5wts6 , sorbi-c5wu07 , sorbi-c5wvl7 , sorbi-c5ww85 , sorbi-c5ww86 , sorbi-c5wxa4 , sorbi-c5x1f6 , sorbi-c5x2x9 , sorbi-c5x5z9 , sorbi-c5x6q0 , sorbi-c5x230 , sorbi-c5x290 , sorbi-c5x345 , sorbi-c5x399 , sorbi-c5x610 , sorbi-c5xbm4 , sorbi-c5xct0 , sorbi-c5xdv0 , sorbi-c5xe87 , sorbi-c5xf40 , sorbi-c5xfu9 , sorbi-c5xh40 , sorbi-c5xh41 , sorbi-c5xh42 , sorbi-c5xh43 , sorbi-c5xh44 , sorbi-c5xh46 , sorbi-c5xhr2 , sorbi-c5xiw7 , sorbi-c5xjf0 , sorbi-c5xky2 , sorbi-c5xm54 , sorbi-c5xmb9 , sorbi-c5xmz5 , sorbi-c5xp10 , sorbi-c5xpm6 , sorbi-c5xr91 , sorbi-c5xr92 , sorbi-c5xs33 , sorbi-c5xtz0 , sorbi-c5xwd3 , sorbi-c5y0d2 , sorbi-c5y0h4 , sorbi-c5y3i5 , sorbi-c5y7x0 , sorbi-c5y517 , sorbi-c5y545 , sorbi-c5ydr3 , sorbi-c5yec0 , sorbi-c5yf71 , sorbi-c5yi32 , sorbi-c5yih2 , sorbi-c5ylw6 , sorbi-c5yn66 , sorbi-c5ynp8 , sorbi-c5yt11 , sorbi-c5yur5 , sorbi-c5ywz3 , sorbi-c5ywz4 , sorbi-c5yx73 , sorbi-c5yyn0 , sorbi-c5z2m6 , sorbi-c5z6a9 , sorbi-c5z6j1 , sorbi-c5z6s5 , sorbi-c5z177 , sorbi-Q9XE80 , sorbi-c5xyg4 , sorbi-c5z4q0 , sorbi-c5xly4 , sorbi-c5z4u8 , sorbi-c5xxg5 , sorbi-c5z9b9 , sorbi-a0a1z5r970 , sorbi-c5xhf9 , sorbi-c5yxt7 , sorbi-c5yxt6 , sorbi-c5y1m2 , sorbi-c5xdy6 , sorbi-a0a194ysf6 , sorbi-a0a1b6pnr2 , sorbi-a0a1b6qcb9 , sorbi-c5xx30 , sorbi-a0a1b6psg4 , sorbi-a0a1z5rj80 , sorbi-a0a1b6qfm2 , sorbi-a0a1b6qmu5 , sorbi-c6jru0