Bowers JE

References (5)

Title : The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution - Badouin_2017_Nature_546_148
Author(s) : Badouin H , Gouzy J , Grassa CJ , Murat F , Staton SE , Cottret L , Lelandais-Briere C , Owens GL , Carrere S , Mayjonade B , Legrand L , Gill N , Kane NC , Bowers JE , Hubner S , Bellec A , Berard A , Berges H , Blanchet N , Boniface MC , Brunel D , Catrice O , Chaidir N , Claudel C , Donnadieu C , Faraut T , Fievet G , Helmstetter N , King M , Knapp SJ , Lai Z , Le Paslier MC , Lippi Y , Lorenzon L , Mandel JR , Marage G , Marchand G , Marquand E , Bret-Mestries E , Morien E , Nambeesan S , Nguyen T , Pegot-Espagnet P , Pouilly N , Raftis F , Sallet E , Schiex T , Thomas J , Vandecasteele C , Vares D , Vear F , Vautrin S , Crespi M , Mangin B , Burke JM , Salse J , Munos S , Vincourt P , Rieseberg LH , Langlade NB
Ref : Nature , 546 :148 , 2017
Abstract : The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.
ESTHER : Badouin_2017_Nature_546_148
PubMedSearch : Badouin_2017_Nature_546_148
PubMedID: 28538728
Gene_locus related to this paper: helan-a0a251rty5 , helan-a0a251rwi0 , helan-a0a251s4p0 , helan-a0a251tv75 , helan-a0a251s253 , helan-a0a251ts58 , helan-a0a251vmq8 , helan-a0a251rur6 , helan-a0a251ve88 , helan-a0a251rzb7 , helan-a0a251uh88 , helan-a0a251ux90 , helan-a0a251sb83 , helan-a0a251txv8 , helan-a0a251u1d0 , helan-a0a251uwi4 , helan-a0a251uwk5 , helan-a0a251uxe9 , helan-a0a251vi64

Title : The asparagus genome sheds light on the origin and evolution of a young Y chromosome - Harkess_2017_Nat.Commun_8_1279
Author(s) : Harkess A , Zhou J , Xu C , Bowers JE , Van der Hulst R , Ayyampalayam S , Mercati F , Riccardi P , McKain MR , Kakrana A , Tang H , Ray J , Groenendijk J , Arikit S , Mathioni SM , Nakano M , Shan H , Telgmann-Rauber A , Kanno A , Yue Z , Chen H , Li W , Chen Y , Xu X , Zhang Y , Luo S , Gao J , Mao Z , Pires JC , Luo M , Kudrna D , Wing RA , Meyers BC , Yi K , Kong H , Lavrijsen P , Sunseri F , Falavigna A , Ye Y , Leebens-Mack JH , Chen G
Ref : Nat Commun , 8 :1279 , 2017
Abstract : Sex chromosomes evolved from autosomes many times across the eukaryote phylogeny. Several models have been proposed to explain this transition, some involving male and female sterility mutations linked in a region of suppressed recombination between X and Y (or Z/W, U/V) chromosomes. Comparative and experimental analysis of a reference genome assembly for a double haploid YY male garden asparagus (Asparagus officinalis L.) individual implicates separate but linked genes as responsible for sex determination. Dioecy has evolved recently within Asparagus and sex chromosomes are cytogenetically identical with the Y, harboring a megabase segment that is missing from the X. We show that deletion of this entire region results in a male-to-female conversion, whereas loss of a single suppressor of female development drives male-to-hermaphrodite conversion. A single copy anther-specific gene with a male sterile Arabidopsis knockout phenotype is also in the Y-specific region, supporting a two-gene model for sex chromosome evolution.
ESTHER : Harkess_2017_Nat.Commun_8_1279
PubMedSearch : Harkess_2017_Nat.Commun_8_1279
PubMedID: 29093472
Gene_locus related to this paper: aspof-a0a5p1ew48

Title : Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.) - Ming_2013_Genome.Biol_14_R41
Author(s) : Ming R , VanBuren R , Liu Y , Yang M , Han Y , Li LT , Zhang Q , Kim MJ , Schatz MC , Campbell M , Li J , Bowers JE , Tang H , Lyons E , Ferguson AA , Narzisi G , Nelson DR , Blaby-Haas CE , Gschwend AR , Jiao Y , Der JP , Zeng F , Han J , Min XJ , Hudson KA , Singh R , Grennan AK , Karpowicz SJ , Watling JR , Ito K , Robinson SA , Hudson ME , Yu Q , Mockler TC , Carroll A , Zheng Y , Sunkar R , Jia R , Chen N , Arro J , Wai CM , Wafula E , Spence A , Xu L , Zhang J , Peery R , Haus MJ , Xiong W , Walsh JA , Wu J , Wang ML , Zhu YJ , Paull RE , Britt AB , Du C , Downie SR , Schuler MA , Michael TP , Long SP , Ort DR , Schopf JW , Gang DR , Jiang N , Yandell M , dePamphilis CW , Merchant SS , Paterson AH , Buchanan BB , Li S , Shen-Miller J
Ref : Genome Biol , 14 :R41 , 2013
Abstract : BACKGROUND: Sacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan. RESULTS: The genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101x and 5.2x. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment. CONCLUSIONS: The slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.
ESTHER : Ming_2013_Genome.Biol_14_R41
PubMedSearch : Ming_2013_Genome.Biol_14_R41
PubMedID: 23663246
Gene_locus related to this paper: nelnu-a0a1u8aj84 , nelnu-a0a1u8bpe4 , nelnu-a0a1u7z9m9 , nelnu-a0a1u7ywy5 , nelnu-a0a1u8aik2 , nelnu-a0a1u7zmb5 , nelnu-a0a1u8a7m7 , nelnu-a0a1u8b0n9 , nelnu-a0a1u8b461 , nelnu-a0a1u7zzj3 , nelnu-a0a1u8ave7 , nelnu-a0a1u7yn26

Title : Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres - Paterson_2012_Nature_492_423
Author(s) : Paterson AH , Wendel JF , Gundlach H , Guo H , Jenkins J , Jin D , Llewellyn D , Showmaker KC , Shu S , Udall J , Yoo MJ , Byers R , Chen W , Doron-Faigenboim A , Duke MV , Gong L , Grimwood J , Grover C , Grupp K , Hu G , Lee TH , Li J , Lin L , Liu T , Marler BS , Page JT , Roberts AW , Romanel E , Sanders WS , Szadkowski E , Tan X , Tang H , Xu C , Wang J , Wang Z , Zhang D , Zhang L , Ashrafi H , Bedon F , Bowers JE , Brubaker CL , Chee PW , Das S , Gingle AR , Haigler CH , Harker D , Hoffmann LV , Hovav R , Jones DC , Lemke C , Mansoor S , ur Rahman M , Rainville LN , Rambani A , Reddy UK , Rong JK , Saranga Y , Scheffler BE , Scheffler JA , Stelly DM , Triplett BA , Van Deynze A , Vaslin MF , Waghmare VN , Walford SA , Wright RJ , Zaki EA , Zhang T , Dennis ES , Mayer KF , Peterson DG , Rokhsar DS , Wang X , Schmutz J
Ref : Nature , 492 :423 , 2012
Abstract : Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1-2 Myr ago, conferred about 30-36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum A(t)D(t) (in which 't' indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.
ESTHER : Paterson_2012_Nature_492_423
PubMedSearch : Paterson_2012_Nature_492_423
PubMedID: 23257886
Gene_locus related to this paper: gosra-a0a0d2qg22 , gosra-a0a0d2w3z1 , gosra-a0a0d2uuz7 , gosra-a0a0d2rxs2 , gosra-a0a0d2sdk0 , gosra-a0a0d2tng2 , gosra-a0a0d2twz7 , gosra-a0a0d2vdc5 , gosra-a0a0d2vj24 , gosra-a0a0d2sr31 , goshi-a0a1u8knd1 , goshi-a0a1u8nhw9 , goshi-a0a1u8kis4 , gosra-a0a0d2pul0 , gosra-a0a0d2p3f2 , gosra-a0a0d2ril5 , gosra-a0a0d2s7d5 , gosra-a0a0d2t9b3 , gosra-a0a0d2tw88 , gosra-a0a0d2umz5 , gosra-a0a0d2pzd7 , gosra-a0a0d2scu7 , gosra-a0a0d2vcx6

Title : The Sorghum bicolor genome and the diversification of grasses - Paterson_2009_Nature_457_551
Author(s) : Paterson AH , Bowers JE , Bruggmann R , Dubchak I , Grimwood J , Gundlach H , Haberer G , Hellsten U , Mitros T , Poliakov A , Schmutz J , Spannagl M , Tang H , Wang X , Wicker T , Bharti AK , Chapman J , Feltus FA , Gowik U , Grigoriev IV , Lyons E , Maher CA , Martis M , Narechania A , Otillar RP , Penning BW , Salamov AA , Wang Y , Zhang L , Carpita NC , Freeling M , Gingle AR , Hash CT , Keller B , Klein P , Kresovich S , McCann MC , Ming R , Peterson DG , Mehboob ur R , Ware D , Westhoff P , Mayer KF , Messing J , Rokhsar DS
Ref : Nature , 457 :551 , 2009
Abstract : Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the approximately 730-megabase Sorghum bicolor (L.) Moench genome, placing approximately 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the approximately 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization approximately 70 million years ago, most duplicated gene sets lost one member before the sorghum-rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.
ESTHER : Paterson_2009_Nature_457_551
PubMedSearch : Paterson_2009_Nature_457_551
PubMedID: 19189423
Gene_locus related to this paper: sorbi-b3vtb2 , sorbi-c5wp75 , sorbi-c5wts6 , sorbi-c5wu07 , sorbi-c5wvl7 , sorbi-c5ww85 , sorbi-c5ww86 , sorbi-c5wxa4 , sorbi-c5x1f6 , sorbi-c5x2x9 , sorbi-c5x5z9 , sorbi-c5x6q0 , sorbi-c5x230 , sorbi-c5x290 , sorbi-c5x345 , sorbi-c5x399 , sorbi-c5x610 , sorbi-c5xbm4 , sorbi-c5xct0 , sorbi-c5xdv0 , sorbi-c5xe87 , sorbi-c5xf40 , sorbi-c5xfu9 , sorbi-c5xh40 , sorbi-c5xh41 , sorbi-c5xh42 , sorbi-c5xh43 , sorbi-c5xh44 , sorbi-c5xh46 , sorbi-c5xhr2 , sorbi-c5xiw7 , sorbi-c5xjf0 , sorbi-c5xky2 , sorbi-c5xm54 , sorbi-c5xmb9 , sorbi-c5xmz5 , sorbi-c5xp10 , sorbi-c5xpm6 , sorbi-c5xr91 , sorbi-c5xr92 , sorbi-c5xs33 , sorbi-c5xtz0 , sorbi-c5xwd3 , sorbi-c5y0d2 , sorbi-c5y0h4 , sorbi-c5y3i5 , sorbi-c5y7x0 , sorbi-c5y517 , sorbi-c5y545 , sorbi-c5ydr3 , sorbi-c5yec0 , sorbi-c5yf71 , sorbi-c5yi32 , sorbi-c5yih2 , sorbi-c5ylw6 , sorbi-c5yn66 , sorbi-c5ynp8 , sorbi-c5yt11 , sorbi-c5yur5 , sorbi-c5ywz3 , sorbi-c5ywz4 , sorbi-c5yx73 , sorbi-c5yyn0 , sorbi-c5z2m6 , sorbi-c5z6a9 , sorbi-c5z6j1 , sorbi-c5z6s5 , sorbi-c5z177 , sorbi-Q9XE80 , sorbi-c5xyg4 , sorbi-c5z4q0 , sorbi-c5xly4 , sorbi-c5z4u8 , sorbi-c5xxg5 , sorbi-c5z9b9 , sorbi-a0a1z5r970 , sorbi-c5xhf9 , sorbi-c5yxt7 , sorbi-c5yxt6 , sorbi-c5y1m2 , sorbi-c5xdy6 , sorbi-a0a194ysf6 , sorbi-a0a1b6pnr2 , sorbi-a0a1b6qcb9 , sorbi-c5xx30 , sorbi-a0a1b6psg4 , sorbi-a0a1z5rj80 , sorbi-a0a1b6qfm2 , sorbi-a0a1b6qmu5 , sorbi-c6jru0