Xiong W

References (10)

Title : Identification and prognostic biomarkers among ZDHHC4\/12\/18\/24, and APT2 in lung adenocarcinoma - Bian_2024_Sci.Rep_14_522
Author(s) : Bian J , Xiong W , Yang Z , Li M , Song D , Zhang Y , Liu C
Ref : Sci Rep , 14 :522 , 2024
Abstract : S-palmitoylases and S-depalmitoylases are differentially expressed in various cancers and several malignant tumors and show a strong prognostic ability. Notwithstanding, the potential clinical impact of S-palmitoylases and S-depalmitoylases, particularly in the prognosis and progression of lung adenocarcinoma (LUAD), has not been clarified. Expression levels of S-palmitoylases and S-depalmitoylases in LUAD were investigated using TCGA. GEPIA was used to evaluate the mRNA levels of S-palmitoylases and S-depalmitoylases at different pathological stages. Metascape was used to investigate the biological significance of S-palmitoylases and S-depalmitoylases. The Kaplan-Meier plotter was used to analyze the prognostic value of S-palmitoylases and S-depalmitoylases. CBioportal was used to analyze gene alterations in S-palmitoylases and S-depalmitoylases. UALCAN was used to examine DNA promoter methylation levels of S-palmitoylases and S-depalmitoylases. Finally, we investigated the relationship between S-palmitoylases, S-depalmitoylases, and tumor-infiltrating immune cells using TIMER. Correlations with immune checkpoint-related genes were determined using the R packages reshape2, ggpubr, ggplot2, and corrplot. PCR was also performed to assess the degree of ZDHHC4/12/18/24 and APT2 transcript expression in lung adenocarcinoma and adjacent normal lung tissues. HPA was utilized to investigate protein levels of S-palmitoylases and S-depalmitoylases in LUAD and normal lung tissue. Our study found that ZDHHC2/3/4/5/6/7/9/12/13/16/18/20/21/23/24, APT1/2, PPT1, LYPLAL1, ABHD4/10/11/12/13 and ABHD17C mRNA expression was significantly upregulated in LUAD, whereas ZDHHC1/8/11/11B/14/15/17/19/22, ABHD6/16A and ABHD17A mRNA expression was significantly downregulated. The functions of the differentially expressed S-palmitoylases and S-depalmitoylases were mainly associated with protein-cysteine S-palmitoyltransferase and protein-cysteine S-acyltransferase activities. Patients with high expression of ZDHHC4/12/18/24, APT2, ABHD4, ABHD11 and ABHD12 had a shorter overall survival. Infiltration of six immune cells (B cells, CD8(+) T cells, CD4(+) T cells, macrophages, neutrophils, and dendritic cells) was closely associated with the expression of ZDHHC4/12/18/24 and APT2. ZDHHC4/12/18/24 and APT2 positively correlated with the immune checkpoint-related gene CD276. We assessed the mRNA levels of ZDHHC4/12/18/24 and APT2 using qRT-PCR and found increased expression of ZDHHC4/12/18/24 in LUAD compared with healty control lung tissues. ZDHHC4/12/18/24, and APT2 are potential prognostic biomarkers of LUAD. Their expression levels could be related to the tumor microenvironment in LUAD.
ESTHER : Bian_2024_Sci.Rep_14_522
PubMedSearch : Bian_2024_Sci.Rep_14_522
PubMedID: 38177255

Title : Soluble epoxide hydrolase deficiency promotes liver regeneration and ameliorates liver injury in mice by regulating angiocrine factors and angiogenesis - Deng_2023_Biochim.Biophys.Acta.Gen.Subj__130394
Author(s) : Deng W , Hu T , Xiong W , Jiang X , Cao Y , Li Z , Jiang H , Wang X
Ref : Biochimica & Biophysica Acta Gen Subj , :130394 , 2023
Abstract : BACKGROUND: Soluble epoxide hydrolase (sEH) is a key enzyme for the hydrolysis of epoxyeicosatrienoic acids (EETs) and has been implicated in the pathogenesis of hepatic inflammation, fibrosis, cancer, and nonalcoholic fatty liver disease. However, the role of sEH in liver regeneration and injury remains unclear. METHODS: This study used sEH-deficient (sEH(-/-)) mice and wild-type (WT) mice. Hepatocyte proliferation was assessed by immunohistochemical (IHC) staining for Ki67. Liver injury was evaluated by histological staining with hematoxylin and eosin (H&E), Masson's trichrome, and Sirius red, as well as IHC staining for alpha-SMA. Hepatic macrophage infiltration and angiogenesis were reflected by IHC staining for CD68 and CD31. Liver angiocrine levels were detected by ELISA. The mRNA levels of angiocrine or cell cycle-related genes were measured by quantitative real-time RT-PCR (qPCR). The protein levels of cell proliferation-related protein and phosphorylated signal transducer and activator of transcription 3 (STAT3) were detected by western blotting. RESULTS: sEH mRNA and protein levels were significantly upregulated in mice after 2/3 partial hepatectomy (PHx). Compared with WT mice, sEH(-/-) mice exhibited a higher liver/body weight ratio and more Ki67-positive cells on days 2 and 3 after PHx. The accelerated liver regeneration in sEH(-/-) mice was attributed to angiogenesis and endothelial-derived angiocrine (HGF) production. Subsequently, hepatic protein expression of cyclinD1 (CYCD1) and the downstream direct targets of the STAT3 pathway, such as c-fos, c-jun, and c-myc, were also suppressed post-PHx in sEH(-/-) compared to WT mice. Furthermore, sEH deficiency attenuated CCl(4)-induced acute liver injury and reduced fibrosis in both CCl(4) and bile duct ligation (BDL)-induced liver fibrosis rodent models. Compared with WT mice, sEH(-/-) mice had slightly decreased hepatic macrophage infiltration and angiogenesis. Meanwhile, sEH(-/-) BDL mice had more Ki67-positive cells in the liver than WT BDL mice. CONCLUSIONS: sEH deficiency alters the angiocrine profile of liver endothelial to accelerate hepatocyte proliferation and liver regeneration, and blunts acute liver injury and fibrosis by inhibiting inflammation and angiogenesis. sEH inhibition is a promising target for liver diseases to improve liver regeneration and damage.
ESTHER : Deng_2023_Biochim.Biophys.Acta.Gen.Subj__130394
PubMedSearch : Deng_2023_Biochim.Biophys.Acta.Gen.Subj__130394
PubMedID: 37315719

Title : Metagenomic analysis of antimicrobial resistance in ducks, workers, and the environment in duck farms, southern China - Xiong_2023_Ecotoxicol.Environ.Saf_262_115191
Author(s) : Xiong W , Yang J , Zeng J , Xiao D , Tong C , Zeng Z
Ref : Ecotoxicology & Environmental Safety , 262 :115191 , 2023
Abstract : Duck farms are one of the important reservoirs of antimicrobial resistance genes (ARGs) that spread to humans and the environment. However, few studies have focused on the characteristics of antimicrobial profiles in duck farms. Here we explored the distribution characteristics and potential transmission mechanisms of ARGs in ducks, farm workers, and the environment in duck farms by a metagenomic approach. The results showed that the highest abundance and diversity of ARGs were found in duck manure. The abundance and diversity of ARGs in workers and environmental samples were higher than those in the control group. tet(X) and its variants were prevalent in duck farms, with tet(X10) being the most abundant. The genetic structure "tet(X)-like + alpha/beta hydrolase" was found in ducks, workers, and the environment, implying that tet(X) and its variants have been widely spread in duck farms. Network analysis indicated that ISVsa3 and IS5075 might play an important role in the coexistence of ARGs and metal resistance genes (MRGs). The Mantel tests showed that mobile genetic elements (MGEs) were significantly correlated with ARG profiles. The results suggest that duck manure may be a potential hotspot source of ARGs, including tet(X) variants that spread to the surrounding environment and workers via MGEs. These results help us optimize the antimicrobials strategy and deepen our understanding of ARG spread in duck farms.
ESTHER : Xiong_2023_Ecotoxicol.Environ.Saf_262_115191
PubMedSearch : Xiong_2023_Ecotoxicol.Environ.Saf_262_115191
PubMedID: 37390725

Title : Design, Synthesis and Bioactivity Evaluation of Coumarin-BMT Hybrids as New Acetylcholinesterase Inhibitors - Zeng_2022_Molecules_27_
Author(s) : Zeng F , Lu T , Wang J , Nie X , Xiong W , Yin Z , Peng D
Ref : Molecules , 27 : , 2022
Abstract : Coumarin possesses the aromatic group and showed plentiful activities, such as antioxidant, preventing asthma and antisepsis. In addition, coumarin derivatives usually possess good solubility, low cytotoxicity and excellent cell permeability. In our study, we synthesized the compound bridge methylene tacrine (BMT), which has the classical pharmacophore structure of Tacrine (THA). Based on the principle of active substructure splicing, BMT was used as a lead compound and synthesized coumarin-BMT hybrids by introducing coumarin to BMT. In this work, 21 novel hybrids of BMT and coumarin were synthesized and evaluated for their inhibitory activity on AChE. All obtained compounds present preferable inhibition. Compound 8b was the most active compound, with the value of K(i) as 49.2 nM, which was higher than Galantamine (GAL) and lower than THA. The result of molecular docking showed that the highest binding free energy was -40.43 kcal/mol for compound 8b, which was an identical trend with the calculated K(i).
ESTHER : Zeng_2022_Molecules_27_
PubMedSearch : Zeng_2022_Molecules_27_
PubMedID: 35408542

Title : Insecticidal Activity of Artemisia vulgaris Essential Oil and Transcriptome Analysis of Tribolium castaneum in Response to Oil Exposure - Gao_2020_Front.Genet_11_589
Author(s) : Gao S , Zhang K , Wei L , Wei G , Xiong W , Lu Y , Zhang Y , Gao A , Li B
Ref : Front Genet , 11 :589 , 2020
Abstract : Red flour beetle (Tribolium castaneum) is one of the most destructive pests of stored cereals worldwide. The essential oil (EO) of Artemisia vulgaris (mugwort) is known to be a strong toxicant that inhibits the growth, development, and reproduction of T. castaneum. However, the molecular mechanisms underlying the toxic effects of A. vulgaris EO on T. castaneum remain unclear. Here, two detoxifying enzymes, carboxylesterase (CarEs) and cytochrome oxidase P450 (CYPs), were dramatically increased in red flour beetle larvae when they were exposed to A. vulgaris EO. Further, 758 genes were differentially expressed between EO treated and control samples. Based on Gene Ontology (GO) analysis, numerous differentially expressed genes (DEGs) were enriched for terms related to the regulation of biological processes, response to stimulus, and antigen processing and presentation. Our results indicated that A. vulgaris EO disturbed the antioxidant activity in larvae and partially inhibited serine protease (SP), cathepsin (CAT), and lipase signaling pathways, thus disrupting larval development and reproduction as well as down-regulating the stress response. Moreover, these DEGs showed that A. vulgaris indirectly affected the development and reproduction of beetles by inducing the expression of genes encoding copper-zinc-superoxide dismutase (CuZnSOD), heme peroxidase (HPX), antioxidant enzymes, and transcription factors. Moreover, the majority of DEGs were mapped to the drug metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Notably, the following genes were detected: 6 odorant binding proteins (OBPs), 5 chemosensory proteins (CSPs), 14 CYPs, 3 esterases (ESTs), 5 glutathione S-transferases (GSTs), 6 UDP-glucuronosyltransferases (UGTs), and 2 multidrug resistance proteins (MRPs), of which 8 CYPs, 2 ESTs, 2 GSTs, and 3 UGTs were up-regulated dramatically after exposure to A. vulgaris EO. The residual DEGs were significantly down-regulated in EO exposed larvae, implying that partial compensation of metabolism detoxification existed in treated beetles. Furthermore, A. vulgaris EO induced overexpression of OBP/CYP, and RNAi against these genes significantly increased mortality of larvae exposed to EO, providing further evidence for the involvement of OBP/CYP in EO metabolic detoxification in T. castaneum. Our results provide an overview of the transcriptomic changes in T. castaneum in response to A. vulgaris EO.
ESTHER : Gao_2020_Front.Genet_11_589
PubMedSearch : Gao_2020_Front.Genet_11_589
PubMedID: 32670352

Title : 14,15-Epoxyeicosatrienoic Acid Alleviates Pathology in a Mouse Model of Alzheimer's Disease - Chen_2020_J.Neurosci_40_8188
Author(s) : Chen W , Wang M , Zhu M , Xiong W , Qin X , Zhu X
Ref : Journal of Neuroscience , 40 :8188 , 2020
Abstract : Alzheimer's disease (AD) is the leading cause of late-onset dementia, and there exists an unmet medical need for effective treatments for AD. The accumulation of neurotoxic amyloid-beta (Abeta) plaques contributes to the pathophysiology of AD. EPHX2 encoding soluble epoxide hydrolase (sEH)-a key enzyme for epoxyeicosatrienoic acid (EET) signaling that is mainly expressed in lysosomes of astrocytes in the adult brain-is cosited at a locus associated with AD, but it is unclear whether and how it contributes to the pathophysiology of AD. In this report, we show that the pharmacologic inhibition of sEH with 1-trifluoromethoxyphenyl- 3-(1-propionylpiperidin-4-yl) urea (TPPU) or the genetic deletion of Ephx2 reduces Abeta deposition in the brains of both male and female familial Alzheimer's disease (5xFAD) model mice. The inhibition of sEH with TPPU or the genetic deletion of Ephx2 alleviated cognitive deficits and prevented astrocyte reactivation in the brains of 6-month-old male 5xFAD mice. 14,15-EET levels in the brains of these mice were also increased by sEH inhibition. In cultured adult astrocytes treated with TPPU or 14,15-EET, astrocyte Abeta clearance was increased through enhanced lysosomal biogenesis. Infusion of 14,15-EET into the hippocampus of 5xFAD mice prevented the aggregation of Abeta. Notably, a higher concentration of 14,15-EET (200 ng/ml) infusion into the hippocampus reversed Abeta deposition in the brains of 6-month-old male 5xFAD mice. These results indicate that EET signaling, especially 14,15-EET, plays a key role in the pathophysiology of AD, and that targeting this pathway is a potential therapeutic strategy for the treatment of AD.SIGNIFICANCE STATEMENT There are limited treatment options for Alzheimer's disease (AD). EPHX2 encoding soluble epoxide hydrolase (sEH) is located at a locus that is linked to late-onset AD, but its contribution to the pathophysiology of AD is unclear. Here, we demonstrate that sEH inhibition or Ephx2 deletion alleviates pathology in familial Alzheimer's disease (5xFAD) mice. Inhibiting sEH or increasing 14,15-epoxyeicosatrienoic acid (EET) enhanced lysosomal biogenesis and amyloid-beta (Abeta) clearance in cultured adult astrocytes. Moreover, the infusion of 14,15-EET into the hippocampus of 5xFAD mice not only prevented the aggregation of Abeta, but also reversed the deposition of Abeta. Thus, 14,15-EET plays a key role in the pathophysiology of AD and therapeutic strategies that target this pathway may be an effective treatment.
ESTHER : Chen_2020_J.Neurosci_40_8188
PubMedSearch : Chen_2020_J.Neurosci_40_8188
PubMedID: 32973044

Title : Latrophilin mediates insecticides susceptibility and fecundity through two carboxylesterases, esterase4 and esterase6, in Tribolium castaneum - Wei_2019_Bull.Entomol.Res__1
Author(s) : Wei L , Gao S , Xiong W , Liu J , Mao J , Lu Y , Song X , Li B
Ref : Bull Entomol Res , :1 , 2019
Abstract : Latrophilin (LPH) is known as an adhesion G-protein-coupled receptor which involved in multiple physiological processes in organisms. Previous studies showed that lph not only involved the susceptibility to anticholinesterase insecticides but also affected fecundity in Tribolium castaneum. However, its regulatory mechanisms in these biological processes are still not clear. Here, we identified two potential downstream carboxylesterase (cce) genes of Tclph, esterase4 and esterase6, and further characterized their interactions with Tclph. After treatment of T. castaneum larvae with carbofuran or dichlorvos insecticides, the transcript levels of Tcest4 and Tcest6 were significantly induced from 12 to 72 h. RNAi against Tcest4 or Tcest6 led to the higher mortality compared with the controls after the insecticides treatment, suggesting that these two genes play a vital role in detoxification of insecticides in T. castaneum. Furthermore, with insecticides exposure to Tclph knockdown beetles, the expression of Tcest4 was upregulated but Tcest6 was downregulated, indicating that beetles existed a compensatory response against the insecticides. Additionally, RNAi of Tcest6 resulted in 43% reductions in female egg laying and completely inhibited egg hatching, which showed the similar phenotype as that of Tclph knockdown. These results indicated that Tclph affected fecundity by positively regulating Tcest6 expression. Our findings will provide a new insight into the molecular mechanisms of Tclph involved in physiological functions in T. castaneum.
ESTHER : Wei_2019_Bull.Entomol.Res__1
PubMedSearch : Wei_2019_Bull.Entomol.Res__1
PubMedID: 30789108

Title : Glutamic acid-valine-citrulline linkers ensure stability and efficacy of antibody-drug conjugates in mice - Anami_2018_Nat.Commun_9_2512
Author(s) : Anami Y , Yamazaki CM , Xiong W , Gui X , Zhang N , An Z , Tsuchikama K
Ref : Nat Commun , 9 :2512 , 2018
Abstract : Valine-citrulline linkers are commonly used as enzymatically cleavable linkers for antibody-drug conjugates. While stable in human plasma, these linkers are unstable in mouse plasma due to susceptibility to an extracellular carboxylesterase. This instability often triggers premature release of drugs in mouse circulation, presenting a molecular design challenge. Here, we report that an antibody-drug conjugate with glutamic acid-valine-citrulline linkers is responsive to enzymatic drug release but undergoes almost no premature cleavage in mice. We demonstrate that this construct exhibits greater treatment efficacy in mouse tumor models than does a valine-citrulline-based variant. Notably, our antibody-drug conjugate contains long spacers facilitating the protease access to the linker moiety, indicating that our linker assures high in vivo stability despite a high degree of exposure. This technology could add flexibility to antibody-drug conjugate design and help minimize failure rates in pre-clinical studies caused by linker instability.
ESTHER : Anami_2018_Nat.Commun_9_2512
PubMedSearch : Anami_2018_Nat.Commun_9_2512
PubMedID: 29955061

Title : DL0410 Ameliorates Memory and Cognitive Impairments Induced by Scopolamine via Increasing Cholinergic Neurotransmission in Mice - Lian_2017_Molecules_22_
Author(s) : Lian W , Fang J , Xu L , Zhou W , Kang , Xiong W , Jia H , Liu AL , Du GH
Ref : Molecules , 22 : , 2017
Abstract : Deficiency of the cholinergic system is thought to play a vital role in cognitive impairment of dementia. DL0410 was discovered as a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinestease (BuChE), with potent efficiency in in-vitro experiments, but its in vivo effect on the cholinergic model has not been evaluated, and its action mechanism has also not been illustrated. In the present study, the capability of DL0410 in ameliorating the amnesia induced by scopolamine was investigated, and its effect on the cholinergic system in the hippocampus and its binding mode in the active site of AChE was also explored. Mice were administrated DL0410 (3 mg/kg, 10 mg/kg, and 30 mg/kg), and mice treated with donepezil were used as a positive control. The Morris water maze, escape learning task, and passive avoidance task were used as behavioral tests. The test results indicated that DL0410 could significantly improve the learning and memory impairments induced by scopolamine, with 10 mg/kg performing best. Further, DL0410 inhibited the AChE activity and increased acetylcholine (ACh) levels in a dose-dependent manner, and interacted with the active site of AChE in a similar manner as donepezil. However, no difference in the activity of BuChE was found in this study. All of the evidence indicated that its AChE inhibition is an important mechanism in the anti-amnesia effect. In conclusion, DL0410 could be an effective therapeutic drug for the treatment of dementia, especially Alzheimer's disease.
ESTHER : Lian_2017_Molecules_22_
PubMedSearch : Lian_2017_Molecules_22_
PubMedID: 28272324

Title : Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.) - Ming_2013_Genome.Biol_14_R41
Author(s) : Ming R , VanBuren R , Liu Y , Yang M , Han Y , Li LT , Zhang Q , Kim MJ , Schatz MC , Campbell M , Li J , Bowers JE , Tang H , Lyons E , Ferguson AA , Narzisi G , Nelson DR , Blaby-Haas CE , Gschwend AR , Jiao Y , Der JP , Zeng F , Han J , Min XJ , Hudson KA , Singh R , Grennan AK , Karpowicz SJ , Watling JR , Ito K , Robinson SA , Hudson ME , Yu Q , Mockler TC , Carroll A , Zheng Y , Sunkar R , Jia R , Chen N , Arro J , Wai CM , Wafula E , Spence A , Xu L , Zhang J , Peery R , Haus MJ , Xiong W , Walsh JA , Wu J , Wang ML , Zhu YJ , Paull RE , Britt AB , Du C , Downie SR , Schuler MA , Michael TP , Long SP , Ort DR , Schopf JW , Gang DR , Jiang N , Yandell M , dePamphilis CW , Merchant SS , Paterson AH , Buchanan BB , Li S , Shen-Miller J
Ref : Genome Biol , 14 :R41 , 2013
Abstract : BACKGROUND: Sacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan. RESULTS: The genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101x and 5.2x. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment. CONCLUSIONS: The slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.
ESTHER : Ming_2013_Genome.Biol_14_R41
PubMedSearch : Ming_2013_Genome.Biol_14_R41
PubMedID: 23663246
Gene_locus related to this paper: nelnu-a0a1u8aj84 , nelnu-a0a1u8bpe4 , nelnu-a0a1u7z9m9 , nelnu-a0a1u7ywy5 , nelnu-a0a1u8aik2 , nelnu-a0a1u7zmb5 , nelnu-a0a1u8a7m7 , nelnu-a0a1u8b0n9 , nelnu-a0a1u8b461 , nelnu-a0a1u7zzj3 , nelnu-a0a1u8ave7 , nelnu-a0a1u7yn26