McEwan JC

References (3)

Title : The sheep genome reference sequence: a work in progress - Archibald_2010_Anim.Genet_41_449
Author(s) : Archibald AL , Cockett NE , Dalrymple BP , Faraut T , Kijas JW , Maddox JF , McEwan JC , Hutton Oddy V , Raadsma HW , Wade C , Wang J , Wang W , Xun X
Ref : Anim Genet , 41 :449 , 2010
Abstract : Until recently, the construction of a reference genome was performed using Sanger sequencing alone. The emergence of next-generation sequencing platforms now means reference genomes may incorporate sequence data generated from a range of sequencing platforms, each of which have different read length, systematic biases and mate-pair characteristics. The objective of this review is to inform the mammalian genomics community about the experimental strategy being pursued by the International Sheep Genomics Consortium (ISGC) to construct the draft reference genome of sheep (Ovis aries). Component activities such as data generation, sequence assembly and annotation are described, along with information concerning the key researchers performing the work. This aims to foster future participation from across the research community through the coordinated activities of the consortium. The review also serves as a 'marker paper' by providing information concerning the pre-publication release of the reference genome. This ensures the ISGC adheres to the framework for data sharing established at the recent Toronto International Data Release Workshop and provides guidelines for data users.
ESTHER : Archibald_2010_Anim.Genet_41_449
PubMedSearch : Archibald_2010_Anim.Genet_41_449
PubMedID: 20809919
Gene_locus related to this paper: sheep-cauxin , sheep-thyro , sheep-BCHE , sheep-w5p985 , sheep-w5q8g9 , sheep-w5phz5 , sheep-w5q544 , sheep-w5puc7 , sheep-w5p5z7 , sheep-w5qa37 , sheep-w5qa61 , sheep-w5nxa2 , sheep-w5nxc9 , sheep-w5nx87 , sheep-w5q8e4 , sheep-w5p609 , sheep-w5p6d2 , sheep-w5pcd7 , sheep-w5p0t3 , sheep-w5p0x1 , sheep-w5p121 , sheep-w5pq36 , sheep-w5qi65 , sheep-w5q4j6 , sheep-w5q5i2 , sheep-w5q6h9 , sheep-w5qet9 , sheep-w5p1i2 , sheep-w5p871 , sheep-w5pji8 , sheep-w5qd48 , sheep-w5q5g0 , sheep-w5pr16 , sheep-w5pzj7 , sheep-w5q716 , sheep-w5pxj8 , sheep-w5qh96 , sheep-w5q4p1

Title : The genome sequence of taurine cattle: a window to ruminant biology and evolution - Elsik_2009_Science_324_522
Author(s) : Elsik CG , Tellam RL , Worley KC , Gibbs RA , Muzny DM , Weinstock GM , Adelson DL , Eichler EE , Elnitski L , Guigo R , Hamernik DL , Kappes SM , Lewin HA , Lynn DJ , Nicholas FW , Reymond A , Rijnkels M , Skow LC , Zdobnov EM , Schook L , Womack J , Alioto T , Antonarakis SE , Astashyn A , Chapple CE , Chen HC , Chrast J , Camara F , Ermolaeva O , Henrichsen CN , Hlavina W , Kapustin Y , Kiryutin B , Kitts P , Kokocinski F , Landrum M , Maglott D , Pruitt K , Sapojnikov V , Searle SM , Solovyev V , Souvorov A , Ucla C , Wyss C , Anzola JM , Gerlach D , Elhaik E , Graur D , Reese JT , Edgar RC , McEwan JC , Payne GM , Raison JM , Junier T , Kriventseva EV , Eyras E , Plass M , Donthu R , Larkin DM , Reecy J , Yang MQ , Chen L , Cheng Z , Chitko-McKown CG , Liu GE , Matukumalli LK , Song J , Zhu B , Bradley DG , Brinkman FS , Lau LP , Whiteside MD , Walker A , Wheeler TT , Casey T , German JB , Lemay DG , Maqbool NJ , Molenaar AJ , Seo S , Stothard P , Baldwin CL , Baxter R , Brinkmeyer-Langford CL , Brown WC , Childers CP , Connelley T , Ellis SA , Fritz K , Glass EJ , Herzig CT , Iivanainen A , Lahmers KK , Bennett AK , Dickens CM , Gilbert JG , Hagen DE , Salih H , Aerts J , Caetano AR , Dalrymple B , Garcia JF , Gill CA , Hiendleder SG , Memili E , Spurlock D , Williams JL , Alexander L , Brownstein MJ , Guan L , Holt RA , Jones SJ , Marra MA , Moore R , Moore SS , Roberts A , Taniguchi M , Waterman RC , Chacko J , Chandrabose MM , Cree A , Dao MD , Dinh HH , Gabisi RA , Hines S , Hume J , Jhangiani SN , Joshi V , Kovar CL , Lewis LR , Liu YS , Lopez J , Morgan MB , Nguyen NB , Okwuonu GO , Ruiz SJ , Santibanez J , Wright RA , Buhay C , Ding Y , Dugan-Rocha S , Herdandez J , Holder M , Sabo A , Egan A , Goodell J , Wilczek-Boney K , Fowler GR , Hitchens ME , Lozado RJ , Moen C , Steffen D , Warren JT , Zhang J , Chiu R , Schein JE , Durbin KJ , Havlak P , Jiang H , Liu Y , Qin X , Ren Y , Shen Y , Song H , Bell SN , Davis C , Johnson AJ , Lee S , Nazareth LV , Patel BM , Pu LL , Vattathil S , Williams RL, Jr. , Curry S , Hamilton C , Sodergren E , Wheeler DA , Barris W , Bennett GL , Eggen A , Green RD , Harhay GP , Hobbs M , Jann O , Keele JW , Kent MP , Lien S , McKay SD , McWilliam S , Ratnakumar A , Schnabel RD , Smith T , Snelling WM , Sonstegard TS , Stone RT , Sugimoto Y , Takasuga A , Taylor JF , Van Tassell CP , Macneil MD , Abatepaulo AR , Abbey CA , Ahola V , Almeida IG , Amadio AF , Anatriello E , Bahadue SM , Biase FH , Boldt CR , Carroll JA , Carvalho WA , Cervelatti EP , Chacko E , Chapin JE , Cheng Y , Choi J , Colley AJ , de Campos TA , De Donato M , Santos IK , de Oliveira CJ , Deobald H , Devinoy E , Donohue KE , Dovc P , Eberlein A , Fitzsimmons CJ , Franzin AM , Garcia GR , Genini S , Gladney CJ , Grant JR , Greaser ML , Green JA , Hadsell DL , Hakimov HA , Halgren R , Harrow JL , Hart EA , Hastings N , Hernandez M , Hu ZL , Ingham A , Iso-Touru T , Jamis C , Jensen K , Kapetis D , Kerr T , Khalil SS , Khatib H , Kolbehdari D , Kumar CG , Kumar D , Leach R , Lee JC , Li C , Logan KM , Malinverni R , Marques E , Martin WF , Martins NF , Maruyama SR , Mazza R , McLean KL , Medrano JF , Moreno BT , More DD , Muntean CT , Nandakumar HP , Nogueira MF , Olsaker I , Pant SD , Panzitta F , Pastor RC , Poli MA , Poslusny N , Rachagani S , Ranganathan S , Razpet A , Riggs PK , Rincon G , Rodriguez-Osorio N , Rodriguez-Zas SL , Romero NE , Rosenwald A , Sando L , Schmutz SM , Shen L , Sherman L , Southey BR , Lutzow YS , Sweedler JV , Tammen I , Telugu BP , Urbanski JM , Utsunomiya YT , Verschoor CP , Waardenberg AJ , Wang Z , Ward R , Weikard R , Welsh TH, Jr. , White SN , Wilming LG , Wunderlich KR , Yang J , Zhao FQ
Ref : Science , 324 :522 , 2009
Abstract : To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
ESTHER : Elsik_2009_Science_324_522
PubMedSearch : Elsik_2009_Science_324_522
PubMedID: 19390049
Gene_locus related to this paper: bovin-2neur , bovin-a0jnh8 , bovin-a5d7b7 , bovin-ACHE , bovin-balip , bovin-dpp4 , bovin-dpp6 , bovin-e1bi31 , bovin-e1bn79 , bovin-est8 , bovin-f1mbd6 , bovin-f1mi11 , bovin-f1mr65 , bovin-f1n1l4 , bovin-g3mxp5 , bovin-q0vcc8 , bovin-q2kj30 , bovin-q3t0r6 , bovin-thyro

Title : Early stages of myogenesis in a large mammal: formation of successive generations of myotubes in sheep tibialis cranialis muscle - Wilson_1992_J.Muscle.Res.Cell.Motil_13_534
Author(s) : Wilson SJ , McEwan JC , Sheard PW , Harris AJ
Ref : J Muscle Res Cell Motil , 13 :534 , 1992
Abstract : The generation of myotubes was studied in the tibialis cranialis muscle in the sheep hindlimb from the earliest stage of primary myotube formation until a stage shortly before muscle fascicles began to segregate. Primary myotubes were first seen on embryonic day 32 (E32) and reached their maximum number by E38. Small numbers of secondary myotubes were first identified at E38, and secondary myotube numbers continued to increase during the period of study. The ratio of adult muscle fibre to primary myotube numbers was approximately 70:1, making it seem unlikely that every later generation myotube used a primary myotube as scaffold for its formation, as described in small mammals. By E62, some secondary myotubes were supporting the formation of a third generation of myotubes. Experiments with diffusible dye markers showed that primary myotubes extended from tendon to tendon of the muscle, whereas most adult fibres ran for only part of the muscle length, terminating with myo-myonal attachments to other muscle fibres in a series arrangement. Acetylcholinesterase (AChE) and acetylcholine receptor (AChR) aggregations appeared in multiple bands across the muscle shortly after formation of the primary generation of myotubes was complete. The number of bands and their pattern of distribution across the muscle as they were first formed was the same as in the adult. Primary myotubes teased from early muscles had multiple focal AChE and AChR deposits regularly spaced along their lengths. We suggest that the secondary generation of myotubes forms at endplate sites in a series arrangement along the length of single primary myotubes, and that tertiary and possibly later generations of myotubes in their turn use the earlier generation myofibres as a scaffold. Although the fundamental cellular mechanisms appear to be similar, the process of muscle fibre generation in large mammalian muscles is more complex than that described from previous studies in small laboratory rodents.
ESTHER : Wilson_1992_J.Muscle.Res.Cell.Motil_13_534
PubMedSearch : Wilson_1992_J.Muscle.Res.Cell.Motil_13_534
PubMedID: 1460082