Kathiresan S

References (9)

Title : Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity - Turcot_2018_Nat.Genet_50_26
Author(s) : Turcot V , Lu Y , Highland HM , Schurmann C , Justice AE , Fine RS , Bradfield JP , Esko T , Giri A , Graff M , Guo X , Hendricks AE , Karaderi T , Lempradl A , Locke AE , Mahajan A , Marouli E , Sivapalaratnam S , Young KL , Alfred T , Feitosa MF , Masca NGD , Manning AK , Medina-Gomez C , Mudgal P , Ng MCY , Reiner AP , Vedantam S , Willems SM , Winkler TW , Abecasis G , Aben KK , Alam DS , Alharthi SE , Allison M , Amouyel P , Asselbergs FW , Auer PL , Balkau B , Bang LE , Barroso I , Bastarache L , Benn M , Bergmann S , Bielak LF , Bluher M , Boehnke M , Boeing H , Boerwinkle E , Boger CA , Bork-Jensen J , Bots ML , Bottinger EP , Bowden DW , Brandslund I , Breen G , Brilliant MH , Broer L , Brumat M , Burt AA , Butterworth AS , Campbell PT , Cappellani S , Carey DJ , Catamo E , Caulfield MJ , Chambers JC , Chasman DI , Chen YI , Chowdhury R , Christensen C , Chu AY , Cocca M , Collins FS , Cook JP , Corley J , Corominas Galbany J , Cox AJ , Crosslin DS , Cuellar-Partida G , D'Eustacchio A , Danesh J , Davies G , Bakker PIW , Groot MCH , Mutsert R , Deary IJ , Dedoussis G , Demerath EW , Heijer M , Hollander AI , Ruijter HM , Dennis JG , Denny JC , Angelantonio E , Drenos F , Du M , Dube MP , Dunning AM , Easton DF , Edwards TL , Ellinghaus D , Ellinor PT , Elliott P , Evangelou E , Farmaki AE , Farooqi IS , Faul JD , Fauser S , Feng S , Ferrannini E , Ferrieres J , Florez JC , Ford I , Fornage M , Franco OH , Franke A , Franks PW , Friedrich N , Frikke-Schmidt R , Galesloot TE , Gan W , Gandin I , Gasparini P , Gibson J , Giedraitis V , Gjesing AP , Gordon-Larsen P , Gorski M , Grabe HJ , Grant SFA , Grarup N , Griffiths HL , Grove ML , Gudnason V , Gustafsson S , Haessler J , Hakonarson H , Hammerschlag AR , Hansen T , Harris KM , Harris TB , Hattersley AT , Have CT , Hayward C , He L , Heard-Costa NL , Heath AC , Heid IM , Helgeland O , Hernesniemi J , Hewitt AW , Holmen OL , Hovingh GK , Howson JMM , Hu Y , Huang PL , Huffman JE , Ikram MA , Ingelsson E , Jackson AU , Jansson JH , Jarvik GP , Jensen GB , Jia Y , Johansson S , Jorgensen ME , Jorgensen T , Jukema JW , Kahali B , Kahn RS , Kahonen M , Kamstrup PR , Kanoni S , Kaprio J , Karaleftheri M , Kardia SLR , Karpe F , Kathiresan S , Kee F , Kiemeney LA , Kim E , Kitajima H , Komulainen P , Kooner JS , Kooperberg C , Korhonen T , Kovacs P , Kuivaniemi H , Kutalik Z , Kuulasmaa K , Kuusisto J , Laakso M , Lakka TA , Lamparter D , Lange EM , Lange LA , Langenberg C , Larson EB , Lee NR , Lehtimaki T , Lewis CE , Li H , Li J , Li-Gao R , Lin H , Lin KH , Lin LA , Lin X , Lind L , Lindstrom J , Linneberg A , Liu CT , Liu DJ , Liu Y , Lo KS , Lophatananon A , Lotery AJ , Loukola A , Luan J , Lubitz SA , Lyytikainen LP , Mannisto S , Marenne G , Mazul AL , McCarthy MI , McKean-Cowdin R , Medland SE , Meidtner K , Milani L , Mistry V , Mitchell P , Mohlke KL , Moilanen L , Moitry M , Montgomery GW , Mook-Kanamori DO , Moore C , Mori TA , Morris AD , Morris AP , Muller-Nurasyid M , Munroe PB , Nalls MA , Narisu N , Nelson CP , Neville M , Nielsen SF , Nikus K , Njolstad PR , Nordestgaard BG , Nyholt DR , O'Connel JR , O'Donoghue ML , Olde Loohuis LM , Ophoff RA , Owen KR , Packard CJ , Padmanabhan S , Palmer CNA , Palmer ND , Pasterkamp G , Patel AP , Pattie A , Pedersen O , Peissig PL , Peloso GM , Pennell CE , Perola M , Perry JA , Perry JRB , Pers TH , Person TN , Peters A , Petersen ERB , Peyser PA , Pirie A , Polasek O , Polderman TJ , Puolijoki H , Raitakari OT , Rasheed A , Rauramaa R , Reilly DF , Renstrom F , Rheinberger M , Ridker PM , Rioux JD , Rivas MA , Roberts DJ , Robertson NR , Robino A , Rolandsson O , Rudan I , Ruth KS , Saleheen D , Salomaa V , Samani NJ , Sapkota Y , Sattar N , Schoen RE , Schreiner PJ , Schulze MB , Scott RA , Segura-Lepe MP , Shah SH , Sheu WH , Sim X , Slater AJ , Small KS , Smith AV , Southam L , Spector TD , Speliotes EK , Starr JM , Stefansson K , Steinthorsdottir V , Stirrups KE , Strauch K , Stringham HM , Stumvoll M , Sun L , Surendran P , Swift AJ , Tada H , Tansey KE , Tardif JC , Taylor KD , Teumer A , Thompson DJ , Thorleifsson G , Thorsteinsdottir U , Thuesen BH , Tonjes A , Tromp G , Trompet S , Tsafantakis E , Tuomilehto J , Tybjaerg-Hansen A , Tyrer JP , Uher R , Uitterlinden AG , Uusitupa M , Laan SW , Duijn CM , Leeuwen N , van Setten J , Vanhala M , Varbo A , Varga TV , Varma R , Velez Edwards DR , Vermeulen SH , Veronesi G , Vestergaard H , Vitart V , Vogt TF , Volker U , Vuckovic D , Wagenknecht LE , Walker M , Wallentin L , Wang F , Wang CA , Wang S , Wang Y , Ware EB , Wareham NJ , Warren HR , Waterworth DM , Wessel J , White HD , Willer CJ , Wilson JG , Witte DR , Wood AR , Wu Y , Yaghootkar H , Yao J , Yao P , Yerges-Armstrong LM , Young R , Zeggini E , Zhan X , Zhang W , Zhao JH , Zhao W , Zhou W , Zondervan KT , Rotter JI , Pospisilik JA , Rivadeneira F , Borecki IB , Deloukas P , Frayling TM , Lettre G , North KE , Lindgren CM , Hirschhorn JN , Loos RJF
Ref : Nat Genet , 50 :26 , 2018
Abstract : Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
ESTHER : Turcot_2018_Nat.Genet_50_26
PubMedSearch : Turcot_2018_Nat.Genet_50_26
PubMedID: 29273807

Title : Association of Rare and Common Variation in the Lipoprotein Lipase Gene With Coronary Artery Disease - Khera_2017_JAMA_317_937
Author(s) : Khera AV , Won HH , Peloso GM , O'Dushlaine C , Liu D , Stitziel NO , Natarajan P , Nomura A , Emdin CA , Gupta N , Borecki IB , Asselta R , Duga S , Merlini PA , Correa A , Kessler T , Wilson JG , Bown MJ , Hall AS , Braund PS , Carey DJ , Murray MF , Kirchner HL , Leader JB , Lavage DR , Manus JN , Hartzel DN , Samani NJ , Schunkert H , Marrugat J , Elosua R , McPherson R , Farrall M , Watkins H , Lander ES , Rader DJ , Danesh J , Ardissino D , Gabriel S , Willer C , Abecasis GR , Saleheen D , Dewey FE , Kathiresan S
Ref : Jama , 317 :937 , 2017
Abstract : Importance: The activity of lipoprotein lipase (LPL) is the rate-determining step in clearing triglyceride-rich lipoproteins from the circulation. Mutations that damage the LPL gene (LPL) lead to lifelong deficiency in enzymatic activity and can provide insight into the relationship of LPL to human disease. Objective: To determine whether rare and/or common variants in LPL are associated with early-onset coronary artery disease (CAD). Design, Setting, and Participants: In a cross-sectional study, LPL was sequenced in 10 CAD case-control cohorts of the multinational Myocardial Infarction Genetics Consortium and a nested CAD case-control cohort of the Geisinger Health System DiscovEHR cohort between 2010 and 2015. Common variants were genotyped in up to 305699 individuals of the Global Lipids Genetics Consortium and up to 120600 individuals of the CARDIoGRAM Exome Consortium between 2012 and 2014. Study-specific estimates were pooled via meta-analysis. Exposures: Rare damaging mutations in LPL included loss-of-function variants and missense variants annotated as pathogenic in a human genetics database or predicted to be damaging by computer prediction algorithms trained to identify mutations that impair protein function. Common variants in the LPL gene region included those independently associated with circulating triglyceride levels. Main Outcomes and Measures: Circulating lipid levels and CAD. Results: Among 46891 individuals with LPL gene sequencing data available, the mean (SD) age was 50 (12.6) years and 51% were female. A total of 188 participants (0.40%; 95% CI, 0.35%-0.46%) carried a damaging mutation in LPL, including 105 of 32646 control participants (0.32%) and 83 of 14245 participants with early-onset CAD (0.58%). Compared with 46703 noncarriers, the 188 heterozygous carriers of an LPL damaging mutation displayed higher plasma triglyceride levels (19.6 mg/dL; 95% CI, 4.6-34.6 mg/dL) and higher odds of CAD (odds ratio = 1.84; 95% CI, 1.35-2.51; P < .001). An analysis of 6 common LPL variants resulted in an odds ratio for CAD of 1.51 (95% CI, 1.39-1.64; P = 1.1 x 10-22) per 1-SD increase in triglycerides. Conclusions and Relevance: The presence of rare damaging mutations in LPL was significantly associated with higher triglyceride levels and presence of coronary artery disease. However, further research is needed to assess whether there are causal mechanisms by which heterozygous lipoprotein lipase deficiency could lead to coronary artery disease.
ESTHER : Khera_2017_JAMA_317_937
PubMedSearch : Khera_2017_JAMA_317_937
PubMedID: 28267856
Gene_locus related to this paper: human-LPL

Title : Genetic invalidation of Lp-PLA(2) as a therapeutic target: Large-scale study of five functional Lp-PLA(2)-lowering alleles - Gregson_2017_Eur.J.Prev.Cardiol_24_492
Author(s) : Gregson JM , Freitag DF , Surendran P , Stitziel NO , Chowdhury R , Burgess S , Kaptoge S , Gao P , Staley JR , Willeit P , Nielsen SF , Caslake M , Trompet S , Polfus LM , Kuulasmaa K , Kontto J , Perola M , Blankenberg S , Veronesi G , Gianfagna F , Mannisto S , Kimura A , Lin H , Reilly DF , Gorski M , Mijatovic V , Munroe PB , Ehret GB , Thompson A , Uria-Nickelsen M , Malarstig A , Dehghan A , Vogt TF , Sasaoka T , Takeuchi F , Kato N , Yamada Y , Kee F , Muller-Nurasyid M , Ferrieres J , Arveiler D , Amouyel P , Salomaa V , Boerwinkle E , Thompson SG , Ford I , Wouter Jukema J , Sattar N , Packard CJ , Shafi Majumder AA , Alam DS , Deloukas P , Schunkert H , Samani NJ , Kathiresan S , Nordestgaard BG , Saleheen D , Howson JM , Di Angelantonio E , Butterworth AS , Danesh J
Ref : Eur J Prev Cardiol , 24 :492 , 2017
Abstract : Aims Darapladib, a potent inhibitor of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), has not reduced risk of cardiovascular disease outcomes in recent randomized trials. We aimed to test whether Lp-PLA(2) enzyme activity is causally relevant to coronary heart disease. Methods In 72,657 patients with coronary heart disease and 110,218 controls in 23 epidemiological studies, we genotyped five functional variants: four rare loss-of-function mutations (c.109+2T > C (rs142974898), Arg82His (rs144983904), Val279Phe (rs76863441), Gln287Ter (rs140020965)) and one common modest-impact variant (Val379Ala (rs1051931)) in PLA2G7, the gene encoding Lp-PLA(2). We supplemented de-novo genotyping with information on a further 45,823 coronary heart disease patients and 88,680 controls in publicly available databases and other previous studies. We conducted a systematic review of randomized trials to compare effects of darapladib treatment on soluble Lp-PLA(2) activity, conventional cardiovascular risk factors, and coronary heart disease risk with corresponding effects of Lp-PLA(2)-lowering alleles. Results Lp-PLA(2) activity was decreased by 64% ( p = 2.4 x 10(-25)) with carriage of any of the four loss-of-function variants, by 45% ( p < 10(-300)) for every allele inherited at Val279Phe, and by 2.7% ( p = 1.9 x 10(-12)) for every allele inherited at Val379Ala. Darapladib 160 mg once-daily reduced Lp-PLA(2) activity by 65% ( p < 10(-300)). Causal risk ratios for coronary heart disease per 65% lower Lp-PLA(2) activity were: 0.95 (0.88-1.03) with Val279Phe; 0.92 (0.74-1.16) with carriage of any loss-of-function variant; 1.01 (0.68-1.51) with Val379Ala; and 0.95 (0.89-1.02) with darapladib treatment. Conclusions In a large-scale human genetic study, none of a series of Lp-PLA(2)-lowering alleles was related to coronary heart disease risk, suggesting that Lp-PLA(2) is unlikely to be a causal risk factor.
ESTHER : Gregson_2017_Eur.J.Prev.Cardiol_24_492
PubMedSearch : Gregson_2017_Eur.J.Prev.Cardiol_24_492
PubMedID: 27940953
Gene_locus related to this paper: human-PLA2G7

Title : Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia - Stitziel_2013_Arterioscler.Thromb.Vasc.Biol_33_2909
Author(s) : Stitziel NO , Fouchier SW , Sjouke B , Peloso GM , Moscoso AM , Auer PL , Goel A , Gigante B , Barnes TA , Melander O , Orho-Melander M , Duga S , Sivapalaratnam S , Nikpay M , Martinelli N , Girelli D , Jackson RD , Kooperberg C , Lange LA , Ardissino D , McPherson R , Farrall M , Watkins H , Reilly MP , Rader DJ , de Faire U , Schunkert H , Erdmann J , Samani NJ , Charnas L , Altshuler D , Gabriel S , Kastelein JJ , Defesche JC , Nederveen AJ , Kathiresan S , Hovingh GK
Ref : Arterioscler Thromb Vasc Biol , 33 :2909 , 2013
Abstract : OBJECTIVE: Autosomal recessive hypercholesterolemia is a rare inherited disorder, characterized by extremely high total and low-density lipoprotein cholesterol levels, that has been previously linked to mutations in LDLRAP1. We identified a family with autosomal recessive hypercholesterolemia not explained by mutations in LDLRAP1 or other genes known to cause monogenic hypercholesterolemia. The aim of this study was to identify the molecular pathogenesis of autosomal recessive hypercholesterolemia in this family. APPROACH AND
RESULTS: We used exome sequencing to assess all protein-coding regions of the genome in 3 family members and identified a homozygous exon 8 splice junction mutation (c.894G>A, also known as E8SJM) in LIPA that segregated with the diagnosis of hypercholesterolemia. Because homozygosity for mutations in LIPA is known to cause cholesterol ester storage disease, we performed directed follow-up phenotyping by noninvasively measuring hepatic cholesterol content. We observed abnormal hepatic accumulation of cholesterol in the homozygote individuals, supporting the diagnosis of cholesterol ester storage disease. Given previous suggestions of cardiovascular disease risk in heterozygous LIPA mutation carriers, we genotyped E8SJM in >27 000 individuals and found no association with plasma lipid levels or risk of myocardial infarction, confirming a true recessive mode of inheritance.
CONCLUSIONS: By integrating observations from Mendelian and population genetics along with directed clinical phenotyping, we diagnosed clinically unapparent cholesterol ester storage disease in the affected individuals from this kindred and addressed an outstanding question about risk of cardiovascular disease in LIPA E8SJM heterozygous carriers.
ESTHER : Stitziel_2013_Arterioscler.Thromb.Vasc.Biol_33_2909
PubMedSearch : Stitziel_2013_Arterioscler.Thromb.Vasc.Biol_33_2909
PubMedID: 24072694

Title : Clinical and genetic association of serum paraoxonase and arylesterase activities with cardiovascular risk - Tang_2012_Arterioscler.Thromb.Vasc.Biol_32_2803
Author(s) : Tang WH , Hartiala J , Fan Y , Wu Y , Stewart AF , Erdmann J , Kathiresan S , Roberts R , McPherson R , Allayee H , Hazen SL
Ref : Arterioscler Thromb Vasc Biol , 32 :2803 , 2012
Abstract : OBJECTIVE: Diminished serum paraoxonase and arylesterase activities (measures of paraoxonase-1 [PON-1] function) in humans have been linked to heightened systemic oxidative stress and atherosclerosis risk. The clinical prognostic use of measuring distinct PON-1 activities has not been established, and the genetic determinants of PON-1 activities are not known. METHODS AND
RESULTS: We established analytically robust high-throughput assays for serum paraoxonase and arylesterase activities and measured these in 3668 stable subjects undergoing elective coronary angiography without acute coronary syndrome and were prospectively followed for major adverse cardiovascular events (MACE= death, myocardial infarction, stroke) over 3 years. Low serum arylesterase and paraoxonase activities were both associated with increased risk for MACE, with arylesterase activity showing greatest prognostic value (quartile 4 versus quartile 1; hazard ratio 2.63; 95% CI, 1.97-3.50; P<0.01). Arylesterase remained significant after adjusting for traditional risk factors, C-reactive protein, and creatinine clearance (hazard ratio, 2.20; 95% CI, 1.60-3.02; P<0.01), predicted future development of MACE in both primary and secondary prevention populations, and reclassified risk categories incrementally to traditional clinical variables. A genome-wide association study identified distinct single nucleotide polymorphisms within the PON-1 gene that were highly significantly associated with serum paraoxonase (1.18x10(-303)) or arylesterase (4.99x10(-116)) activity but these variants were not associated with either 3-year MACE risk in an angiographic cohort (n=2136) or history of either coronary artery disease or myocardial infarction in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis consortium (n approximately 80 000 subjects).
CONCLUSIONS: Diminished serum arylesterase activity, but not the genetic determinants of PON-1 functional measures, provides incremental prognostic value and clinical reclassification of stable subjects at risk of developing MACE.
ESTHER : Tang_2012_Arterioscler.Thromb.Vasc.Biol_32_2803
PubMedSearch : Tang_2012_Arterioscler.Thromb.Vasc.Biol_32_2803
PubMedID: 22982463

Title : Mining the LIPG allelic spectrum reveals the contribution of rare and common regulatory variants to HDL cholesterol - Khetarpal_2011_PLoS.Genet_7_e1002393
Author(s) : Khetarpal SA , Edmondson AC , Raghavan A , Neeli H , Jin W , Badellino KO , Demissie S , Manning AK , Derohannessian SL , Wolfe ML , Cupples LA , Li M , Kathiresan S , Rader DJ
Ref : PLoS Genet , 7 :e1002393 , 2011
Abstract : Genome-wide association studies (GWAS) have successfully identified loci associated with quantitative traits, such as blood lipids. Deep resequencing studies are being utilized to catalogue the allelic spectrum at GWAS loci. The goal of these studies is to identify causative variants and missing heritability, including heritability due to low frequency and rare alleles with large phenotypic impact. Whereas rare variant efforts have primarily focused on nonsynonymous coding variants, we hypothesized that noncoding variants in these loci are also functionally important. Using the HDL-C gene LIPG as an example, we explored the effect of regulatory variants identified through resequencing of subjects at HDL-C extremes on gene expression, protein levels, and phenotype. Resequencing a portion of the LIPG promoter and 5' UTR in human subjects with extreme HDL-C, we identified several rare variants in individuals from both extremes. Luciferase reporter assays were used to measure the effect of these rare variants on LIPG expression. Variants conferring opposing effects on gene expression were enriched in opposite extremes of the phenotypic distribution. Minor alleles of a common regulatory haplotype and noncoding GWAS SNPs were associated with reduced plasma levels of the LIPG gene product endothelial lipase (EL), consistent with its role in HDL-C catabolism. Additionally, we found that a common nonfunctional coding variant associated with HDL-C (rs2000813) is in linkage disequilibrium with a 5' UTR variant (rs34474737) that decreases LIPG promoter activity. We attribute the gene regulatory role of rs34474737 to the observed association of the coding variant with plasma EL levels and HDL-C. Taken together, the findings show that both rare and common noncoding regulatory variants are important contributors to the allelic spectrum in complex trait loci.
ESTHER : Khetarpal_2011_PLoS.Genet_7_e1002393
PubMedSearch : Khetarpal_2011_PLoS.Genet_7_e1002393
PubMedID: 22174694
Gene_locus related to this paper: human-LIPG

Title : A genome-wide association study identifies LIPA as a susceptibility gene for coronary artery disease - Wild_2011_Circ.Cardiovasc.Genet_4_403
Author(s) : Wild PS , Zeller T , Schillert A , Szymczak S , Sinning CR , Deiseroth A , Schnabel RB , Lubos E , Keller T , Eleftheriadis MS , Bickel C , Rupprecht HJ , Wilde S , Rossmann H , Diemert P , Cupples LA , Perret C , Erdmann J , Stark K , Kleber ME , Epstein SE , Voight BF , Kuulasmaa K , Li M , Schafer AS , Klopp N , Braund PS , Sager HB , Demissie S , Proust C , Konig IR , Wichmann HE , Reinhard W , Hoffmann MM , Virtamo J , Burnett MS , Siscovick D , Wiklund PG , Qu L , El Mokthari NE , Thompson JR , Peters A , Smith AV , Yon E , Baumert J , Hengstenberg C , Marz W , Amouyel P , Devaney J , Schwartz SM , Saarela O , Mehta NN , Rubin D , Silander K , Hall AS , Ferrieres J , Harris TB , Melander O , Kee F , Hakonarson H , Schrezenmeir J , Gudnason V , Elosua R , Arveiler D , Evans A , Rader DJ , Illig T , Schreiber S , Bis JC , Altshuler D , Kavousi M , Witteman JC , Uitterlinden AG , Hofman A , Folsom AR , Barbalic M , Boerwinkle E , Kathiresan S , Reilly MP , O'Donnell CJ , Samani NJ , Schunkert H , Cambien F , Lackner KJ , Tiret L , Salomaa V , Munzel T , Ziegler A , Blankenberg S
Ref : Circ Cardiovasc Genet , 4 :403 , 2011
Abstract : BACKGROUND: eQTL analyses are important to improve the understanding of genetic association results. We performed a genome-wide association and global gene expression study to identify functionally relevant variants affecting the risk of coronary artery disease (CAD). METHODS AND RESULTS: In a genome-wide association analysis of 2078 CAD cases and 2953 control subjects, we identified 950 single-nucleotide polymorphisms (SNPs) that were associated with CAD at P<10(-3). Subsequent in silico and wet-laboratory replication stages and a final meta-analysis of 21 428 CAD cases and 38 361 control subjects revealed a novel association signal at chromosome 10q23.31 within the LIPA (lysosomal acid lipase A) gene (P=3.7x10(-8); odds ratio, 1.1; 95% confidence interval, 1.07 to 1.14). The association of this locus with global gene expression was assessed by genome-wide expression analyses in the monocyte transcriptome of 1494 individuals. The results showed a strong association of this locus with expression of the LIPA transcript (P=1.3x10(-96)). An assessment of LIPA SNPs and transcript with cardiovascular phenotypes revealed an association of LIPA transcript levels with impaired endothelial function (P=4.4x10(-3)). CONCLUSIONS: The use of data on genetic variants and the addition of data on global monocytic gene expression led to the identification of the novel functional CAD susceptibility locus LIPA, located on chromosome 10q23.31. The respective eSNPs associated with CAD strongly affect LIPA gene expression level, which was related to endothelial dysfunction, a precursor of CAD.
ESTHER : Wild_2011_Circ.Cardiovasc.Genet_4_403
PubMedSearch : Wild_2011_Circ.Cardiovasc.Genet_4_403
PubMedID: 21606135
Gene_locus related to this paper: human-LIPA

Title : Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans - Edmondson_2009_J.Clin.Invest_119_1042
Author(s) : Edmondson AC , Brown RJ , Kathiresan S , Cupples LA , Demissie S , Manning AK , Jensen MK , Rimm EB , Wang J , Rodrigues A , Bamba V , Khetarpal SA , Wolfe ML , Derohannessian S , Li M , Reilly MP , Aberle J , Evans D , Hegele RA , Rader DJ
Ref : J Clinical Investigation , 119 :1042 , 2009
Abstract : Elevated plasma concentrations of HDL cholesterol (HDL-C) are associated with protection from atherosclerotic cardiovascular disease. Animal models indicate that decreased expression of endothelial lipase (LIPG) is inversely associated with HDL-C levels, and genome-wide association studies have identified LIPG variants as being associated with HDL-C levels in humans. We hypothesized that loss-of-function mutations in LIPG may result in elevated HDL-C and therefore performed deep resequencing of LIPG exons in cases with elevated HDL-C levels and controls with decreased HDL-C levels. We identified a significant excess of nonsynonymous LIPG variants unique to cases with elevated HDL-C. In vitro lipase activity assays demonstrated that these variants significantly decreased endothelial lipase activity. In addition, a meta-analysis across 5 cohorts demonstrated that the low-frequency Asn396Ser variant is significantly associated with increased HDL-C, while the common Thr111Ile variant is not. Functional analysis confirmed that the Asn396Ser variant has significantly decreased lipase activity both in vitro and in vivo, while the Thr111Ile variant has normal lipase activity. Our results establish that loss-of-function mutations in LIPG lead to increased HDL-C levels and support the idea that inhibition of endothelial lipase may be an effective mechanism to raise HDL-C.
ESTHER : Edmondson_2009_J.Clin.Invest_119_1042
PubMedSearch : Edmondson_2009_J.Clin.Invest_119_1042
PubMedID: 19287092
Gene_locus related to this paper: human-LIPG

Title : Polymorphisms associated with cholesterol and risk of cardiovascular events - Kathiresan_2008_N.Engl.J.Med_358_1240
Author(s) : Kathiresan S , Melander O , Anevski D , Guiducci C , Burtt NP , Roos C , Hirschhorn JN , Berglund G , Hedblad B , Groop L , Altshuler DM , Newton-Cheh C , Orho-Melander M
Ref : N Engl J Med , 358 :1240 , 2008
Abstract : BACKGROUND: Common single-nucleotide polymorphisms (SNPs) that are associated with blood low-density lipoprotein (LDL) or high-density lipoprotein (HDL) cholesterol modestly affect lipid levels. We tested the hypothesis that a combination of such SNPs contributes to the risk of cardiovascular disease. METHODS: We studied SNPs at nine loci in 5414 subjects from the cardiovascular cohort of the Malmo Diet and Cancer Study. We first validated the association between SNPs and either LDL or HDL cholesterol and subsequently created a genotype score on the basis of the number of unfavorable alleles. We used Cox proportional-hazards models to determine the time to the first cardiovascular event in relation to the genotype score. RESULTS: All nine SNPs showed replication of an association with levels of either LDL or HDL cholesterol. With increasing genotype scores, the level of LDL cholesterol increased from 152 mg to 171 mg per deciliter (3.9 to 4.4 mmol per liter), whereas HDL cholesterol decreased from 60 mg to 51 mg per deciliter (1.6 to 1.3 mmol per liter). During follow-up (median, 10.6 years), 238 subjects had a first cardiovascular event. The genotype score was associated with incident cardiovascular disease in models adjusted for covariates including baseline lipid levels (P<0.001). The use of the genotype score did not improve the clinical risk prediction, as assessed by the C statistic. However, there was a significant improvement in risk classification with the use of models that included the genotype score, as compared with those that did not include the genotype score. CONCLUSIONS: A genotype score of nine validated SNPs that are associated with modulation in levels of LDL or HDL cholesterol was an independent risk factor for incident cardiovascular disease. The score did not improve risk discrimination but did modestly improve clinical risk reclassification for individual subjects beyond standard clinical factors.
ESTHER : Kathiresan_2008_N.Engl.J.Med_358_1240
PubMedSearch : Kathiresan_2008_N.Engl.J.Med_358_1240
PubMedID: 18354102