Title: Reactivation of Tabun-inhibited Acetylcholinesterase Investigated by Two Oximes and Mutagenesis Katalinic M, Kovarik Z Ref: Croatica Chemica Acta, 85:209", 2012 : PubMed
The reactivation of tabun-inhibited AChE site-directed mutants assisted by two bispyridinium oximes, K048 (N-[4-(4-hydroxyiminomethylpyridinio)butyl]-4-carbamoylpyridinium dibromide) and K033 ((N,N' -butano)bis(2-hydroxyiminomethylpyridinium bromide) was studied to analyse the constraints on oxime-assisted reactivation. AChE was modified within the acyl (F295L, F297I) and choline (Y337A) binding site of the active site gorge. Results show that introduced mutations affected both the affinity of phosphorylated enzyme for oximes and the rate of nucleophilic displacement of phosphoryl moiety from the catalytic serine. Mutations significantly lowered the overall reactivation efficacy of K048, but slightly enhanced the potency of K033 to reactivate tabun-inhibited AChE. It seems that the replacement of aromatic residues with the aliphatic ones at the acyl and choline binding site greatly interfered with the stabilization of the oxime's pyridinium ring(s) within the active site gorge needed to obtain the proper orientation of the oxime group toward the phosphorylated active site serine.
        
Title: Conformational remodeling of femtomolar inhibitor-acetylcholinesterase complexes in the crystalline state Bourne Y, Radic Z, Taylor P, Marchot P Ref: Journal of the American Chemical Society, 132:18292, 2010 : PubMed
The active center of acetylcholinesterase (AChE), a target site for competitive inhibitors, resides centrosymmetric to the subunit at the base of a deep, narrow gorge lined by aromatic residues. At the gorge entry, a peripheral site encompasses overlapping binding loci for noncompetitive inhibitors, which alter substrate access to the gorge. The click-chemistry inhibitor TZ2PA6 links the active center ligand, tacrine, to the peripheral site ligand, propidium, through a biorthogonal reaction of an acetylene and an azide that forms either a syn1 or an anti1 triazole. Compared with wild-type mouse AChE, a Tyr337Ala mutant displays full catalytic activity, albeit with 2-3 orders of magnitude higher affinities for the TZ2PA6 syn1 and anti1 regioisomers, reflected in low femtomolar K(d) values, diffusion-limited association, and dissociation half-times greater than 1 month and 1 week, respectively. Three structures of each of the co-crystallized syn1 and anti1 complexes of the Tyr337Ala mutant were solved at three distinct times of crystal maturation, consistent with or exceeding the half-lives of the complexes in solution, while crystalline complexes obtained from soaked Tyr337Ala crystals led to picturing "freshly formed" complexes. The structures, at 2.55-2.75 A resolution, reveal a range of unprecedented conformations of the bound regioisomers, not observed in the wild-type AChE complexes, associated with concerted positional rearrangements of side chains in the enzyme gorge. Moreover, time-dependent conformational remodeling of the crystalline complexes appears to correlate with the dissociation half-times of the solution complexes. Hence, for the tight-binding TZ2PA6 inhibitors, the initial complexes kinetically driven in solution slowly form more stable complexes governed by thermodynamic equilibrium and observable in mature crystals.
        
Title: Mutation of acetylcholinesterase to enhance oxime-assisted catalytic turnover of methylphosphonates Kovarik Z, Radic Z, Berman HA, Taylor P Ref: Toxicology, 233:79, 2007 : PubMed
Selected mutagenesis of acetylcholinesterase (AChE; EC 3.1.1.7) may enable one to develop more effective scavenging agents in which AChE itself, in combination with an oxime, will complete a catalytic cycle of hydrolysis of the organophosphate by rapid conjugation followed by enhanced nucleophile-mediated hydrolysis of the phosphonyl enzyme conjugate. Through enlargement of the active site gorge of mouse AChE by mutations Y337A, F295L and F297I, we studied continuous enzymatic degradation of S(P)-cycloheptyl methylphosphonyl thiocholine (S(P)-CHMPTCh) in the presence of HI-6. Continuous hydrolysis of S(P)-CHMPTCh was measured spectrophotometrically from thiocholine released during hydrolysis with DTNB as the thiol reagent. The rates of hydrolysis expressed as moles of formed thiocholine per mole of enzyme per minute were 3.3, 0.69, 0.34 and 0.15min(-1) for F295L/Y337A, Y337A, F297I/Y337A and AChE wild-type, respectively. These rates did not depend on the initial S(P)-CHMPTCh concentration range employed. However, by increasing HI-6 concentrations, the rates approached a limiting value, indicating that oxime reactivation is the rate-limiting step in S(P)-CHMPTCh hydrolysis. Our results confirm that a mixture of a mutant enzyme and an oxime might serve as an in vivo catalytic scavenger of organophosphates.
        
Title: Active site mutant acetylcholinesterase interactions with 2-PAM, HI-6, and DDVP Kovarik Z, Ciban N, Radic Z, Simeon-Rudolf V, Taylor P Ref: Biochemical & Biophysical Research Communications, 342:973, 2006 : PubMed
We used mouse recombinant wild-type acetylcholinesterase (AChE; EC 3.1.1.7), butyrylcholinesterase (BChE; EC 3.1.1.8), and AChE mutants with mutations (Y337A, F295L, F297I, Y72N, Y124Q, and W286A) that resemble residues found at structurally equivalent positions in BChE, to find the basis for divergence between AChE and BChE in following reactions: reversible inhibition by two oximes, progressive inhibition by the organophosphorus compound DDVP, and oxime-assisted reactivation of the phosphorylated enzymes. The inhibition enzyme-oxime dissociation constants of AChE w.t. were 150 and 46 microM, of BChE 340 and 27 microM for 2-PAM and HI-6, respectively. Introduced mutations lowered oxime binding affinities for both oximes. DDVP progressively inhibited cholinesterases yielding symmetrical dimethylphosphorylated enzyme conjugates at rates between 104 and 105/min/M. A high extent of oxime-assisted reactivation of all conjugates was achieved, but rates by both oximes were up to 10 times slower for phosphorylated mutants than for AChE w.t.
E2020 (R,S)-1-benzyl-4-[(5,6-dimethoxy-1-indanon)-2-yl]methyl)piperidine hydrochloride is a piperidine-based acetylcholinesterase (AChE) inhibitor that was approved for the treatment of Alzheimer's disease in the United States. Structure-activity studies of this class of inhibitors have indicated that both the benzoyl containing functionality and the N-benzylpiperidine moiety are the key features for binding and inhibition of AChE. In the present study, the interaction of E2020 with cholinesterases (ChEs) with known sequence differences, was examined in more detail by measuring the inhibition constants with Torpedo AChE, fetal bovine serum AChE, human butyrylcholinesterase (BChE), and equine BChE. The basis for particular residues conferring selectivity was then confirmed by using site-specific mutants of the implicated residue in two template enzymes. Differences in the reactivity of E2020 toward AChE and BChE (200- to 400-fold) show that residues at the peripheral anionic site such as Asp74(72), Tyr72(70), Tyr124(121), and Trp286(279) in mammalian AChE may be important in the binding of E2020 to AChE. Site-directed mutagenesis studies using mouse AChE showed that these residues contribute to the stabilization energy for the AChE-E2020 complex. However, replacement of Ala277(Trp279) with Trp in human BChE does not affect the binding of E2020 to BChE. Molecular modeling studies suggest that E2020 interacts with the active-site and the peripheral anionic site in AChE, but in the case of BChE, as the gorge is larger, E2020 cannot simultaneously interact at both sites. The observation that the KI value for mutant AChE in which Ala replaced Trp286 is similar to that for wild-type BChE, further confirms our hypothesis.
Acetylcholinesterase (AChE), a serine hydrolase, is potentially susceptible to inactivation by phenylmethylsulfonyl fluoride (PMSF) and benzenesulfonyl fluoride (BSF). Although BSF inhibits both mouse and Torpedo californica AChE, PMSF does not react measurably with the T. californica enzyme. To understand the residue changes responsible for the change in reactivity, we studied the inactivation of wild-type T. californica and mouse AChE and mutants of both by BSF and PMSF both in the presence and absence of substrate. The enzymes investigated were wild-type mouse AChE, wild-type T. californica AChE, wild-type mouse butyrylcholinesterase, mouse Y330F, Y330A, F288L, and F290I, and the double mutant T. californica F288L/F290V (all mutants given T. californica numbering). Inactivation rate constants for T. californica AChE confirmed previous reports that this enzyme is not inactivated by PMSF. Wild-type mouse AChE and mouse mutants Y330F and Y330A all had similar inactivation rate constants with PMSF, implying that the difference between mouse and T. californica AChE at position 330 is not responsible for their differing PMSF sensitivities. In addition, butyrylcholinesterase and mouse AChE mutants F288L and F290I had increased rate constants ( approximately 14 fold) over those of wild-type mouse AChE, indicating that these residues may be responsible for the increased sensitivity to inactivation by PMSF of butyrylcholinesterase. The double mutant T. californica AChE F288L/F290V had a rate constant nearly identical with the rate constant for the F288L and F290I mouse mutant AChEs, representing an increase of approximately 4000-fold over the T. californica wild-type enzyme. It remains unclear why these two positions have more importance for T. californica AChE than for mouse AChE.
        
Title: Amino acid residues involved in the interaction of acetylcholinesterase and butyrylcholinesterase with the carbamates Ro 02-0683 and bambuterol, and with terbutaline Kovarik Z, Radic Z, Grgas B, Skrinjaric-Spoljar M, Reiner E, Simeon-Rudolf V Ref: Biochimica & Biophysica Acta, 1433:261, 1999 : PubMed
In order to identify amino acids involved in the interaction of acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; EC 3.1.1.8) with carbamates, the time course of inhibition of the recombinant mouse enzymes BChE wild-type (w.t.), AChE w.t. and of 11 site-directed AChE mutants by Ro 02-0683 and bambuterol was studied. In addition, the reversible inhibition of cholinesterases by terbutaline, the leaving group of bambuterol, was studied. The bimolecular rate constant of AChE w.t. inhibition was 6.8 times smaller by Ro 02-0683 and 16000 times smaller by bambuterol than that of BChE w.t. The two carbamates were equipotent BChE inhibitors. Replacement of tyrosine-337 in AChE with alanine (resembling the choline binding site of BChE) resulted in 630 times faster inhibition by bambuterol. The same replacement decreased the inhibition by Ro 02-0683 ten times. The difference in size of the choline binding site in the two w.t. enzymes appeared critical for the selectivity of bambuterol and terbutaline binding. Removal of the charge with the mutation D74N caused a reduction in the reaction rate constants for Ro 02-0683 and bambuterol. Substitution of tyrosine-124 with glutamine in the AChE peripheral site significantly increased the inhibition rate for both carbamates. Substitution of phenylalanine-297 with alanine in the AChE acyl pocket decreased the inhibition rate by Ro 02-0683. Computational docking of carbamates provided plausible orientations of the inhibitors inside the active site gorge of mouse AChE and human BChE, thus substantiating involvement of amino acid residues in the enzyme active sites critical for the carbamate binding as derived from kinetic studies.
Fasciculin, a 6750-Da peptide from the venom of Dendroaspis, is known to inhibit reversibly mammalian and fish acetylcholinesterases at picomolar concentrations, but is a relatively weak inhibitor of avian, reptile, and insect acetylcholinesterases and mammalian butyryl-cholinesterases. An examination of fasciculin association with several mutant forms of recombinant DNA-derived acetylcholinesterase from mouse shows that it interacts with a cluster of residues near the rim of the gorge on the enzyme. The aromatic residues, Trp286, Tyr72, and Tyr124, have the most marked influence on fasciculin binding, whereas Asp74, a charged residue in the vicinity of the binding site that affects the binding of low molecular weight inhibitors, has little influence on fasciculin binding. The 3 aromatic residues are unique to the susceptible acetylcholinesterases and, along with Asp74, constitute part of the peripheral anionic site. Fasciculin falls in the family of three-loop toxins that include the receptor blocking alpha-toxins and cardiotoxins. From this basic structural motif, a binding site has evolved on fasciculin to be highly specific for the peripheral site on acetylcholinesterase. Acetylthiocholine affects rates of fasciculin binding at concentrations causing substrate inhibition. In the case of the mutant cholinesterases where rates of fasciculin dissociation are more rapid, steady state kinetic parameters also show acetylthiocholine-fasciculin competition to be consistent with occupation at a peripheral or substrate inhibition site rather than the active center.
Huperzine A, a potential agent for therapy in Alzheimer's disease and for prophylaxis of organophosphate toxicity, has recently been characterized as a reversible inhibitor of cholinesterases. To examine the specificity of this novel compound in more detail, we have examined the interaction of the 2 stereoisomers of Huperzine A with cholinesterases and site-specific mutants that detail the involvement of specific amino acid residues. Inhibition of fetal bovine serum acetylcholinesterase by (-)-Huperzine A was 35-fold more potent than (+)-Huperzine A, with KI values of 6.2 nM and 210 nM, respectively. In addition, (-)-Huperzine A was 88-fold more potent in inhibiting Torpedo acetylcholinesterase than (+)-Huperzine A, with KI values of 0.25 microM and 22 microM, respectively. Far larger KI values that did not differ between the 2 stereoisomers were observed with horse and human serum butyrylcholinesterases. Mammalian acetylcholinesterase, Torpedo acetylcholinesterase, and mammalian butyrylcholinesterase can be distinguished by the amino acid Tyr, Phe, or Ala in the 330 position, respectively. Studies with mouse acetylcholinesterase mutants, Tyr 337 (330) Phe and Tyr 337 (330) Ala yielded a difference in reactivity that closely mimicked the native enzymes. In contrast, mutation of the conserved Glu 199 residue to Gln in Torpedo acetylcholinesterase produced only a 3-fold increase in KI value for the binding of Huperzine A.
        
Title: Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors Radic Z, Pickering NA, Vellom DC, Camp S, Taylor P Ref: Biochemistry, 32:12074, 1993 : PubMed
By examining inhibitor interactions with single and multiple site-specific mutants of mouse acetylcholinesterase, we have identified three distinct domains in the cholinesterase structure that are responsible for conferring selectivity for acetyl- and butyrylcholinesterase inhibitors. The first domain is the most obvious; it defines the constraints on the acyl pocket dimensions where the side chains of F295 and F297 primarily outline this region in acetylcholinesterase. Replacement of these phenylalanine side chains with the aliphatic residues found in butyrylcholinesterase allows for the catalysis of larger substrates and accommodates butyrylcholinesterase-selective alkyl phosphates such as isoOMPA. Also, elements of substrate activation characteristic of butyrylcholinesterase are evident in the F297I mutant. Substitution of tyrosines for F295 and F297 further alters the catalytic constants. The second domain is found near the lip of the active center gorge defined by two tyrosines, Y72 and Y124, and by W286; this region appears to be critical for the selectivity of bisquaternary inhibitors, such as BW284C51. The third domain defines the site of choline binding. Herein, in addition to conserved E202 and W86, a critical tyrosine, Y337, found only in the acetylcholinesterases is responsible for sterically occluding the binding site for substituted tricyclic inhibitors such as ethopropazine. Analysis of a series of substituted acridines and phenothiazines defines the groups on the ligand and amino acid side chains in this site governing binding selectivity. Each of the three domains is defined by a cluster of aromatic residues. The two domains stabilizing the quaternary ammonium moieties each contain a negative charge, which contributes to the stabilization energy of the respective complexes.