Worley KC

References (19)

Title : Hemimetabolous genomes reveal molecular basis of termite eusociality - Harrison_2018_Nat.Ecol.Evol_2_557
Author(s) : Harrison MC , Jongepier E , Robertson HM , Arning N , Bitard-Feildel T , Chao H , Childers CP , Dinh H , Doddapaneni H , Dugan S , Gowin J , Greiner C , Han Y , Hu H , Hughes DST , Huylmans AK , Kemena C , Kremer LPM , Lee SL , Lopez-Ezquerra A , Mallet L , Monroy-Kuhn JM , Moser A , Murali SC , Muzny DM , Otani S , Piulachs MD , Poelchau M , Qu J , Schaub F , Wada-Katsumata A , Worley KC , Xie Q , Ylla G , Poulsen M , Gibbs RA , Schal C , Richards S , Belles X , Korb J , Bornberg-Bauer E
Ref : Nat Ecol Evol , 2 :557 , 2018
Abstract : Around 150 million years ago, eusocial termites evolved from within the cockroaches, 50 million years before eusocial Hymenoptera, such as bees and ants, appeared. Here, we report the 2-Gb genome of the German cockroach, Blattella germanica, and the 1.3-Gb genome of the drywood termite Cryptotermes secundus. We show evolutionary signatures of termite eusociality by comparing the genomes and transcriptomes of three termites and the cockroach against the background of 16 other eusocial and non-eusocial insects. Dramatic adaptive changes in genes underlying the production and perception of pheromones confirm the importance of chemical communication in the termites. These are accompanied by major changes in gene regulation and the molecular evolution of caste determination. Many of these results parallel molecular mechanisms of eusocial evolution in Hymenoptera. However, the specific solutions are remarkably different, thus revealing a striking case of convergence in one of the major evolutionary transitions in biological complexity.
ESTHER : Harrison_2018_Nat.Ecol.Evol_2_557
PubMedSearch : Harrison_2018_Nat.Ecol.Evol_2_557
PubMedID: 29403074
Gene_locus related to this paper: blage-a0a2p8y5s3 , blage-a0a2p8yjf8.2 , blage-a0a2p8xjb6

Title : Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species - Pearce_2017_BMC.Biol_15_63
Author(s) : Pearce SL , Clarke DF , East PD , Elfekih S , Gordon KHJ , Jermiin LS , McGaughran A , Oakeshott JG , Papanicolaou A , Perera OP , Rane RV , Richards S , Tay WT , Walsh TK , Anderson A , Anderson CJ , Asgari S , Board PG , Bretschneider A , Campbell PM , Chertemps T , Christeller JT , Coppin CW , Downes SJ , Duan G , Farnsworth CA , Good RT , Han LB , Han YC , Hatje K , Horne I , Huang YP , Hughes DST , Jacquin-Joly E , James W , Jhangiani S , Kollmar M , Kuwar SS , Li S , Liu NY , Maibeche MT , Miller JR , Montagne N , Perry T , Qu J , Song SV , Sutton GG , Vogel H , Walenz BP , Xu W , Zhang HJ , Zou Z , Batterham P , Edwards OR , Feyereisen R , Gibbs RA , Heckel DG , McGrath A , Robin C , Scherer SE , Worley KC , Wu YD
Ref : BMC Biol , 15 :63 , 2017
Abstract : BACKGROUND: Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. RESULTS: We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. CONCLUSIONS: The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant.
ESTHER : Pearce_2017_BMC.Biol_15_63
PubMedSearch : Pearce_2017_BMC.Biol_15_63
PubMedID: 28756777
Gene_locus related to this paper: helam-a0a2w1bn75 , helam-a0a2w1bp69 , helam-a0a2w1bvf3

Title : The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species - Papanicolaou_2016_Genome.Biol_17_192
Author(s) : Papanicolaou A , Schetelig MF , Arensburger P , Atkinson PW , Benoit JB , Bourtzis K , Castanera P , Cavanaugh JP , Chao H , Childers C , Curril I , Dinh H , Doddapaneni H , Dolan A , Dugan S , Friedrich M , Gasperi G , Geib S , Georgakilas G , Gibbs RA , Giers SD , Gomulski LM , Gonzalez-Guzman M , Guillem-Amat A , Han Y , Hatzigeorgiou AG , Hernandez-Crespo P , Hughes DS , Jones JW , Karagkouni D , Koskinioti P , Lee SL , Malacrida AR , Manni M , Mathiopoulos K , Meccariello A , Murali SC , Murphy TD , Muzny DM , Oberhofer G , Ortego F , Paraskevopoulou MD , Poelchau M , Qu J , Reczko M , Robertson HM , Rosendale AJ , Rosselot AE , Saccone G , Salvemini M , Savini G , Schreiner P , Scolari F , Siciliano P , Sim SB , Tsiamis G , Urena E , Vlachos IS , Werren JH , Wimmer EA , Worley KC , Zacharopoulou A , Richards S , Handler AM
Ref : Genome Biol , 17 :192 , 2016
Abstract : BACKGROUND: The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control.
RESULTS: The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT.
CONCLUSIONS: The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution.
ESTHER : Papanicolaou_2016_Genome.Biol_17_192
PubMedSearch : Papanicolaou_2016_Genome.Biol_17_192
PubMedID: 27659211

Title : Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions - Anstead_2015_Nat.Commun_6_7344
Author(s) : Anstead CA , Korhonen PK , Young ND , Hall RS , Jex AR , Murali SC , Hughes DS , Lee SF , Perry T , Stroehlein AJ , Ansell BR , Breugelmans B , Hofmann A , Qu J , Dugan S , Lee SL , Chao H , Dinh H , Han Y , Doddapaneni HV , Worley KC , Muzny DM , Ioannidis P , Waterhouse RM , Zdobnov EM , James PJ , Bagnall NH , Kotze AC , Gibbs RA , Richards S , Batterham P , Gasser RB
Ref : Nat Commun , 6 :7344 , 2015
Abstract : Lucilia cuprina is a parasitic fly of major economic importance worldwide. Larvae of this fly invade their animal host, feed on tissues and excretions and progressively cause severe skin disease (myiasis). Here we report the sequence and annotation of the 458-megabase draft genome of Lucilia cuprina. Analyses of this genome and the 14,544 predicted protein-encoding genes provide unique insights into the fly's molecular biology, interactions with the host animal and insecticide resistance. These insights have broad implications for designing new methods for the prevention and control of myiasis.
ESTHER : Anstead_2015_Nat.Commun_6_7344
PubMedSearch : Anstead_2015_Nat.Commun_6_7344
PubMedID: 26108605
Gene_locus related to this paper: luccu-a0a0l0bn77 , luccu-a0a0l0clk8 , luccu-a0a0l0bxv5 , luccu-a0a0l0bvt1 , luccu-a0a0l0bw31

Title : The genomes of two key bumblebee species with primitive eusocial organization - Sadd_2015_Genome.Biol_16_76
Author(s) : Sadd BM , Barribeau SM , Bloch G , de Graaf DC , Dearden P , Elsik CG , Gadau J , Grimmelikhuijzen CJ , Hasselmann M , Lozier JD , Robertson HM , Smagghe G , Stolle E , Van Vaerenbergh M , Waterhouse RM , Bornberg-Bauer E , Klasberg S , Bennett AK , Camara F , Guigo R , Hoff K , Mariotti M , Munoz-Torres M , Murphy T , Santesmasses D , Amdam GV , Beckers M , Beye M , Biewer M , Bitondi MM , Blaxter ML , Bourke AF , Brown MJ , Buechel SD , Cameron R , Cappelle K , Carolan JC , Christiaens O , Ciborowski KL , Clarke DF , Colgan TJ , Collins DH , Cridge AG , Dalmay T , Dreier S , du Plessis L , Duncan E , Erler S , Evans J , Falcon T , Flores K , Freitas FC , Fuchikawa T , Gempe T , Hartfelder K , Hauser F , Helbing S , Humann FC , Irvine F , Jermiin LS , Johnson CE , Johnson RM , Jones AK , Kadowaki T , Kidner JH , Koch V , Kohler A , Kraus FB , Lattorff HM , Leask M , Lockett GA , Mallon EB , Antonio DS , Marxer M , Meeus I , Moritz RF , Nair A , Napflin K , Nissen I , Niu J , Nunes FM , Oakeshott JG , Osborne A , Otte M , Pinheiro DG , Rossie N , Rueppell O , Santos CG , Schmid-Hempel R , Schmitt BD , Schulte C , Simoes ZL , Soares MP , Swevers L , Winnebeck EC , Wolschin F , Yu N , Zdobnov EM , Aqrawi PK , Blankenburg KP , Coyle M , Francisco L , Hernandez AG , Holder M , Hudson ME , Jackson L , Jayaseelan J , Joshi V , Kovar C , Lee SL , Mata R , Mathew T , Newsham IF , Ngo R , Okwuonu G , Pham C , Pu LL , Saada N , Santibanez J , Simmons D , Thornton R , Venkat A , Walden KK , Wu YQ , Debyser G , Devreese B , Asher C , Blommaert J , Chipman AD , Chittka L , Fouks B , Liu J , O'Neill MP , Sumner S , Puiu D , Qu J , Salzberg SL , Scherer SE , Muzny DM , Richards S , Robinson GE , Gibbs RA , Schmid-Hempel P , Worley KC
Ref : Genome Biol , 16 :76 , 2015
Abstract : BACKGROUND: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats.
RESULTS: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits.
CONCLUSIONS: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.
ESTHER : Sadd_2015_Genome.Biol_16_76
PubMedSearch : Sadd_2015_Genome.Biol_16_76
PubMedID: 25908251

Title : Finding the missing honey bee genes: lessons learned from a genome upgrade - Elsik_2014_BMC.Genomics_15_86
Author(s) : Elsik CG , Worley KC , Bennett AK , Beye M , Camara F , Childers CP , de Graaf DC , Debyser G , Deng J , Devreese B , Elhaik E , Evans JD , Foster LJ , Graur D , Guigo R , Hoff KJ , Holder ME , Hudson ME , Hunt GJ , Jiang H , Joshi V , Khetani RS , Kosarev P , Kovar CL , Ma J , Maleszka R , Moritz RF , Munoz-Torres MC , Murphy TD , Muzny DM , Newsham IF , Reese JT , Robertson HM , Robinson GE , Rueppell O , Solovyev V , Stanke M , Stolle E , Tsuruda JM , Vaerenbergh MV , Waterhouse RM , Weaver DB , Whitfield CW , Wu Y , Zdobnov EM , Zhang L , Zhu D , Gibbs RA
Ref : BMC Genomics , 15 :86 , 2014
Abstract : BACKGROUND: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes.
RESULTS: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data.
CONCLUSIONS: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.
ESTHER : Elsik_2014_BMC.Genomics_15_86
PubMedSearch : Elsik_2014_BMC.Genomics_15_86
PubMedID: 24479613

Title : Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology - English_2012_PLoS.One_7_e47768
Author(s) : English AC , Richards S , Han Y , Wang M , Vee V , Qu J , Qin X , Muzny DM , Reid JG , Worley KC , Gibbs RA
Ref : PLoS ONE , 7 :e47768 , 2012
Abstract : Many genomes have been sequenced to high-quality draft status using Sanger capillary electrophoresis and/or newer short-read sequence data and whole genome assembly techniques. However, even the best draft genomes contain gaps and other imperfections due to limitations in the input data and the techniques used to build draft assemblies. Sequencing biases, repetitive genomic features, genomic polymorphism, and other complicating factors all come together to make some regions difficult or impossible to assemble. Traditionally, draft genomes were upgraded to "phase 3 finished" status using time-consuming and expensive Sanger-based manual finishing processes. For more facile assembly and automated finishing of draft genomes, we present here an automated approach to finishing using long-reads from the Pacific Biosciences RS (PacBio) platform. Our algorithm and associated software tool, PBJelly, (publicly available at https://sourceforge.net/projects/pb-jelly/) automates the finishing process using long sequence reads in a reference-guided assembly process. PBJelly also provides "lift-over" co-ordinate tables to easily port existing annotations to the upgraded assembly. Using PBJelly and long PacBio reads, we upgraded the draft genome sequences of a simulated Drosophila melanogaster, the version 2 draft Drosophila pseudoobscura, an assembly of the Assemblathon 2.0 budgerigar dataset, and a preliminary assembly of the Sooty mangabey. With 24x mapped coverage of PacBio long-reads, we addressed 99% of gaps and were able to close 69% and improve 12% of all gaps in D. pseudoobscura. With 4x mapped coverage of PacBio long-reads we saw reads address 63% of gaps in our budgerigar assembly, of which 32% were closed and 63% improved. With 6.8x mapped coverage of mangabey PacBio long-reads we addressed 97% of gaps and closed 66% of addressed gaps and improved 19%. The accuracy of gap closure was validated by comparison to Sanger sequencing on gaps from the original D. pseudoobscura draft assembly and shown to be dependent on initial reference quality.
ESTHER : English_2012_PLoS.One_7_e47768
PubMedSearch : English_2012_PLoS.One_7_e47768
PubMedID: 23185243
Gene_locus related to this paper: drome-GH02439

Title : A high-resolution map of human evolutionary constraint using 29 mammals - Lindblad-Toh_2011_Nature_478_476
Author(s) : Lindblad-Toh K , Garber M , Zuk O , Lin MF , Parker BJ , Washietl S , Kheradpour P , Ernst J , Jordan G , Mauceli E , Ward LD , Lowe CB , Holloway AK , Clamp M , Gnerre S , Alfoldi J , Beal K , Chang J , Clawson H , Cuff J , Di Palma F , Fitzgerald S , Flicek P , Guttman M , Hubisz MJ , Jaffe DB , Jungreis I , Kent WJ , Kostka D , Lara M , Martins AL , Massingham T , Moltke I , Raney BJ , Rasmussen MD , Robinson J , Stark A , Vilella AJ , Wen J , Xie X , Zody MC , Baldwin J , Bloom T , Chin CW , Heiman D , Nicol R , Nusbaum C , Young S , Wilkinson J , Worley KC , Kovar CL , Muzny DM , Gibbs RA , Cree A , Dihn HH , Fowler G , Jhangiani S , Joshi V , Lee S , Lewis LR , Nazareth LV , Okwuonu G , Santibanez J , Warren WC , Mardis ER , Weinstock GM , Wilson RK , Delehaunty K , Dooling D , Fronik C , Fulton L , Fulton B , Graves T , Minx P , Sodergren E , Birney E , Margulies EH , Herrero J , Green ED , Haussler D , Siepel A , Goldman N , Pollard KS , Pedersen JS , Lander ES , Kellis M
Ref : Nature , 478 :476 , 2011
Abstract : The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering approximately 4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for approximately 60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.
ESTHER : Lindblad-Toh_2011_Nature_478_476
PubMedSearch : Lindblad-Toh_2011_Nature_478_476
PubMedID: 21993624
Gene_locus related to this paper: cavpo-1plip , cavpo-2plrp , cavpo-h0v1b7 , cavpo-h0v5v8 , cavpo-h0vj36 , cavpo-lipli , rabit-1hlip , rabit-1plip , rabit-g1t6x7 , rabit-LIPH , myolu-l7n1c2 , myolu-g1pqd9 , cavpo-h0uyz6 , cavpo-h0vi56 , rabit-g1tbj4 , myolu-g1p5c0 , rabit-g1sds3 , rabit-g1sye0 , cavpo-h0v0r2 , cavpo-h0v7s5 , rabit-g1sp43 , myolu-g1p4p3 , cavpo-h0vw09 , rabit-g1ssu3 , myolu-g1pds0 , rabit-g1sic4 , cavpo-h0v2c4 , myolu-g1pg61 , myolu-g1pnb1 , myolu-g1pu06 , myolu-g1qa15 , myolu-g1qfu0 , rabit-g1sn99 , rabit-g1snq9 , rabit-g1sns7 , rabit-g1tuu8 , rabit-g1tzq7 , cavpo-h0v2i2 , cavpo-h0v2j0 , cavpo-h0vsf5 , cavpo-a0a286x8d3 , cavpo-a0a286xbr3 , cavpo-a0a286y0i8 , cavpo-a0a286y4p3 , myolu-g1q2n9 , cavpo-h0v1p4 , myolu-g1pan8 , myolu-g1paq0 , myolu-g1par4 , myolu-g1prn3 , myolu-g1q3i0 , myolu-g1q463 , myolu-g1pat6 , myolu-g1q859 , rabit-g1sul9 , rabit-g1sun0 , rabit-g1sup0 , myolu-l7n125 , myolu-g1pan2 , rabit-g1sxd0 , cavpo-h0v8j4 , rabit-d5fit0 , rabit-g1tkr5 , myolu-g1nty6 , myolu-g1p1p3 , cavpo-h0vdd5 , myolu-g1pdp2 , rabit-g1tmm5 , cavpo-h0vhq3 , myolu-g1nth4 , cavpo-h0vqx6 , rabit-g1tqr7 , myolu-g1p1e9 , cavpo-h0v8y6 , rabit-g1skt3 , myolu-g1nzg3 , cavpo-h0v5z0 , rabit-g1sgz5 , myolu-g1pkg5 , rabit-g1tmw5 , rabit-g1t134 , cavpo-a0a286x9v5 , myolu-g1qc57 , myolu-g1q061 , rabit-g1tnp4 , rabit-g1tyf7 , cavpo-h0w2w1 , rabit-g1ta36 , cavpo-h0w342 , myolu-g1q4e3 , rabit-g1sqa1 , cavpo-h0uxk7 , myolu-g1p353 , cavpo-h0vpm0 , rabit-a0a5f9cru6 , cavpo-a0a286xtc0

Title : Functional and evolutionary insights from the genomes of three parasitoid Nasonia species - Werren_2010_Science_327_343
Author(s) : Werren JH , Richards S , Desjardins CA , Niehuis O , Gadau J , Colbourne JK , Beukeboom LW , Desplan C , Elsik CG , Grimmelikhuijzen CJ , Kitts P , Lynch JA , Murphy T , Oliveira DC , Smith CD , van de Zande L , Worley KC , Zdobnov EM , Aerts M , Albert S , Anaya VH , Anzola JM , Barchuk AR , Behura SK , Bera AN , Berenbaum MR , Bertossa RC , Bitondi MM , Bordenstein SR , Bork P , Bornberg-Bauer E , Brunain M , Cazzamali G , Chaboub L , Chacko J , Chavez D , Childers CP , Choi JH , Clark ME , Claudianos C , Clinton RA , Cree AG , Cristino AS , Dang PM , Darby AC , de Graaf DC , Devreese B , Dinh HH , Edwards R , Elango N , Elhaik E , Ermolaeva O , Evans JD , Foret S , Fowler GR , Gerlach D , Gibson JD , Gilbert DG , Graur D , Grunder S , Hagen DE , Han Y , Hauser F , Hultmark D , Hunter HCt , Hurst GD , Jhangian SN , Jiang H , Johnson RM , Jones AK , Junier T , Kadowaki T , Kamping A , Kapustin Y , Kechavarzi B , Kim J , Kiryutin B , Koevoets T , Kovar CL , Kriventseva EV , Kucharski R , Lee H , Lee SL , Lees K , Lewis LR , Loehlin DW , Logsdon JM, Jr. , Lopez JA , Lozado RJ , Maglott D , Maleszka R , Mayampurath A , Mazur DJ , McClure MA , Moore AD , Morgan MB , Muller J , Munoz-Torres MC , Muzny DM , Nazareth LV , Neupert S , Nguyen NB , Nunes FM , Oakeshott JG , Okwuonu GO , Pannebakker BA , Pejaver VR , Peng Z , Pratt SC , Predel R , Pu LL , Ranson H , Raychoudhury R , Rechtsteiner A , Reese JT , Reid JG , Riddle M , Robertson HM , Romero-Severson J , Rosenberg M , Sackton TB , Sattelle DB , Schluns H , Schmitt T , Schneider M , Schuler A , Schurko AM , Shuker DM , Simoes ZL , Sinha S , Smith Z , Solovyev V , Souvorov A , Springauf A , Stafflinger E , Stage DE , Stanke M , Tanaka Y , Telschow A , Trent C , Vattathil S , Verhulst EC , Viljakainen L , Wanner KW , Waterhouse RM , Whitfield JB , Wilkes TE , Williamson MS , Willis JH , Wolschin F , Wyder S , Yamada T , Yi SV , Zecher CN , Zhang L , Gibbs RA , Williamson M
Ref : Science , 327 :343 , 2010
Abstract : We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.
ESTHER : Werren_2010_Science_327_343
PubMedSearch : Werren_2010_Science_327_343
PubMedID: 20075255
Gene_locus related to this paper: nasvi-ACHE1 , nasvi-ACHE2 , nasvi-k7in31 , nasvi-k7iwl9 , nasvi-k7iyk8 , nasvi-k7jlv1 , nasvi-k7in32 , nasvi-k7ind2 , nasvi-k7inh0 , nasvi-k7inh1 , nasvi-k7inh2 , nasvi-k7inp9 , nasvi-k7iun7 , nasvi-k7iv21 , nasvi-k7ivn5 , nasvi-k7ivn6 , nasvi-k7iw29 , nasvi-k7iwk5 , nasvi-k7iwl8 , nasvi-k7iz24 , nasvi-k7izb4 , nasvi-k7j5u6 , nasvi-k7j6y1 , nasvi-k7j6y2 , nasvi-k7j6y4 , nasvi-k7j718 , nasvi-k7j755 , nasvi-k7j756 , nasvi-k7j757 , nasvi-k7j7k5 , nasvi-k7j7n7 , nasvi-k7j7r8 , nasvi-k7j7s8 , nasvi-k7j7s9 , nasvi-k7j811 , nasvi-k7iny8 , nasvi-k7izf2 , nasvi-k7iwe2 , nasvi-k7j6w4 , nasvi-k7izl9 , nasvi-k7jf39 , nasvi-k7izl8 , nasvi-k7irf1 , nasvi-k7j7l1

Title : A catalog of reference genomes from the human microbiome - Nelson_2010_Science_328_994
Author(s) : Nelson KE , Weinstock GM , Highlander SK , Worley KC , Creasy HH , Wortman JR , Rusch DB , Mitreva M , Sodergren E , Chinwalla AT , Feldgarden M , Gevers D , Haas BJ , Madupu R , Ward DV , Birren BW , Gibbs RA , Methe B , Petrosino JF , Strausberg RL , Sutton GG , White OR , Wilson RK , Durkin S , Giglio MG , Gujja S , Howarth C , Kodira CD , Kyrpides N , Mehta T , Muzny DM , Pearson M , Pepin K , Pati A , Qin X , Yandava C , Zeng Q , Zhang L , Berlin AM , Chen L , Hepburn TA , Johnson J , McCorrison J , Miller J , Minx P , Nusbaum C , Russ C , Sykes SM , Tomlinson CM , Young S , Warren WC , Badger J , Crabtree J , Markowitz VM , Orvis J , Cree A , Ferriera S , Fulton LL , Fulton RS , Gillis M , Hemphill LD , Joshi V , Kovar C , Torralba M , Wetterstrand KA , Abouellleil A , Wollam AM , Buhay CJ , Ding Y , Dugan S , Fitzgerald MG , Holder M , Hostetler J , Clifton SW , Allen-Vercoe E , Earl AM , Farmer CN , Liolios K , Surette MG , Xu Q , Pohl C , Wilczek-Boney K , Zhu D
Ref : Science , 328 :994 , 2010
Abstract : The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified ("novel") polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (approximately 97%) were unique. In addition, this set of microbial genomes allows for approximately 40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.
ESTHER : Nelson_2010_Science_328_994
PubMedSearch : Nelson_2010_Science_328_994
PubMedID: 20489017
Gene_locus related to this paper: strp2-q04l35 , strpn-AXE1 , strpn-pepx

Title : The genome sequence of taurine cattle: a window to ruminant biology and evolution - Elsik_2009_Science_324_522
Author(s) : Elsik CG , Tellam RL , Worley KC , Gibbs RA , Muzny DM , Weinstock GM , Adelson DL , Eichler EE , Elnitski L , Guigo R , Hamernik DL , Kappes SM , Lewin HA , Lynn DJ , Nicholas FW , Reymond A , Rijnkels M , Skow LC , Zdobnov EM , Schook L , Womack J , Alioto T , Antonarakis SE , Astashyn A , Chapple CE , Chen HC , Chrast J , Camara F , Ermolaeva O , Henrichsen CN , Hlavina W , Kapustin Y , Kiryutin B , Kitts P , Kokocinski F , Landrum M , Maglott D , Pruitt K , Sapojnikov V , Searle SM , Solovyev V , Souvorov A , Ucla C , Wyss C , Anzola JM , Gerlach D , Elhaik E , Graur D , Reese JT , Edgar RC , McEwan JC , Payne GM , Raison JM , Junier T , Kriventseva EV , Eyras E , Plass M , Donthu R , Larkin DM , Reecy J , Yang MQ , Chen L , Cheng Z , Chitko-McKown CG , Liu GE , Matukumalli LK , Song J , Zhu B , Bradley DG , Brinkman FS , Lau LP , Whiteside MD , Walker A , Wheeler TT , Casey T , German JB , Lemay DG , Maqbool NJ , Molenaar AJ , Seo S , Stothard P , Baldwin CL , Baxter R , Brinkmeyer-Langford CL , Brown WC , Childers CP , Connelley T , Ellis SA , Fritz K , Glass EJ , Herzig CT , Iivanainen A , Lahmers KK , Bennett AK , Dickens CM , Gilbert JG , Hagen DE , Salih H , Aerts J , Caetano AR , Dalrymple B , Garcia JF , Gill CA , Hiendleder SG , Memili E , Spurlock D , Williams JL , Alexander L , Brownstein MJ , Guan L , Holt RA , Jones SJ , Marra MA , Moore R , Moore SS , Roberts A , Taniguchi M , Waterman RC , Chacko J , Chandrabose MM , Cree A , Dao MD , Dinh HH , Gabisi RA , Hines S , Hume J , Jhangiani SN , Joshi V , Kovar CL , Lewis LR , Liu YS , Lopez J , Morgan MB , Nguyen NB , Okwuonu GO , Ruiz SJ , Santibanez J , Wright RA , Buhay C , Ding Y , Dugan-Rocha S , Herdandez J , Holder M , Sabo A , Egan A , Goodell J , Wilczek-Boney K , Fowler GR , Hitchens ME , Lozado RJ , Moen C , Steffen D , Warren JT , Zhang J , Chiu R , Schein JE , Durbin KJ , Havlak P , Jiang H , Liu Y , Qin X , Ren Y , Shen Y , Song H , Bell SN , Davis C , Johnson AJ , Lee S , Nazareth LV , Patel BM , Pu LL , Vattathil S , Williams RL, Jr. , Curry S , Hamilton C , Sodergren E , Wheeler DA , Barris W , Bennett GL , Eggen A , Green RD , Harhay GP , Hobbs M , Jann O , Keele JW , Kent MP , Lien S , McKay SD , McWilliam S , Ratnakumar A , Schnabel RD , Smith T , Snelling WM , Sonstegard TS , Stone RT , Sugimoto Y , Takasuga A , Taylor JF , Van Tassell CP , Macneil MD , Abatepaulo AR , Abbey CA , Ahola V , Almeida IG , Amadio AF , Anatriello E , Bahadue SM , Biase FH , Boldt CR , Carroll JA , Carvalho WA , Cervelatti EP , Chacko E , Chapin JE , Cheng Y , Choi J , Colley AJ , de Campos TA , De Donato M , Santos IK , de Oliveira CJ , Deobald H , Devinoy E , Donohue KE , Dovc P , Eberlein A , Fitzsimmons CJ , Franzin AM , Garcia GR , Genini S , Gladney CJ , Grant JR , Greaser ML , Green JA , Hadsell DL , Hakimov HA , Halgren R , Harrow JL , Hart EA , Hastings N , Hernandez M , Hu ZL , Ingham A , Iso-Touru T , Jamis C , Jensen K , Kapetis D , Kerr T , Khalil SS , Khatib H , Kolbehdari D , Kumar CG , Kumar D , Leach R , Lee JC , Li C , Logan KM , Malinverni R , Marques E , Martin WF , Martins NF , Maruyama SR , Mazza R , McLean KL , Medrano JF , Moreno BT , More DD , Muntean CT , Nandakumar HP , Nogueira MF , Olsaker I , Pant SD , Panzitta F , Pastor RC , Poli MA , Poslusny N , Rachagani S , Ranganathan S , Razpet A , Riggs PK , Rincon G , Rodriguez-Osorio N , Rodriguez-Zas SL , Romero NE , Rosenwald A , Sando L , Schmutz SM , Shen L , Sherman L , Southey BR , Lutzow YS , Sweedler JV , Tammen I , Telugu BP , Urbanski JM , Utsunomiya YT , Verschoor CP , Waardenberg AJ , Wang Z , Ward R , Weikard R , Welsh TH, Jr. , White SN , Wilming LG , Wunderlich KR , Yang J , Zhao FQ
Ref : Science , 324 :522 , 2009
Abstract : To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
ESTHER : Elsik_2009_Science_324_522
PubMedSearch : Elsik_2009_Science_324_522
PubMedID: 19390049
Gene_locus related to this paper: bovin-2neur , bovin-a0jnh8 , bovin-a5d7b7 , bovin-ACHE , bovin-balip , bovin-dpp4 , bovin-dpp6 , bovin-e1bi31 , bovin-e1bn79 , bovin-est8 , bovin-f1mbd6 , bovin-f1mi11 , bovin-f1mr65 , bovin-f1n1l4 , bovin-g3mxp5 , bovin-q0vcc8 , bovin-q2kj30 , bovin-q3t0r6 , bovin-thyro

Title : Evolutionary and biomedical insights from the rhesus macaque genome - Gibbs_2007_Science_316_222
Author(s) : Gibbs RA , Rogers J , Katze MG , Bumgarner R , Weinstock GM , Mardis ER , Remington KA , Strausberg RL , Venter JC , Wilson RK , Batzer MA , Bustamante CD , Eichler EE , Hahn MW , Hardison RC , Makova KD , Miller W , Milosavljevic A , Palermo RE , Siepel A , Sikela JM , Attaway T , Bell S , Bernard KE , Buhay CJ , Chandrabose MN , Dao M , Davis C , Delehaunty KD , Ding Y , Dinh HH , Dugan-Rocha S , Fulton LA , Gabisi RA , Garner TT , Godfrey J , Hawes AC , Hernandez J , Hines S , Holder M , Hume J , Jhangiani SN , Joshi V , Khan ZM , Kirkness EF , Cree A , Fowler RG , Lee S , Lewis LR , Li Z , Liu YS , Moore SM , Muzny D , Nazareth LV , Ngo DN , Okwuonu GO , Pai G , Parker D , Paul HA , Pfannkoch C , Pohl CS , Rogers YH , Ruiz SJ , Sabo A , Santibanez J , Schneider BW , Smith SM , Sodergren E , Svatek AF , Utterback TR , Vattathil S , Warren W , White CS , Chinwalla AT , Feng Y , Halpern AL , Hillier LW , Huang X , Minx P , Nelson JO , Pepin KH , Qin X , Sutton GG , Venter E , Walenz BP , Wallis JW , Worley KC , Yang SP , Jones SM , Marra MA , Rocchi M , Schein JE , Baertsch R , Clarke L , Csuros M , Glasscock J , Harris RA , Havlak P , Jackson AR , Jiang H , Liu Y , Messina DN , Shen Y , Song HX , Wylie T , Zhang L , Birney E , Han K , Konkel MK , Lee J , Smit AF , Ullmer B , Wang H , Xing J , Burhans R , Cheng Z , Karro JE , Ma J , Raney B , She X , Cox MJ , Demuth JP , Dumas LJ , Han SG , Hopkins J , Karimpour-Fard A , Kim YH , Pollack JR , Vinar T , Addo-Quaye C , Degenhardt J , Denby A , Hubisz MJ , Indap A , Kosiol C , Lahn BT , Lawson HA , Marklein A , Nielsen R , Vallender EJ , Clark AG , Ferguson B , Hernandez RD , Hirani K , Kehrer-Sawatzki H , Kolb J , Patil S , Pu LL , Ren Y , Smith DG , Wheeler DA , Schenck I , Ball EV , Chen R , Cooper DN , Giardine B , Hsu F , Kent WJ , Lesk A , Nelson DL , O'Brien W E , Prufer K , Stenson PD , Wallace JC , Ke H , Liu XM , Wang P , Xiang AP , Yang F , Barber GP , Haussler D , Karolchik D , Kern AD , Kuhn RM , Smith KE , Zwieg AS
Ref : Science , 316 :222 , 2007
Abstract : The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
ESTHER : Gibbs_2007_Science_316_222
PubMedSearch : Gibbs_2007_Science_316_222
PubMedID: 17431167
Gene_locus related to this paper: macmu-3neur , macmu-ACHE , macmu-BCHE , macmu-f6rul6 , macmu-f6sz31 , macmu-f6the6 , macmu-f6unj2 , macmu-f6wtx1 , macmu-f6zkq5 , macmu-f7aa58 , macmu-f7ai42 , macmu-f7aim4 , macmu-f7buk8 , macmu-f7cfi8 , macmu-f7cnr2 , macmu-f7cu68 , macmu-f7flv1 , macmu-f7ggk1 , macmu-f7hir7 , macmu-g7n054 , macmu-KANSL3 , macmu-TEX30 , macmu-Y4neur , macmu-g7n4x3 , macmu-i2cy02 , macmu-f7ba84 , macmu-CES2 , macmu-h9er02 , macmu-a0a1d5rbr3 , macmu-a0a1d5q4k5 , macmu-g7mxj6 , macmu-f7dn71 , macmu-f7hkw9 , macmu-f7hm08 , macmu-g7mke4 , macmu-a0a1d5rh04 , macmu-h9fud6 , macmu-f6qwx1 , macmu-f7h4t2 , macmu-h9zaw9 , macmu-f7h550 , macmu-a0a1d5q9w1 , macmu-f7gkb9 , macmu-f7hp78 , macmu-a0a1d5qvu5

Title : The DNA sequence, annotation and analysis of human chromosome 3 - Muzny_2006_Nature_440_1194
Author(s) : Muzny DM , Scherer SE , Kaul R , Wang J , Yu J , Sudbrak R , Buhay CJ , Chen R , Cree A , Ding Y , Dugan-Rocha S , Gill R , Gunaratne P , Harris RA , Hawes AC , Hernandez J , Hodgson AV , Hume J , Jackson A , Khan ZM , Kovar-Smith C , Lewis LR , Lozado RJ , Metzker ML , Milosavljevic A , Miner GR , Morgan MB , Nazareth LV , Scott G , Sodergren E , Song XZ , Steffen D , Wei S , Wheeler DA , Wright MW , Worley KC , Yuan Y , Zhang Z , Adams CQ , Ansari-Lari MA , Ayele M , Brown MJ , Chen G , Chen Z , Clendenning J , Clerc-Blankenburg KP , Davis C , Delgado O , Dinh HH , Dong W , Draper H , Ernst S , Fu G , Gonzalez-Garay ML , Garcia DK , Gillett W , Gu J , Hao B , Haugen E , Havlak P , He X , Hennig S , Hu S , Huang W , Jackson LR , Jacob LS , Kelly SH , Kube M , Levy R , Li Z , Liu B , Liu J , Liu W , Lu J , Maheshwari M , Nguyen BV , Okwuonu GO , Palmeiri A , Pasternak S , Perez LM , Phelps KA , Plopper FJ , Qiang B , Raymond C , Rodriguez R , Saenphimmachak C , Santibanez J , Shen H , Shen Y , Subramanian S , Tabor PE , Verduzco D , Waldron L , Wang Q , Williams GA , Wong GK , Yao Z , Zhang J , Zhang X , Zhao G , Zhou J , Zhou Y , Nelson D , Lehrach H , Reinhardt R , Naylor SL , Yang H , Olson M , Weinstock G , Gibbs RA
Ref : Nature , 440 :1194 , 2006
Abstract : After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chromosomes. Chromosome 3 comprises just four contigs, one of which currently represents the longest unbroken stretch of finished DNA sequence known so far. The chromosome is remarkable in having the lowest rate of segmental duplication in the genome. It also includes a chemokine receptor gene cluster as well as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric inversion that occurred some time after the split of Homininae from Ponginae, and propose an evolutionary history of the inversion.
ESTHER : Muzny_2006_Nature_440_1194
PubMedSearch : Muzny_2006_Nature_440_1194
PubMedID: 16641997
Gene_locus related to this paper: human-AADAC , human-AADACL2 , human-ABHD5 , human-ABHD6 , human-ABHD10 , human-ABHD14A , human-APEH , human-BCHE , human-CIB , human-LIPH , human-MGLL , human-NLGN1 , human-PLA1A

Title : The DNA sequence of the human X chromosome - Ross_2005_Nature_434_325
Author(s) : Ross MT , Grafham DV , Coffey AJ , Scherer S , McLay K , Muzny D , Platzer M , Howell GR , Burrows C , Bird CP , Frankish A , Lovell FL , Howe KL , Ashurst JL , Fulton RS , Sudbrak R , Wen G , Jones MC , Hurles ME , Andrews TD , Scott CE , Searle S , Ramser J , Whittaker A , Deadman R , Carter NP , Hunt SE , Chen R , Cree A , Gunaratne P , Havlak P , Hodgson A , Metzker ML , Richards S , Scott G , Steffen D , Sodergren E , Wheeler DA , Worley KC , Ainscough R , Ambrose KD , Ansari-Lari MA , Aradhya S , Ashwell RI , Babbage AK , Bagguley CL , Ballabio A , Banerjee R , Barker GE , Barlow KF , Barrett IP , Bates KN , Beare DM , Beasley H , Beasley O , Beck A , Bethel G , Blechschmidt K , Brady N , Bray-Allen S , Bridgeman AM , Brown AJ , Brown MJ , Bonnin D , Bruford EA , Buhay C , Burch P , Burford D , Burgess J , Burrill W , Burton J , Bye JM , Carder C , Carrel L , Chako J , Chapman JC , Chavez D , Chen E , Chen G , Chen Y , Chen Z , Chinault C , Ciccodicola A , Clark SY , Clarke G , Clee CM , Clegg S , Clerc-Blankenburg K , Clifford K , Cobley V , Cole CG , Conquer JS , Corby N , Connor RE , David R , Davies J , Davis C , Davis J , Delgado O , Deshazo D , Dhami P , Ding Y , Dinh H , Dodsworth S , Draper H , Dugan-Rocha S , Dunham A , Dunn M , Durbin KJ , Dutta I , Eades T , Ellwood M , Emery-Cohen A , Errington H , Evans KL , Faulkner L , Francis F , Frankland J , Fraser AE , Galgoczy P , Gilbert J , Gill R , Glockner G , Gregory SG , Gribble S , Griffiths C , Grocock R , Gu Y , Gwilliam R , Hamilton C , Hart EA , Hawes A , Heath PD , Heitmann K , Hennig S , Hernandez J , Hinzmann B , Ho S , Hoffs M , Howden PJ , Huckle EJ , Hume J , Hunt PJ , Hunt AR , Isherwood J , Jacob L , Johnson D , Jones S , de Jong PJ , Joseph SS , Keenan S , Kelly S , Kershaw JK , Khan Z , Kioschis P , Klages S , Knights AJ , Kosiura A , Kovar-Smith C , Laird GK , Langford C , Lawlor S , Leversha M , Lewis L , Liu W , Lloyd C , Lloyd DM , Loulseged H , Loveland JE , Lovell JD , Lozado R , Lu J , Lyne R , Ma J , Maheshwari M , Matthews LH , McDowall J , Mclaren S , McMurray A , Meidl P , Meitinger T , Milne S , Miner G , Mistry SL , Morgan M , Morris S , Muller I , Mullikin JC , Nguyen N , Nordsiek G , Nyakatura G , O'Dell CN , Okwuonu G , Palmer S , Pandian R , Parker D , Parrish J , Pasternak S , Patel D , Pearce AV , Pearson DM , Pelan SE , Perez L , Porter KM , Ramsey Y , Reichwald K , Rhodes S , Ridler KA , Schlessinger D , Schueler MG , Sehra HK , Shaw-Smith C , Shen H , Sheridan EM , Shownkeen R , Skuce CD , Smith ML , Sotheran EC , Steingruber HE , Steward CA , Storey R , Swann RM , Swarbreck D , Tabor PE , Taudien S , Taylor T , Teague B , Thomas K , Thorpe A , Timms K , Tracey A , Trevanion S , Tromans AC , d'Urso M , Verduzco D , Villasana D , Waldron L , Wall M , Wang Q , Warren J , Warry GL , Wei X , West A , Whitehead SL , Whiteley MN , Wilkinson JE , Willey DL , Williams G , Williams L , Williamson A , Williamson H , Wilming L , Woodmansey RL , Wray PW , Yen J , Zhang J , Zhou J , Zoghbi H , Zorilla S , Buck D , Reinhardt R , Poustka A , Rosenthal A , Lehrach H , Meindl A , Minx PJ , Hillier LW , Willard HF , Wilson RK , Waterston RH , Rice CM , Vaudin M , Coulson A , Nelson DL , Weinstock G , Sulston JE , Durbin R , Hubbard T , Gibbs RA , Beck S , Rogers J , Bentley DR
Ref : Nature , 434 :325 , 2005
Abstract : The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.
ESTHER : Ross_2005_Nature_434_325
PubMedSearch : Ross_2005_Nature_434_325
PubMedID: 15772651
Gene_locus related to this paper: human-NLGN3 , human-NLGN4X

Title : Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution - Richards_2005_Genome.Res_15_1
Author(s) : Richards S , Liu Y , Bettencourt BR , Hradecky P , Letovsky S , Nielsen R , Thornton K , Hubisz MJ , Chen R , Meisel RP , Couronne O , Hua S , Smith MA , Zhang P , Liu J , Bussemaker HJ , van Batenburg MF , Howells SL , Scherer SE , Sodergren E , Matthews BB , Crosby MA , Schroeder AJ , Ortiz-Barrientos D , Rives CM , Metzker ML , Muzny DM , Scott G , Steffen D , Wheeler DA , Worley KC , Havlak P , Durbin KJ , Egan A , Gill R , Hume J , Morgan MB , Miner G , Hamilton C , Huang Y , Waldron L , Verduzco D , Clerc-Blankenburg KP , Dubchak I , Noor MA , Anderson W , White KP , Clark AG , Schaeffer SW , Gelbart W , Weinstock GM , Gibbs RA
Ref : Genome Res , 15 :1 , 2005
Abstract : We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25-55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species--but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.
ESTHER : Richards_2005_Genome.Res_15_1
PubMedSearch : Richards_2005_Genome.Res_15_1
PubMedID: 15632085
Gene_locus related to this paper: drome-BEM46 , drome-GH02439 , drops-ACHE , drops-b5dhd2 , drops-b5di70 , drops-b5djn7 , drops-b5dk96 , drops-b5dm12 , drops-b5dpe3 , drops-b5drp9 , drops-b5du62 , drops-b5dud8 , drops-b5dwa7 , drops-b5dwa8 , drops-b5dy09 , drops-b5dz85 , drops-b5dz86 , drops-b5e1k7 , drops-CG4390 , drops-est5a , drops-est5b , drops-est5c , drops-nrtac , drops-q2lyp3 , drops-q2lyp4 , drops-q2lyu3 , drops-q2lz68 , drops-q2m0u9 , drops-q2m169 , drops-q28wj5 , drops-q28wt2 , drops-q28wt8 , drops-q28zi3 , drops-q28zz1 , drops-q29a22 , drops-q29ad8 , drops-q29ad9 , drops-q29ae0 , drops-q29ae1 , drops-q29ay7 , drops-q29ay8 , drops-q29ay9 , drops-q29bq2 , drops-q29br3 , drops-q29d59 , drops-q29dc9 , drops-q29dd7 , drops-q29dp4 , drops-q29dw3 , drops-q29dw4 , drops-q29e16 , drops-q29ew0 , drops-q29f35 , drops-q29f66 , drops-q29fi0 , drops-q29fw0 , drops-q29fw9 , drops-q29g93 , drops-q29gb0 , drops-q29gs6 , drops-q29h54 , drops-b5dmp7 , drops-q29hd2 , drops-q29hu2 , drops-q29hu3 , drops-q29hv0 , drops-q29i09 , drops-q29js9 , drops-q29jt5 , drops-q29jt6 , drops-q29jy5 , drops-q29k25 , drops-q29kd5 , drops-q29kd6 , drops-q29ke5 , drops-q29kq9 , drops-q29kr1 , drops-q29kr3 , drops-q29kr5 , drops-q29kr8 , drops-q29kr9 , drops-q29ks6 , drops-q29kz0 , drops-q29kz1 , drops-q29l31 , drops-q29lf8 , drops-q29lv0 , drops-q29m07 , drops-q29m08 , drops-q29m27 , drops-q29m66 , drops-q29m81 , drops-q29mj7 , drops-q29mv2 , drops-q29mx0 , drops-q29n87 , drops-q29na5 , drops-q29na6 , drops-q29pe4 , drops-q29pk4 , drops-q290i1 , drops-q290k3 , drops-q290v8 , drops-q290v9 , drops-q290w0 , drops-q290z8 , drops-q291d5 , drops-q291e8 , drops-q291y3 , drops-q292f5 , drops-q292g6 , drops-q293n1 , drops-q293n4 , drops-q293n5 , drops-q293n6 , drops-q293y7 , drops-q294n3 , drops-q294n6 , drops-q294n7 , drops-q294n9 , drops-q294p0 , drops-q294p1 , drops-q294p3 , drops-q294p4 , drops-q294u9 , drops-q295h3 , drops-q296h2 , drops-q296x1 , drops-q296x2 , drops-q297h5 , drops-q298u8 , drope-b4gkk1

Title : Genome sequence of the Brown Norway rat yields insights into mammalian evolution - Gibbs_2004_Nature_428_493
Author(s) : Gibbs RA , Weinstock GM , Metzker ML , Muzny DM , Sodergren EJ , Scherer S , Scott G , Steffen D , Worley KC , Burch PE , Okwuonu G , Hines S , Lewis L , DeRamo C , Delgado O , Dugan-Rocha S , Miner G , Morgan M , Hawes A , Gill R , Celera , Holt RA , Adams MD , Amanatides PG , Baden-Tillson H , Barnstead M , Chin S , Evans CA , Ferriera S , Fosler C , Glodek A , Gu Z , Jennings D , Kraft CL , Nguyen T , Pfannkoch CM , Sitter C , Sutton GG , Venter JC , Woodage T , Smith D , Lee HM , Gustafson E , Cahill P , Kana A , Doucette-Stamm L , Weinstock K , Fechtel K , Weiss RB , Dunn DM , Green ED , Blakesley RW , Bouffard GG , de Jong PJ , Osoegawa K , Zhu B , Marra M , Schein J , Bosdet I , Fjell C , Jones S , Krzywinski M , Mathewson C , Siddiqui A , Wye N , McPherson J , Zhao S , Fraser CM , Shetty J , Shatsman S , Geer K , Chen Y , Abramzon S , Nierman WC , Havlak PH , Chen R , Durbin KJ , Egan A , Ren Y , Song XZ , Li B , Liu Y , Qin X , Cawley S , Cooney AJ , D'Souza LM , Martin K , Wu JQ , Gonzalez-Garay ML , Jackson AR , Kalafus KJ , McLeod MP , Milosavljevic A , Virk D , Volkov A , Wheeler DA , Zhang Z , Bailey JA , Eichler EE , Tuzun E , Birney E , Mongin E , Ureta-Vidal A , Woodwark C , Zdobnov E , Bork P , Suyama M , Torrents D , Alexandersson M , Trask BJ , Young JM , Huang H , Wang H , Xing H , Daniels S , Gietzen D , Schmidt J , Stevens K , Vitt U , Wingrove J , Camara F , Mar Alba M , Abril JF , Guigo R , Smit A , Dubchak I , Rubin EM , Couronne O , Poliakov A , Hubner N , Ganten D , Goesele C , Hummel O , Kreitler T , Lee YA , Monti J , Schulz H , Zimdahl H , Himmelbauer H , Lehrach H , Jacob HJ , Bromberg S , Gullings-Handley J , Jensen-Seaman MI , Kwitek AE , Lazar J , Pasko D , Tonellato PJ , Twigger S , Ponting CP , Duarte JM , Rice S , Goodstadt L , Beatson SA , Emes RD , Winter EE , Webber C , Brandt P , Nyakatura G , Adetobi M , Chiaromonte F , Elnitski L , Eswara P , Hardison RC , Hou M , Kolbe D , Makova K , Miller W , Nekrutenko A , Riemer C , Schwartz S , Taylor J , Yang S , Zhang Y , Lindpaintner K , Andrews TD , Caccamo M , Clamp M , Clarke L , Curwen V , Durbin R , Eyras E , Searle SM , Cooper GM , Batzoglou S , Brudno M , Sidow A , Stone EA , Payseur BA , Bourque G , Lopez-Otin C , Puente XS , Chakrabarti K , Chatterji S , Dewey C , Pachter L , Bray N , Yap VB , Caspi A , Tesler G , Pevzner PA , Haussler D , Roskin KM , Baertsch R , Clawson H , Furey TS , Hinrichs AS , Karolchik D , Kent WJ , Rosenbloom KR , Trumbower H , Weirauch M , Cooper DN , Stenson PD , Ma B , Brent M , Arumugam M , Shteynberg D , Copley RR , Taylor MS , Riethman H , Mudunuri U , Peterson J , Guyer M , Felsenfeld A , Old S , Mockrin S , Collins F
Ref : Nature , 428 :493 , 2004
Abstract : The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.
ESTHER : Gibbs_2004_Nature_428_493
PubMedSearch : Gibbs_2004_Nature_428_493
PubMedID: 15057822
Gene_locus related to this paper: rat-abhea , rat-abheb , rat-cd029 , rat-d3zaw4 , rat-dpp9 , rat-d3zhq1 , rat-d3zkp8 , rat-d3zuq1 , rat-d3zxw8 , rat-d4a4w4 , rat-d4a7w1 , rat-d4a9l7 , rat-d4a071 , rat-d4aa31 , rat-d4aa33 , rat-d4aa61 , rat-dglb , rat-f1lz91 , rat-Kansl3 , rat-nceh1 , rat-Tex30 , ratno-1hlip , ratno-1neur , ratno-1plip , ratno-2neur , ratno-3neur , ratno-3plip , ratno-ABH15 , ratno-ACHE , ratno-balip , ratno-BCHE , ratno-cauxin , ratno-Ces1d , ratno-Ces1e , ratno-Ces2f , ratno-d3ze31 , ratno-d3zp14 , ratno-d3zxi3 , ratno-d3zxq0 , ratno-d3zxq1 , ratno-d4a3d4 , ratno-d4aa05 , ratno-dpp4 , ratno-dpp6 , ratno-est8 , ratno-FAP , ratno-hyep , ratno-hyes , ratno-kmcxe , ratno-lmcxe , ratno-LOC246252 , ratno-MGLL , ratno-pbcxe , ratno-phebest , ratno-Ppgb , ratno-q4qr68 , ratno-q6ayr2 , ratno-q6q629 , ratno-SPG21 , ratno-thyro , rat-m0rc77 , rat-a0a0g2k9y7 , rat-a0a0g2kb83 , rat-d3zba8 , rat-d3zbj1 , rat-d3zcr8 , rat-d3zxw5 , rat-d4a340 , rat-f1lvg7 , rat-m0r509 , rat-m0r5d4 , rat-b5den3 , rat-d3zxk4 , rat-d4a1b6 , rat-d3zmg4 , rat-ab17c

Title : Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences - Strausberg_2002_Proc.Natl.Acad.Sci.U.S.A_99_16899
Author(s) : Strausberg RL , Feingold EA , Grouse LH , Derge JG , Klausner RD , Collins FS , Wagner L , Shenmen CM , Schuler GD , Altschul SF , Zeeberg B , Buetow KH , Schaefer CF , Bhat NK , Hopkins RF , Jordan H , Moore T , Max SI , Wang J , Hsieh F , Diatchenko L , Marusina K , Farmer AA , Rubin GM , Hong L , Stapleton M , Soares MB , Bonaldo MF , Casavant TL , Scheetz TE , Brownstein MJ , Usdin TB , Toshiyuki S , Carninci P , Prange C , Raha SS , Loquellano NA , Peters GJ , Abramson RD , Mullahy SJ , Bosak SA , McEwan PJ , McKernan KJ , Malek JA , Gunaratne PH , Richards S , Worley KC , Hale S , Garcia AM , Gay LJ , Hulyk SW , Villalon DK , Muzny DM , Sodergren EJ , Lu X , Gibbs RA , Fahey J , Helton E , Ketteman M , Madan A , Rodrigues S , Sanchez A , Whiting M , Young AC , Shevchenko Y , Bouffard GG , Blakesley RW , Touchman JW , Green ED , Dickson MC , Rodriguez AC , Grimwood J , Schmutz J , Myers RM , Butterfield YS , Krzywinski MI , Skalska U , Smailus DE , Schnerch A , Schein JE , Jones SJ , Marra MA
Ref : Proc Natl Acad Sci U S A , 99 :16899 , 2002
Abstract : The National Institutes of Health Mammalian Gene Collection (MGC) Program is a multiinstitutional effort to identify and sequence a cDNA clone containing a complete ORF for each human and mouse gene. ESTs were generated from libraries enriched for full-length cDNAs and analyzed to identify candidate full-ORF clones, which then were sequenced to high accuracy. The MGC has currently sequenced and verified the full ORF for a nonredundant set of >9,000 human and >6,000 mouse genes. Candidate full-ORF clones for an additional 7,800 human and 3,500 mouse genes also have been identified. All MGC sequences and clones are available without restriction through public databases and clone distribution networks (see http:mgc.nci.nih.gov).
ESTHER : Strausberg_2002_Proc.Natl.Acad.Sci.U.S.A_99_16899
PubMedSearch : Strausberg_2002_Proc.Natl.Acad.Sci.U.S.A_99_16899
PubMedID: 12477932
Gene_locus related to this paper: bovin-q3zcj6 , danre-OVCA2 , danre-q4qrh4 , danre-q4v960 , danre-q32ls6 , danre-q503e2 , ratno-CPVL , ratno-q3mhs0 , ratno-q4qr68 , ratno-q5fvr5 , ratno-q32q55 , xenla-a2bd54 , xenla-q2tap9 , xenla-q3kq37 , xenla-q3kq76 , xenla-q4klb6 , xenla-q32n48 , xenla-q32ns5 , xenla-q52l41 , xentr-q4va73 , danre-a7mbu9

Title : The genome sequence of Drosophila melanogaster - Adams_2000_Science_287_2185
Author(s) : Adams MD , Celniker SE , Holt RA , Evans CA , Gocayne JD , Amanatides PG , Scherer SE , Li PW , Hoskins RA , Galle RF , George RA , Lewis SE , Richards S , Ashburner M , Henderson SN , Sutton GG , Wortman JR , Yandell MD , Zhang Q , Chen LX , Brandon RC , Rogers YH , Blazej RG , Champe M , Pfeiffer BD , Wan KH , Doyle C , Baxter EG , Helt G , Nelson CR , Gabor GL , Abril JF , Agbayani A , An HJ , Andrews-Pfannkoch C , Baldwin D , Ballew RM , Basu A , Baxendale J , Bayraktaroglu L , Beasley EM , Beeson KY , Benos PV , Berman BP , Bhandari D , Bolshakov S , Borkova D , Botchan MR , Bouck J , Brokstein P , Brottier P , Burtis KC , Busam DA , Butler H , Cadieu E , Center A , Chandra I , Cherry JM , Cawley S , Dahlke C , Davenport LB , Davies P , de Pablos B , Delcher A , Deng Z , Mays AD , Dew I , Dietz SM , Dodson K , Doup LE , Downes M , Dugan-Rocha S , Dunkov BC , Dunn P , Durbin KJ , Evangelista CC , Ferraz C , Ferriera S , Fleischmann W , Fosler C , Gabrielian AE , Garg NS , Gelbart WM , Glasser K , Glodek A , Gong F , Gorrell JH , Gu Z , Guan P , Harris M , Harris NL , Harvey D , Heiman TJ , Hernandez JR , Houck J , Hostin D , Houston KA , Howland TJ , Wei MH , Ibegwam C , Jalali M , Kalush F , Karpen GH , Ke Z , Kennison JA , Ketchum KA , Kimmel BE , Kodira CD , Kraft C , Kravitz S , Kulp D , Lai Z , Lasko P , Lei Y , Levitsky AA , Li J , Li Z , Liang Y , Lin X , Liu X , Mattei B , McIntosh TC , McLeod MP , McPherson D , Merkulov G , Milshina NV , Mobarry C , Morris J , Moshrefi A , Mount SM , Moy M , Murphy B , Murphy L , Muzny DM , Nelson DL , Nelson DR , Nelson KA , Nixon K , Nusskern DR , Pacleb JM , Palazzolo M , Pittman GS , Pan S , Pollard J , Puri V , Reese MG , Reinert K , Remington K , Saunders RD , Scheeler F , Shen H , Shue BC , Siden-Kiamos I , Simpson M , Skupski MP , Smith T , Spier E , Spradling AC , Stapleton M , Strong R , Sun E , Svirskas R , Tector C , Turner R , Venter E , Wang AH , Wang X , Wang ZY , Wassarman DA , Weinstock GM , Weissenbach J , Williams SM , WoodageT , Worley KC , Wu D , Yang S , Yao QA , Ye J , Yeh RF , Zaveri JS , Zhan M , Zhang G , Zhao Q , Zheng L , Zheng XH , Zhong FN , Zhong W , Zhou X , Zhu S , Zhu X , Smith HO , Gibbs RA , Myers EW , Rubin GM , Venter JC
Ref : Science , 287 :2185 , 2000
Abstract : The fly Drosophila melanogaster is one of the most intensively studied organisms in biology and serves as a model system for the investigation of many developmental and cellular processes common to higher eukaryotes, including humans. We have determined the nucleotide sequence of nearly all of the approximately 120-megabase euchromatic portion of the Drosophila genome using a whole-genome shotgun sequencing strategy supported by extensive clone-based sequence and a high-quality bacterial artificial chromosome physical map. Efforts are under way to close the remaining gaps; however, the sequence is of sufficient accuracy and contiguity to be declared substantially complete and to support an initial analysis of genome structure and preliminary gene annotation and interpretation. The genome encodes approximately 13,600 genes, somewhat fewer than the smaller Caenorhabditis elegans genome, but with comparable functional diversity.
ESTHER : Adams_2000_Science_287_2185
PubMedSearch : Adams_2000_Science_287_2185
PubMedID: 10731132
Gene_locus related to this paper: drome-1vite , drome-2vite , drome-3vite , drome-a1z6g9 , drome-abhd2 , drome-ACHE , drome-b6idz4 , drome-BEM46 , drome-CG5707 , drome-CG5704 , drome-CG1309 , drome-CG1882 , drome-CG1986 , drome-CG2059 , drome-CG2493 , drome-CG2528 , drome-CG2772 , drome-CG3160 , drome-CG3344 , drome-CG3523 , drome-CG3524 , drome-CG3734 , drome-CG3739 , drome-CG3744 , drome-CG3841 , drome-CG4267 , drome-CG4382 , drome-CG4390 , drome-CG4572 , drome-CG4582 , drome-CG4851 , drome-CG4979 , drome-CG5068 , drome-CG5162 , drome-CG5355 , drome-CG5377 , drome-CG5397 , drome-CG5412 , drome-CG5665 , drome-CG5932 , drome-CG5966 , drome-CG6018 , drome-CG6113 , drome-CG6271 , drome-CG6283 , drome-CG6295 , drome-CG6296 , drome-CG6414 , drome-CG6431 , drome-CG6472 , drome-CG6567 , drome-CG6675 , drome-CG6753 , drome-CG6847 , drome-CG7329 , drome-CG7367 , drome-CG7529 , drome-CG7632 , drome-CG8058 , drome-CG8093 , drome-CG8233 , drome-CG8424 , drome-CG8425 , drome-CG9059 , drome-CG9186 , drome-CG9287 , drome-CG9289 , drome-CG9542 , drome-CG9858 , drome-CG9953 , drome-CG9966 , drome-CG10116 , drome-CG10163 , drome-CG10175 , drome-CG10339 , drome-CG10357 , drome-CG10982 , drome-CG11034 , drome-CG11055 , drome-CG11309 , drome-CG11319 , drome-CG11406 , drome-CG11598 , drome-CG11600 , drome-CG11608 , drome-CG11626 , drome-CG11935 , drome-CG12108 , drome-CG12869 , drome-CG13282 , drome-CG13562 , drome-CG13772 , drome-CG14034 , drome-nlg3 , drome-CG14717 , drome-CG15101 , drome-CG15102 , drome-CG15106 , drome-CG15111 , drome-CG15820 , drome-CG15821 , drome-CG15879 , drome-CG17097 , drome-CG17099 , drome-CG17101 , drome-CG17191 , drome-CG17192 , drome-CG17292 , drome-CG18258 , drome-CG18284 , drome-CG18301 , drome-CG18302 , drome-CG18493 , drome-CG18530 , drome-CG18641 , drome-CG18815 , drome-CG31089 , drome-CG31091 , drome-CG32333 , drome-CG32483 , drome-CG33174 , drome-dnlg1 , drome-este4 , drome-este6 , drome-GH02384 , drome-GH02439 , drome-glita , drome-KRAKEN , drome-lip1 , drome-LIP2 , drome-lip3 , drome-MESK2 , drome-nrtac , drome-OME , drome-q7k274 , drome-Q9VJN0 , drome-Q8IP31 , drome-q9vux3

Title : Large-scale concatenation cDNA sequencing - Yu_1997_Genome.Res_7_353
Author(s) : Yu W , Andersson B , Worley KC , Muzny DM , Ding Y , Liu W , Ricafrente JY , Wentland MA , Lennon G , Gibbs RA
Ref : Genome Res , 7 :353 , 1997
Abstract : A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7-2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (> 20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (> or = 98% identity), and 16 clones generated nonexact matches (57%-97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching.
ESTHER : Yu_1997_Genome.Res_7_353
PubMedSearch : Yu_1997_Genome.Res_7_353
PubMedID: 9110174
Gene_locus related to this paper: human-ABHD3