Various boron-containing drugs have been approved for clinical use over the past two decades, and more are currently in clinical trials. The increasing interest in boron-containing compounds is due to their unique binding properties to biological targets; for example, boron substitution can be used to modulate biological activity, pharmacokinetic properties, and drug resistance. In this perspective, we aim to comprehensively review the current status of boron compounds in drug discovery, focusing especially on progress from 2015 to December 2020. We classify these compounds into groups showing anticancer, antibacterial, antiviral, antiparasitic and other activities, and discuss the biological targets associated with each activity, as well as potential future developments.
This study aimed to establish a cell-based assay (CBA) for the detection of agrin antibodies (Agrin-Ab) to explore the clinical features of agrin antibody-positive Chinese patients with myasthenia gravis (Agrin-MG). We developed a CBA based on the human full-length agrin protein expressed in HEK293T cells for the reliable and efficient detection of Agrin-Ab. Clinical data and serum samples were collected from 1948 MG patients in 26 provinces in China. The demographic and clinical features of Agrin-MG patients were compared with those of other MG patient subsets. Eighteen Agrin-MG cases were identified from 1948 MG patients. Nine patients were Agrin-Ab positive, and nine were AChR-Ab and Agrin-Ab double-positive (Agrin/AChR-MG). Eleven (61.11%) patients were males older than 40 years of age. The initial symptom in 13 (81.25%) cases was ocular weakness. Occasionally, the initial symptom was limb-girdle weakness (two cases) or bulbar muscle weakness (one case). Agrin-MG patients demonstrated slight improvement following treatment with either acetylcholinesterase inhibitor or prednisone; however, the combination of the two drugs could effectively relieve MG symptoms. In China, Agrin-MG demonstrated seropositivity rates of 0.92%. These patients were commonly middle-aged or elderly men. The patients usually presented weakness in the ocular, bulbar, and limb muscles, which may be combined with thymoma. These patients have more severe diseases, although the combination of pyridostigmine and prednisone was usually effective in relieving symptoms.
        
Title: Expression Profiling of Plant Cell Wall-Degrading Enzyme Genes in Eucryptorrhynchus scrobiculatus Midgut Gao P, Liu Z, Wen J Ref: Front Physiol, 11:1111, 2020 : PubMed
In China, the wood-boring weevil Eucryptorrhynchus scrobiculatus damages and eventually kills the tree of heaven Ailanthus altissima. To feed and digest the cell wall of A. altissima, E. scrobiculatus requires plant cell wall-degrading enzymes (PCWDEs). In the present study, we used next-generation sequencing to analyze the midgut transcriptome of E. scrobiculatus. Using three midgut transcriptomes, we assembled 21,491 unigenes from 167,714,100 clean reads. We identified 25 putative PCWDEs, including 11 cellulases and 14 pectinases. We constructed phylogenetic trees with a maximum likelihood algorithm to elucidate the relationships between sequences of the PCWDE protein families and speculate the functions of the PCWDE genes in E. scrobiculatus. The expression patterns of 17 enzymes in the midgut transcriptome were analyzed in various tissues by quantitative real-time PCR (RT-qPCR). The relative expression levels of 12 genes in the midgut and two genes in the proboscis were significantly higher than those in the other tissues. The proboscis and midgut are the digestive organs of insects, and the high expression level indirectly indicates that these genes are related to digestion. The present study has enabled us to understand the types and numbers of the PCWDEs of E. scrobiculatus and will be helpful for research regarding other weevils' PCWDEs in the future.
Discovery of novel liver injury indicators and development of practical assays to detect target indicator(s) would strongly facilitate the diagnosis of liver disorders. Herein, an alternative biomarker discovery strategy was applied to find suitable endoplasmic reticulum-resident protein(s) as serologic indicator(s) for hepatocyte injury via analysis of the human proteome database among plasma and various organs. Both database searching and preliminary experiments suggested that human carboxylesterase 1A (CES1A), one of the most abundant and hepatic-restricted proteins, could serve as a good serologic indicator for hepatocyte injury. Then, a highly selective and practical bioluminescent sensor was developed for real-time sensing of CES1A in various biological systems including plasma. With the help of this bioluminescent sensor, the release of hepatic CES1A into the extracellular medium or the circulation system could be directly monitored. Further investigations demonstrated that serum activity levels of CES1A were elevated dramatically in mice with liver injury or patients with liver diseases. Collectively, this study provided solid evidence to support that CES1A was a novel serological indicator for hepatocyte injury. Furthermore, the strategy used in this study paved a new way for the rational discovery of practical indicators to monitor the dynamic progression of injury in a given tissue or organ.
        
Title: NLGN3 promotes neuroblastoma cell proliferation and growth through activating PI3K/AKT pathway Li Z, Gao W, Fei Y, Gao P, Xie Q, Xie J, Xu Z Ref: European Journal of Pharmacology, :172423, 2019 : PubMed
Neuroblastoma is the most common extracranial solid tumor of childhood, previous studies show synaptic protein neuroligin-3 (NLGN3) promotes glioma proliferation and growth, However, no investigation about the role of NLGN3 in neuroblastoma was reported. Here, we found NGLGN3 was significantly upregulated in neuroblastoma cells and tissues, its overexpression significantly promoted neuroblastoma cell proliferation and growth determined by MTT analysis, colony formation assay, cell cycle progression analysis, BrdU incorporation assay and animal model, while its knockdown inhibited cell proliferation and growth. Then we found NLGN3 could increase the phosphorylation level of AKT and the transcription activity of FOXO family, suggesting NLGN3 activated PI3K/AKT pathway, inhibition of PI3K/AKT pathway in NLGN3 overexpressing cells inhibited cell proliferation, confirming NLGN3 promoted neuroblastoma proliferation through activating PI3K/AKT pathway. In summary, we found NLGN3 promoted neuroblastoma cell proliferation and growth through activating PI3K/AKT pathway and providing a new target for neuroblastoma therapy.
Lipases are widely present in various plants, animals and microorganisms, constituting a large category of enzymes. They have the ability to catalyze the cleavage of ester bonds. The lipase CinB from Enterobacter asburiae (E. asburiae) is an acetyl esterase. The primary amino acid sequence suggests that the EaCinB protein belongs to the alpha/beta-hydrolase (ABH) superfamily of the esterase/lipase superfamily. However, its molecular functions have not yet been determined. Here, we report the crystal structure of E. asburiae CinB at a 1.45A resolution. EaCinB contains a signal peptide, cap domain and catalytic domain. The active site of EaCinB contains the catalytic triad (Ser180-His307-Asp277) on the catalytic domain. The oxyanion hole is composed of Gly106 and Gly107 within the conserved sequence motif HGGG (amino acid residues 106-109). The substrate is accessible between the alpha1 and alpha2 helices or the alpha1 helix and catalytic domain. Narrow substrate pockets are formed by the alpha2 helix of the cap domain. Site-directed mutagenesis showed that EaCinB-W208H exhibits a higher catalytic ability than EaCinB-WT by approximately nine times. Our results provide insight into the molecular function of EaCinB.
The BioH carboxylesterase which is a typical alpha/beta-hydrolase enzyme involved in biotin synthetic pathway in most bacteria. BioH acts as a gatekeeper and blocks the further elongation of its substrate. In the pathogen Klebsiella pneumoniae, BioH plays a critical role in the biosynthesis of biotin. To better understand the molecular function of BioH, we determined the crystal structure of BioH from K. pneumoniae at 2.26A resolution using X-ray crystallography. The structure of KpBioH consists of an alpha-beta-alpha sandwich domain and a cap domain. B-factor analysis revealed that the alpha-beta-alpha sandwich domain is a rigid structure, while the loops in the cap domain shows the structural flexibility. The active site of KpBioH contains the catalytic triad (Ser82-Asp207-His235) on the interface of the alpha-beta-alpha sandwich domain, which is surrounded by the cap domain. Size exclusion chromatography shows that KpBioH prefers the monomeric state in solution, whereas two-fold symmetric dimeric formation of KpBioH was observed in the asymmetric unit, the conserved Cys31-based disulfide bonds can maintain the irreversible dimeric formation of KpBioH. Our study provides important structural insight for understanding the molecular mechanisms of KpBioH and its homologous proteins.
Aims Darapladib, a potent inhibitor of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), has not reduced risk of cardiovascular disease outcomes in recent randomized trials. We aimed to test whether Lp-PLA(2) enzyme activity is causally relevant to coronary heart disease. Methods In 72,657 patients with coronary heart disease and 110,218 controls in 23 epidemiological studies, we genotyped five functional variants: four rare loss-of-function mutations (c.109+2T > C (rs142974898), Arg82His (rs144983904), Val279Phe (rs76863441), Gln287Ter (rs140020965)) and one common modest-impact variant (Val379Ala (rs1051931)) in PLA2G7, the gene encoding Lp-PLA(2). We supplemented de-novo genotyping with information on a further 45,823 coronary heart disease patients and 88,680 controls in publicly available databases and other previous studies. We conducted a systematic review of randomized trials to compare effects of darapladib treatment on soluble Lp-PLA(2) activity, conventional cardiovascular risk factors, and coronary heart disease risk with corresponding effects of Lp-PLA(2)-lowering alleles. Results Lp-PLA(2) activity was decreased by 64% ( p = 2.4 x 10(-25)) with carriage of any of the four loss-of-function variants, by 45% ( p < 10(-300)) for every allele inherited at Val279Phe, and by 2.7% ( p = 1.9 x 10(-12)) for every allele inherited at Val379Ala. Darapladib 160 mg once-daily reduced Lp-PLA(2) activity by 65% ( p < 10(-300)). Causal risk ratios for coronary heart disease per 65% lower Lp-PLA(2) activity were: 0.95 (0.88-1.03) with Val279Phe; 0.92 (0.74-1.16) with carriage of any loss-of-function variant; 1.01 (0.68-1.51) with Val379Ala; and 0.95 (0.89-1.02) with darapladib treatment. Conclusions In a large-scale human genetic study, none of a series of Lp-PLA(2)-lowering alleles was related to coronary heart disease risk, suggesting that Lp-PLA(2) is unlikely to be a causal risk factor.
The filamentous fungus Aspergillus niger has become one of the most important fungi in industrial biotechnology, and it can efficiently secrete both polysaccharide-degrading enzymes and organic acids. We report here the 6,074,961,332-bp draft sequence of A. niger strain An76, and the findings provide important information related to its lignocellulose-degrading ability.
        
Title: Transcriptome Analysis of the Carmine Spider Mite, Tetranychus cinnabarinus (Boisduval, 1867) (Acari: Tetranychidae), and Its Response to beta-Sitosterol Bu C, Li J, Wang XQ, Shi G, Peng B, Han J, Gao P, Wang Y Ref: Biomed Res Int, 2015:794718, 2015 : PubMed
Tetranychus cinnabarinus (Acari: Tetranychidae) is a worldwide polyphagous agricultural pest that has the title of resistance champion among arthropods. We reported previously the identification of the acaricidal compound beta-sitosterol from Mentha piperita and Inula japonica. However, the acaricidal mechanism of beta-sitosterol is unclear. Due to the limited genetic research carried out, we de novo assembled the transcriptome of T. cinnabarinus using Illumina sequencing and conducted a differential expression analysis of control and beta-sitosterol-treated mites. In total, we obtained >5.4 G high-quality bases for each sample with unprecedented sequencing depth and assembled them into 22,941 unigenes. We identified 617 xenobiotic metabolism-related genes involved in detoxification, binding, and transporting of xenobiotics. A highly expanded xenobiotic metabolic system was found in mites. T. cinnabarinus detoxification genes-including carboxyl/cholinesterase and ABC transporter class C-were upregulated after beta-sitosterol treatment. Defense-related proteins, such as Toll-like receptor, legumain, and serine proteases, were also activated. Furthermore, other important genes-such as the chloride channel protein, cytochrome b, carboxypeptidase, peritrophic membrane chitin binding protein, and calphostin-may also play important roles in mites' response to beta-sitosterol. Our results demonstrate that high-throughput-omics tool facilitates identification of xenobiotic metabolism-related genes and illustration of the acaricidal mechanisms of beta-sitosterol.
The carmine spider mite, Tetranychus cinnabarinus (Boisduval), is a major agriculture pest. It can be found worldwide, has an extensive host plant range, and has shown resistance to pesticides. Organophosphate and carbamate insecticides account for more than one-third of all insecticide sales. Insecticide resistance and the toxicity of organophosphate and carbamate insecticides to mammals have become a growing concern. Acetylcholinesterase (AChE) is the major targeted enzyme of organophosphate and carbamate insecticides. In this study, we fully cloned, sequenced and characterized the ace1 gene of T. cinnabarinus, and identified the differences between T. cinnabarinus AChE1, Tetranychus urticae Koch AChE1, and human AChE1. Resistance-associated target-site mutations were displayed by comparing the AChE amino acid sequences and their AChE three-dimensional (3D) structures of the insecticide-susceptible strains of T. cinnabarinus and T. urticae to that of a T. urticae-resistant strain. We identified variation in the active-site gorge and the sites interacting with gorge residues by comparing AChE1 3D structures of T. cinnabarinus, T. urticae, and humans, though their 3D structures were similar. Furthermore, the expression profile of T. cinnabarinus AChE, at the different developmental stages, was determined by quantitative real-time polymerase chain reaction; the transcript levels of AChE were higher in the larvae stage than in other stages. The changes in AChE expression between different developmental stages may be related to their growth habits and metabolism characteristics. This study may offer new insights into the problems of insecticide resistance and insecticide toxicity of nontarget species.
        
Title: Association of Lp-PLA2 Mass and Aysmptomatic Intracranial and Extracranial Arterial Stenosis in Hypertension Patients Wang Y, Zhang J, Qian Y, Tang X, Ling H, Chen K, Gao P, Zhu D Ref: PLoS ONE, 10:e0130473, 2015 : PubMed
BACKGROUND AND PURPOSE: Intracranial arterial stenosis (ICAS) is a common cause of ischemic stroke in Asians, whereas whites tend to have more extracranial lesions. Lipoprotein-associated phospholipase A2 (Lp-PLA2) has been associated with ischemic stroke by a large amount of work. However, there are few studies focusing on the relationship of Lp-PLA2 and asymptomatic ICAS or extracranial arterial stenosis (ECAS). Wehereby sought to explore the relationship of Lp-PLA2 and ICAS, ECAS and concurrent stenosis in stroke-free hypertensive patients in Chinese population. METHODS: All the subjects were evaluated for the presence and severity of ICAS and ECAS through computerized tomographic angiography (CTA) covered the whole brain down to the level of aortic arch. Lp-PLA2 mass was measured by enzyme linked immunoassay. The association of Lp-PLA2 and vascular stenosis was analyzed through multivariate logistic regression. RESULTS: Among 414 participants, 163 (39.4%) had no ICAS or ECAS, 63 (15.2%) had ECAS only, 111 (26.8%) had ICAS only and 77 (18.6%) had concurrent extraintracranial stenosis. Lp-PLA2 mass was significantly associated with isolated ICAS (OR: 2.3; 95% CI: 1.14-4.64), and concurrent stenosis (OR: 3.93; 95% CI: 1.62-9.51), but was not related to isolated ECAS (OR: 1.54; 95% CI: 0.68-3.48). Lp-PLA2 mass was also associated with moderate to severe ICAS no matter how was the ECAS. Moreover, patients with higher Lp-PLA2 mass showed more sever ICAS and had more intracranial arterial lesions. CONCLUSION: This study revealed the association of Lp-PLA2 mass with ICAS in stroke-free hypertensive patients in Chinese population. The further long-term cohort study was warranted to elucidate the concrete effect of Lp-PLA2 on the asymptomatic ICAS.
        
Title: Down-regulation of carboxylesterases 1 and 2 plays an important role in prodrug metabolism in immunological liver injury rats Zhang C, Xu Y, Gao P, Lu J, Li X, Liu D Ref: Int Immunopharmacol, 24:153, 2015 : PubMed
Liver plays a central role in xenobiotics metabolism, thus affecting the in vivo disposition and therapeutic effects of drugs. Carboxylesterases (CESs), with the main isoforms CES1 and CES2, are important in the metabolism of ester-type prodrugs. However, influences of immunological liver injury on the activity of CES remain undefined. In the present study, we demonstrated treatment with lipopolysaccharide (LPS) suppressed the activities of CES1 and CES2. The decreased activities of CES1 and CES2 were preliminarily assessed by the hydrolysis assay for their common substrate p-nitrophenyl acetate (PNPA) with rat hepatic microsomal enzyme. Subsequently, RT-PCR results showed that the levels of CES1 mRNA and mRNA of CES2 (AB010635) and CES2 (AY034877) in the model group were significantly lower than those of the normal control group (P<0.05). Western blot results showed that the expressions of CES1 and CES2 proteins were decreased (P<0.05). To further clarify the effects of LPS on the metabolic activities of CESs, pharmacokinetic studies were performed in rats by utilizing imidapril and irinotecan (CPT-11) as the specific substrates for CES1 and CES2, respectively. After treatment with LPS, AUC0-inf and Cmax of imidaprilat were decreased from 2084.86+/-340.66ng.h(-1).mL(-1) and 234.66+/-68.85ng.mL(-1) to 983.87+/-315.34ng.h(-1).mL(-1) and 113.1+/-19.69ng.mL(-1) (P<0.05), respectively. Moreover, AUC0-inf and Cmax of SN-38 were decreased from 8100+/-918.6ng.h(-1).mL(-1) and 144.67+/-20.28ng.mL(-1) to 3270+/-500.5ng.h(-1).mL(-1) and 56.19+/-10.38ng.mL(-1) (P<0.05), respectively. In summary, immunological liver injury remarkably attenuated the expressions and metabolic activities of CES1 and CES2, which may be associated with the regulatory effects of cytokines under inflammation.
        
Title: In Vitro Evaluation of the Inhibitory Potential of Pharmaceutical Excipients on Human Carboxylesterase 1A and 2 Zhang C, Xu Y, Zhong Q, Li X, Gao P, Feng C, Chu Q, Chen Y, Liu D Ref: PLoS ONE, 9:e93819, 2014 : PubMed
Two major forms of human carboxylesterase (CES), CES1A and CES2, dominate the pharmacokinetics of most prodrugs such as imidapril and irinotecan (CPT-11). Excipients, largely used as insert vehicles in formulation, have been recently reported to affect drug enzyme activity. The influence of excipients on the activity of CES remains undefined. In this study, the inhibitory effects of 25 excipients on the activities of CES1A1 and CES2 were evaluated. Imidapril and CPT-11 were used as substrates and cultured with liver microsomes in vitro. Imidapril hydrolase activities of recombinant CES1A1 and human liver microsomes (HLM) were strongly inhibited by sodium lauryl sulphate (SLS) and polyoxyl 40 hydrogenated castor oil (RH40) [Inhibition constant (Ki) = 0.04+/-0.01 mug/ml and 0.20+/-0.09 mug/ml for CES1A1, and 0.12+/-0.03 mug/ml and 0.76+/-0.33 mug/ml, respectively, for HLM]. The enzyme hydrolase activity of recombinant CES2 was substantially inhibited by Tween 20 and polyoxyl 35 castor oil (EL35) (Ki = 0.93+/-0.36 mug/ml and 4.4+/-1.24 mug/ml, respectively). Thus, these results demonstrate that surfactants such as SLS, RH40, Tween 20 and EL35 may attenuate the CES activity; such inhibition should be taken into consideration during drug administration.
        
Title: Dexamethasone regulates differential expression of carboxylesterase 1 and carboxylesterase 2 through activation of nuclear receptors Zhang C, Gao P, Yin W, Xu Y, Xiang D, Liu D Ref: J Huazhong Univ Sci Technolog Med Sci, 32:798, 2012 : PubMed
Carboxylesterases (CESs) play important roles in the metabolism of endogenous and foreign compounds in physiological and pharmacological responses. The aim of this study was to investigate the effect of dexamethasone at different doses on the expression of CES1 and CES2. Imidapril and irinotecan hydrochloride (CPT-11) were used as special substrates for CES1 and CES2, respectively. Rat hepatocytes were cultured and treated with different concentrations of dexamethasone. The hydrolytic activity of CES1 and CES2 was tested by incubation experiment and their expression was quantitated by real-time PCR. A pharmacokinetic study was conducted in SD rats to further evaluate the effect of dexamethasone on CESs activity in vivo. Western blotting was performed to investigate the regulatory mechanism related to pregnane X receptor (PXR) and glucocorticoid receptor (GR). The results showed that exposure of cultured rat hepatocytes to nanomolar dexamethasone inhibited the imidapril hydrolase activity, which was slightly elevated by micromolar dexamethasone. For CES2, CPT-11 hydrolase activity was induced only when dexamethasone reached micromolar levels. The real-time PCR demonstrated that CES1 mRNA was markedly decreased by nanomolar dexamethasone and increased by micromolar dexamethasone, whereas CES2 mRNA was significantly increased by micromolar dexamethasone. The results of a complementary animal study showed that the concurrent administration of dexamethasone significantly increased the plasma concentration of the metabolite of imidapril while the ratio of CPT-11 to its metabolite SN-38 was significantly decreased. PXR protein was gradually increased by serial concentrations of dexamethasone. However, only nanomolar dexamethasone elevated the level of GR protein. The different concentrations of dexamethasone required suggested that suppression of CES1 may be mediated by GR whereas the induction of CES2 may result from the role of PXR. It was concluded that dexamethasone at different concentrations can differentially regulate CES1 and CES2.
Bifidobacterium animalis subsp. lactis strain V9 is a Chinese commercial bifidobacteria with several probiotic functions. It was isolated from a healthy Mongolian child in China. We present here the complete genome sequence of V9 and compare it to 3 other published genome sequences of B. animalis subsp. lactis strains. The result indicates the lack of polymorphism among strains of this subspecies from different continents.
BACKGROUND: Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), an inflammatory enzyme expressed in atherosclerotic plaques, is a therapeutic target being assessed in trials of vascular disease prevention. We investigated associations of circulating Lp-PLA(2) mass and activity with risk of coronary heart disease, stroke, and mortality under different circumstances. METHODS: With use of individual records from 79 036 participants in 32 prospective studies (yielding 17 722 incident fatal or non-fatal outcomes during 474 976 person-years at risk), we did a meta-analysis of within-study regressions to calculate risk ratios (RRs) per 1 SD higher value of Lp-PLA(2) or other risk factor. The primary outcome was coronary heart disease. FINDINGS: Lp-PLA(2) activity and mass were associated with each other (r=0.51, 95% CI 0.47-0.56) and proatherogenic lipids. We noted roughly log-linear associations of Lp-PLA(2) activity and mass with risk of coronary heart disease and vascular death. RRs, adjusted for conventional risk factors, were: 1.10 (95% CI 1.05-1.16) with Lp-PLA(2) activity and 1.11 (1.07-1.16) with Lp-PLA(2) mass for coronary heart disease; 1.08 (0.97-1.20) and 1.14 (1.02-1.27) for ischaemic stroke; 1.16 (1.09-1.24) and 1.13 (1.05-1.22) for vascular mortality; and 1.10 (1.04-1.17) and 1.10 (1.03-1.18) for non-vascular mortality, respectively. RRs with Lp-PLA(2) did not differ significantly in people with and without initial stable vascular disease, apart from for vascular death with Lp-PLA(2) mass. Adjusted RRs for coronary heart disease were 1.10 (1.02-1.18) with non-HDL cholesterol and 1.10 (1.00-1.21) with systolic blood pressure. INTERPRETATION: Lp-PLA(2) activity and mass each show continuous associations with risk of coronary heart disease, similar in magnitude to that with non-HDL cholesterol or systolic blood pressure in this population. Associations of Lp-PLA(2) mass and activity are not exclusive to vascular outcomes, and the vascular associations depend at least partly on lipids. FUNDING: UK Medical Research Council, GlaxoSmithKline, and British Heart Foundation.
        
Title: Controlled release of huperzine A from biodegradable microspheres: In vitro and in vivo studies Gao P, Xu H, Ding P, Gao Q, Sun J, Chen D Ref: Int J Pharm, 330:1, 2007 : PubMed
The objective of the present work was to further study the in vitro characteristics, in vivo pharmacokinetics and pharmacodynamics of huperzine A (HupA) loaded biodegradable microspheres designed for sustained release of HupA over several weeks. A conventional o/w emulsion-solvent evaporation method was used to incorporate HupA, which is of interest in the palliative treatment of Alzheimer's disease (AD), into end-group uncapped poly(D,L-lactide-co-glycolide) (PLG-H). A prolonged in vitro drug release profile was observed, with a complete release of the incorporated drug within 5-6 weeks. The in vivo pharmacokinetics study of HupA loaded microspheres showed sustained plasma HupA concentration-time profile after subcutaneous injection into rats. The pharmacodynamics evaluated by determination of the activity of acetylcholinesterase in the rat cortex also showed a prolonged pharmacological response. Both the in vitro release and in vivo pharmacological responses correlated well with the in vivo pharmacokinetics profile. The results suggest the potential use of HupA-loaded biodegradable microspheres for treatment of AD over long periods.
        
Title: In vitro and in vivo characterization of huperzine a loaded microspheres made from end-group uncapped poly(d,l-lactide acid) and poly(d,l-lactide-co-glycolide acid) Gao P, Ding P, Xu H, Yuan Z, Chen D, Wei J Ref: Chem Pharm Bull (Tokyo), 54:89, 2006 : PubMed
The purpose of this work was to develop biodegradable microspheres for long term delivery of a potent acetyl cholinesterase inhibitor, huperzine A (Hup-A), which is of interest in the palliative treatment of Alzheimer's disease. Microspheres were successfully prepared with specifically end-group uncapped poly(d,l-lactide acid) and poly(d,l-lactide-co-glycolide acid) using a simple o/w solvent evaporation method. The morphology, particle size and size distribution, drug loading capacity, drug entrapment efficiency (EE) and in vitro drug release were studied in detail. It was found that the terminal group and the inherent viscosity (IV) of the polymers played key role in the drug encapsulation: higher EE was achieved with end-group uncapped and low IV polymers. In vitro drug release from microspheres made from the selected three kinds of polymers revealed sustained release of Hup-A without significant burst release. Preliminary pharmacokinetic study following subcutaneous injection of Hup-A loaded microspheres illustrated the sustained release of the drug over 6-8 weeks at clinically relevant doses in vivo. The studies demonstrated the feasibility of long term delivery of Hup-A using biodegradable microspheres.