Hume J

References (7)

Title : The genome sequence of taurine cattle: a window to ruminant biology and evolution - Elsik_2009_Science_324_522
Author(s) : Elsik CG , Tellam RL , Worley KC , Gibbs RA , Muzny DM , Weinstock GM , Adelson DL , Eichler EE , Elnitski L , Guigo R , Hamernik DL , Kappes SM , Lewin HA , Lynn DJ , Nicholas FW , Reymond A , Rijnkels M , Skow LC , Zdobnov EM , Schook L , Womack J , Alioto T , Antonarakis SE , Astashyn A , Chapple CE , Chen HC , Chrast J , Camara F , Ermolaeva O , Henrichsen CN , Hlavina W , Kapustin Y , Kiryutin B , Kitts P , Kokocinski F , Landrum M , Maglott D , Pruitt K , Sapojnikov V , Searle SM , Solovyev V , Souvorov A , Ucla C , Wyss C , Anzola JM , Gerlach D , Elhaik E , Graur D , Reese JT , Edgar RC , McEwan JC , Payne GM , Raison JM , Junier T , Kriventseva EV , Eyras E , Plass M , Donthu R , Larkin DM , Reecy J , Yang MQ , Chen L , Cheng Z , Chitko-McKown CG , Liu GE , Matukumalli LK , Song J , Zhu B , Bradley DG , Brinkman FS , Lau LP , Whiteside MD , Walker A , Wheeler TT , Casey T , German JB , Lemay DG , Maqbool NJ , Molenaar AJ , Seo S , Stothard P , Baldwin CL , Baxter R , Brinkmeyer-Langford CL , Brown WC , Childers CP , Connelley T , Ellis SA , Fritz K , Glass EJ , Herzig CT , Iivanainen A , Lahmers KK , Bennett AK , Dickens CM , Gilbert JG , Hagen DE , Salih H , Aerts J , Caetano AR , Dalrymple B , Garcia JF , Gill CA , Hiendleder SG , Memili E , Spurlock D , Williams JL , Alexander L , Brownstein MJ , Guan L , Holt RA , Jones SJ , Marra MA , Moore R , Moore SS , Roberts A , Taniguchi M , Waterman RC , Chacko J , Chandrabose MM , Cree A , Dao MD , Dinh HH , Gabisi RA , Hines S , Hume J , Jhangiani SN , Joshi V , Kovar CL , Lewis LR , Liu YS , Lopez J , Morgan MB , Nguyen NB , Okwuonu GO , Ruiz SJ , Santibanez J , Wright RA , Buhay C , Ding Y , Dugan-Rocha S , Herdandez J , Holder M , Sabo A , Egan A , Goodell J , Wilczek-Boney K , Fowler GR , Hitchens ME , Lozado RJ , Moen C , Steffen D , Warren JT , Zhang J , Chiu R , Schein JE , Durbin KJ , Havlak P , Jiang H , Liu Y , Qin X , Ren Y , Shen Y , Song H , Bell SN , Davis C , Johnson AJ , Lee S , Nazareth LV , Patel BM , Pu LL , Vattathil S , Williams RL, Jr. , Curry S , Hamilton C , Sodergren E , Wheeler DA , Barris W , Bennett GL , Eggen A , Green RD , Harhay GP , Hobbs M , Jann O , Keele JW , Kent MP , Lien S , McKay SD , McWilliam S , Ratnakumar A , Schnabel RD , Smith T , Snelling WM , Sonstegard TS , Stone RT , Sugimoto Y , Takasuga A , Taylor JF , Van Tassell CP , Macneil MD , Abatepaulo AR , Abbey CA , Ahola V , Almeida IG , Amadio AF , Anatriello E , Bahadue SM , Biase FH , Boldt CR , Carroll JA , Carvalho WA , Cervelatti EP , Chacko E , Chapin JE , Cheng Y , Choi J , Colley AJ , de Campos TA , De Donato M , Santos IK , de Oliveira CJ , Deobald H , Devinoy E , Donohue KE , Dovc P , Eberlein A , Fitzsimmons CJ , Franzin AM , Garcia GR , Genini S , Gladney CJ , Grant JR , Greaser ML , Green JA , Hadsell DL , Hakimov HA , Halgren R , Harrow JL , Hart EA , Hastings N , Hernandez M , Hu ZL , Ingham A , Iso-Touru T , Jamis C , Jensen K , Kapetis D , Kerr T , Khalil SS , Khatib H , Kolbehdari D , Kumar CG , Kumar D , Leach R , Lee JC , Li C , Logan KM , Malinverni R , Marques E , Martin WF , Martins NF , Maruyama SR , Mazza R , McLean KL , Medrano JF , Moreno BT , More DD , Muntean CT , Nandakumar HP , Nogueira MF , Olsaker I , Pant SD , Panzitta F , Pastor RC , Poli MA , Poslusny N , Rachagani S , Ranganathan S , Razpet A , Riggs PK , Rincon G , Rodriguez-Osorio N , Rodriguez-Zas SL , Romero NE , Rosenwald A , Sando L , Schmutz SM , Shen L , Sherman L , Southey BR , Lutzow YS , Sweedler JV , Tammen I , Telugu BP , Urbanski JM , Utsunomiya YT , Verschoor CP , Waardenberg AJ , Wang Z , Ward R , Weikard R , Welsh TH, Jr. , White SN , Wilming LG , Wunderlich KR , Yang J , Zhao FQ
Ref : Science , 324 :522 , 2009
Abstract : To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
ESTHER : Elsik_2009_Science_324_522
PubMedSearch : Elsik_2009_Science_324_522
PubMedID: 19390049
Gene_locus related to this paper: bovin-2neur , bovin-a0jnh8 , bovin-a5d7b7 , bovin-ACHE , bovin-balip , bovin-dpp4 , bovin-dpp6 , bovin-e1bi31 , bovin-e1bn79 , bovin-est8 , bovin-f1mbd6 , bovin-f1mi11 , bovin-f1mr65 , bovin-f1n1l4 , bovin-g3mxp5 , bovin-q0vcc8 , bovin-q2kj30 , bovin-q3t0r6 , bovin-thyro

Title : The genome of the model beetle and pest Tribolium castaneum - Richards_2008_Nature_452_949
Author(s) : Richards S , Gibbs RA , Weinstock GM , Brown SJ , Denell R , Beeman RW , Gibbs R , Bucher G , Friedrich M , Grimmelikhuijzen CJ , Klingler M , Lorenzen M , Roth S , Schroder R , Tautz D , Zdobnov EM , Muzny D , Attaway T , Bell S , Buhay CJ , Chandrabose MN , Chavez D , Clerk-Blankenburg KP , Cree A , Dao M , Davis C , Chacko J , Dinh H , Dugan-Rocha S , Fowler G , Garner TT , Garnes J , Gnirke A , Hawes A , Hernandez J , Hines S , Holder M , Hume J , Jhangiani SN , Joshi V , Khan ZM , Jackson L , Kovar C , Kowis A , Lee S , Lewis LR , Margolis J , Morgan M , Nazareth LV , Nguyen N , Okwuonu G , Parker D , Ruiz SJ , Santibanez J , Savard J , Scherer SE , Schneider B , Sodergren E , Vattahil S , Villasana D , White CS , Wright R , Park Y , Lord J , Oppert B , Brown S , Wang L , Weinstock G , Liu Y , Worley K , Elsik CG , Reese JT , Elhaik E , Landan G , Graur D , Arensburger P , Atkinson P , Beidler J , Demuth JP , Drury DW , Du YZ , Fujiwara H , Maselli V , Osanai M , Robertson HM , Tu Z , Wang JJ , Wang S , Song H , Zhang L , Werner D , Stanke M , Morgenstern B , Solovyev V , Kosarev P , Brown G , Chen HC , Ermolaeva O , Hlavina W , Kapustin Y , Kiryutin B , Kitts P , Maglott D , Pruitt K , Sapojnikov V , Souvorov A , Mackey AJ , Waterhouse RM , Wyder S , Kriventseva EV , Kadowaki T , Bork P , Aranda M , Bao R , Beermann A , Berns N , Bolognesi R , Bonneton F , Bopp D , Butts T , Chaumot A , Denell RE , Ferrier DE , Gordon CM , Jindra M , Lan Q , Lattorff HM , Laudet V , von Levetsow C , Liu Z , Lutz R , Lynch JA , da Fonseca RN , Posnien N , Reuter R , Schinko JB , Schmitt C , Schoppmeier M , Shippy TD , Simonnet F , Marques-Souza H , Tomoyasu Y , Trauner J , Van der Zee M , Vervoort M , Wittkopp N , Wimmer EA , Yang X , Jones AK , Sattelle DB , Ebert PR , Nelson D , Scott JG , Muthukrishnan S , Kramer KJ , Arakane Y , Zhu Q , Hogenkamp D , Dixit R , Jiang H , Zou Z , Marshall J , Elpidina E , Vinokurov K , Oppert C , Evans J , Lu Z , Zhao P , Sumathipala N , Altincicek B , Vilcinskas A , Williams M , Hultmark D , Hetru C , Hauser F , Cazzamali G , Williamson M , Li B , Tanaka Y , Predel R , Neupert S , Schachtner J , Verleyen P , Raible F , Walden KK , Angeli S , Foret S , Schuetz S , Maleszka R , Miller SC , Grossmann D
Ref : Nature , 452 :949 , 2008
Abstract : Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
ESTHER : Richards_2008_Nature_452_949
PubMedSearch : Richards_2008_Nature_452_949
PubMedID: 18362917
Gene_locus related to this paper: trica-ACHE1 , trica-ACHE2 , trica-d2a0g9 , trica-d2a0h0 , trica-d2a0w9 , trica-d2a0x0 , trica-d2a0x1 , trica-d2a0x3 , trica-d2a0x4.1 , trica-d2a0x4.2 , trica-d2a0x6 , trica-d2a2b8 , trica-d2a2h1 , trica-d2a3c3 , trica-d2a3g9 , trica-d2a5y5 , trica-d2a309 , trica-d2a514 , trica-d2a515 , trica-d2a516 , trica-d2a577 , trica-d2a578 , trica-d6w6x8 , trica-d6w7f9 , trica-d6w7h2 , trica-d6w8e7 , trica-d6w9c0 , trica-d6w855 , trica-d6wac8 , trica-d6wan4 , trica-d6wd50 , trica-d6wd73 , trica-d6wd74 , trica-A0A139WM97 , trica-d6wfu3 , trica-d6wgl2 , trica-d6wj57 , trica-d6wj59 , trica-d6wjs3 , trica-d6wl31 , trica-d6wnv1 , trica-d6wpl0 , trica-d6wqd6 , trica-d6wqr4 , trica-d6ws52 , trica-d6wsm0 , trica-d6wu38 , trica-d6wu39 , trica-d6wu40 , trica-d6wu41 , trica-d6wu44 , trica-d6wvk5 , trica-d6wvz7 , trica-d6wwu9 , trica-d6wwv0 , trica-d6wxz0 , trica-d6wyy1 , trica-d6wyy2 , trica-d6x0z2 , trica-d6x0z5 , trica-d6x0z6 , trica-d6x4b2 , trica-d6x4e8 , trica-d6x4e9 , trica-d6x197 , trica-d7eip7 , trica-d7eld3 , trica-d7us45 , trica-q5wm43 , trica-q5zex9 , trica-d6wie5 , trica-d6w7t0 , trica-d6x4h0 , trica-d6x4h1 , trica-a0a139wae8 , trica-a0a139wc96 , trica-d6x325 , trica-d2a4s2 , trica-d6wvw8

Title : Evolutionary and biomedical insights from the rhesus macaque genome - Gibbs_2007_Science_316_222
Author(s) : Gibbs RA , Rogers J , Katze MG , Bumgarner R , Weinstock GM , Mardis ER , Remington KA , Strausberg RL , Venter JC , Wilson RK , Batzer MA , Bustamante CD , Eichler EE , Hahn MW , Hardison RC , Makova KD , Miller W , Milosavljevic A , Palermo RE , Siepel A , Sikela JM , Attaway T , Bell S , Bernard KE , Buhay CJ , Chandrabose MN , Dao M , Davis C , Delehaunty KD , Ding Y , Dinh HH , Dugan-Rocha S , Fulton LA , Gabisi RA , Garner TT , Godfrey J , Hawes AC , Hernandez J , Hines S , Holder M , Hume J , Jhangiani SN , Joshi V , Khan ZM , Kirkness EF , Cree A , Fowler RG , Lee S , Lewis LR , Li Z , Liu YS , Moore SM , Muzny D , Nazareth LV , Ngo DN , Okwuonu GO , Pai G , Parker D , Paul HA , Pfannkoch C , Pohl CS , Rogers YH , Ruiz SJ , Sabo A , Santibanez J , Schneider BW , Smith SM , Sodergren E , Svatek AF , Utterback TR , Vattathil S , Warren W , White CS , Chinwalla AT , Feng Y , Halpern AL , Hillier LW , Huang X , Minx P , Nelson JO , Pepin KH , Qin X , Sutton GG , Venter E , Walenz BP , Wallis JW , Worley KC , Yang SP , Jones SM , Marra MA , Rocchi M , Schein JE , Baertsch R , Clarke L , Csuros M , Glasscock J , Harris RA , Havlak P , Jackson AR , Jiang H , Liu Y , Messina DN , Shen Y , Song HX , Wylie T , Zhang L , Birney E , Han K , Konkel MK , Lee J , Smit AF , Ullmer B , Wang H , Xing J , Burhans R , Cheng Z , Karro JE , Ma J , Raney B , She X , Cox MJ , Demuth JP , Dumas LJ , Han SG , Hopkins J , Karimpour-Fard A , Kim YH , Pollack JR , Vinar T , Addo-Quaye C , Degenhardt J , Denby A , Hubisz MJ , Indap A , Kosiol C , Lahn BT , Lawson HA , Marklein A , Nielsen R , Vallender EJ , Clark AG , Ferguson B , Hernandez RD , Hirani K , Kehrer-Sawatzki H , Kolb J , Patil S , Pu LL , Ren Y , Smith DG , Wheeler DA , Schenck I , Ball EV , Chen R , Cooper DN , Giardine B , Hsu F , Kent WJ , Lesk A , Nelson DL , O'Brien W E , Prufer K , Stenson PD , Wallace JC , Ke H , Liu XM , Wang P , Xiang AP , Yang F , Barber GP , Haussler D , Karolchik D , Kern AD , Kuhn RM , Smith KE , Zwieg AS
Ref : Science , 316 :222 , 2007
Abstract : The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
ESTHER : Gibbs_2007_Science_316_222
PubMedSearch : Gibbs_2007_Science_316_222
PubMedID: 17431167
Gene_locus related to this paper: macmu-3neur , macmu-ACHE , macmu-BCHE , macmu-f6rul6 , macmu-f6sz31 , macmu-f6the6 , macmu-f6unj2 , macmu-f6wtx1 , macmu-f6zkq5 , macmu-f7aa58 , macmu-f7ai42 , macmu-f7aim4 , macmu-f7buk8 , macmu-f7cfi8 , macmu-f7cnr2 , macmu-f7cu68 , macmu-f7flv1 , macmu-f7ggk1 , macmu-f7hir7 , macmu-g7n054 , macmu-KANSL3 , macmu-TEX30 , macmu-Y4neur , macmu-g7n4x3 , macmu-i2cy02 , macmu-f7ba84 , macmu-CES2 , macmu-h9er02 , macmu-a0a1d5rbr3 , macmu-a0a1d5q4k5 , macmu-g7mxj6 , macmu-f7dn71 , macmu-f7hkw9 , macmu-f7hm08 , macmu-g7mke4 , macmu-a0a1d5rh04 , macmu-h9fud6 , macmu-f6qwx1 , macmu-f7h4t2 , macmu-h9zaw9 , macmu-f7h550 , macmu-a0a1d5q9w1 , macmu-f7gkb9 , macmu-f7hp78 , macmu-a0a1d5qvu5

Title : The DNA sequence, annotation and analysis of human chromosome 3 - Muzny_2006_Nature_440_1194
Author(s) : Muzny DM , Scherer SE , Kaul R , Wang J , Yu J , Sudbrak R , Buhay CJ , Chen R , Cree A , Ding Y , Dugan-Rocha S , Gill R , Gunaratne P , Harris RA , Hawes AC , Hernandez J , Hodgson AV , Hume J , Jackson A , Khan ZM , Kovar-Smith C , Lewis LR , Lozado RJ , Metzker ML , Milosavljevic A , Miner GR , Morgan MB , Nazareth LV , Scott G , Sodergren E , Song XZ , Steffen D , Wei S , Wheeler DA , Wright MW , Worley KC , Yuan Y , Zhang Z , Adams CQ , Ansari-Lari MA , Ayele M , Brown MJ , Chen G , Chen Z , Clendenning J , Clerc-Blankenburg KP , Davis C , Delgado O , Dinh HH , Dong W , Draper H , Ernst S , Fu G , Gonzalez-Garay ML , Garcia DK , Gillett W , Gu J , Hao B , Haugen E , Havlak P , He X , Hennig S , Hu S , Huang W , Jackson LR , Jacob LS , Kelly SH , Kube M , Levy R , Li Z , Liu B , Liu J , Liu W , Lu J , Maheshwari M , Nguyen BV , Okwuonu GO , Palmeiri A , Pasternak S , Perez LM , Phelps KA , Plopper FJ , Qiang B , Raymond C , Rodriguez R , Saenphimmachak C , Santibanez J , Shen H , Shen Y , Subramanian S , Tabor PE , Verduzco D , Waldron L , Wang Q , Williams GA , Wong GK , Yao Z , Zhang J , Zhang X , Zhao G , Zhou J , Zhou Y , Nelson D , Lehrach H , Reinhardt R , Naylor SL , Yang H , Olson M , Weinstock G , Gibbs RA
Ref : Nature , 440 :1194 , 2006
Abstract : After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chromosomes. Chromosome 3 comprises just four contigs, one of which currently represents the longest unbroken stretch of finished DNA sequence known so far. The chromosome is remarkable in having the lowest rate of segmental duplication in the genome. It also includes a chemokine receptor gene cluster as well as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric inversion that occurred some time after the split of Homininae from Ponginae, and propose an evolutionary history of the inversion.
ESTHER : Muzny_2006_Nature_440_1194
PubMedSearch : Muzny_2006_Nature_440_1194
PubMedID: 16641997
Gene_locus related to this paper: human-AADAC , human-AADACL2 , human-ABHD5 , human-ABHD6 , human-ABHD10 , human-ABHD14A , human-APEH , human-BCHE , human-CIB , human-LIPH , human-MGLL , human-NLGN1 , human-PLA1A

Title : The DNA sequence of the human X chromosome - Ross_2005_Nature_434_325
Author(s) : Ross MT , Grafham DV , Coffey AJ , Scherer S , McLay K , Muzny D , Platzer M , Howell GR , Burrows C , Bird CP , Frankish A , Lovell FL , Howe KL , Ashurst JL , Fulton RS , Sudbrak R , Wen G , Jones MC , Hurles ME , Andrews TD , Scott CE , Searle S , Ramser J , Whittaker A , Deadman R , Carter NP , Hunt SE , Chen R , Cree A , Gunaratne P , Havlak P , Hodgson A , Metzker ML , Richards S , Scott G , Steffen D , Sodergren E , Wheeler DA , Worley KC , Ainscough R , Ambrose KD , Ansari-Lari MA , Aradhya S , Ashwell RI , Babbage AK , Bagguley CL , Ballabio A , Banerjee R , Barker GE , Barlow KF , Barrett IP , Bates KN , Beare DM , Beasley H , Beasley O , Beck A , Bethel G , Blechschmidt K , Brady N , Bray-Allen S , Bridgeman AM , Brown AJ , Brown MJ , Bonnin D , Bruford EA , Buhay C , Burch P , Burford D , Burgess J , Burrill W , Burton J , Bye JM , Carder C , Carrel L , Chako J , Chapman JC , Chavez D , Chen E , Chen G , Chen Y , Chen Z , Chinault C , Ciccodicola A , Clark SY , Clarke G , Clee CM , Clegg S , Clerc-Blankenburg K , Clifford K , Cobley V , Cole CG , Conquer JS , Corby N , Connor RE , David R , Davies J , Davis C , Davis J , Delgado O , Deshazo D , Dhami P , Ding Y , Dinh H , Dodsworth S , Draper H , Dugan-Rocha S , Dunham A , Dunn M , Durbin KJ , Dutta I , Eades T , Ellwood M , Emery-Cohen A , Errington H , Evans KL , Faulkner L , Francis F , Frankland J , Fraser AE , Galgoczy P , Gilbert J , Gill R , Glockner G , Gregory SG , Gribble S , Griffiths C , Grocock R , Gu Y , Gwilliam R , Hamilton C , Hart EA , Hawes A , Heath PD , Heitmann K , Hennig S , Hernandez J , Hinzmann B , Ho S , Hoffs M , Howden PJ , Huckle EJ , Hume J , Hunt PJ , Hunt AR , Isherwood J , Jacob L , Johnson D , Jones S , de Jong PJ , Joseph SS , Keenan S , Kelly S , Kershaw JK , Khan Z , Kioschis P , Klages S , Knights AJ , Kosiura A , Kovar-Smith C , Laird GK , Langford C , Lawlor S , Leversha M , Lewis L , Liu W , Lloyd C , Lloyd DM , Loulseged H , Loveland JE , Lovell JD , Lozado R , Lu J , Lyne R , Ma J , Maheshwari M , Matthews LH , McDowall J , Mclaren S , McMurray A , Meidl P , Meitinger T , Milne S , Miner G , Mistry SL , Morgan M , Morris S , Muller I , Mullikin JC , Nguyen N , Nordsiek G , Nyakatura G , O'Dell CN , Okwuonu G , Palmer S , Pandian R , Parker D , Parrish J , Pasternak S , Patel D , Pearce AV , Pearson DM , Pelan SE , Perez L , Porter KM , Ramsey Y , Reichwald K , Rhodes S , Ridler KA , Schlessinger D , Schueler MG , Sehra HK , Shaw-Smith C , Shen H , Sheridan EM , Shownkeen R , Skuce CD , Smith ML , Sotheran EC , Steingruber HE , Steward CA , Storey R , Swann RM , Swarbreck D , Tabor PE , Taudien S , Taylor T , Teague B , Thomas K , Thorpe A , Timms K , Tracey A , Trevanion S , Tromans AC , d'Urso M , Verduzco D , Villasana D , Waldron L , Wall M , Wang Q , Warren J , Warry GL , Wei X , West A , Whitehead SL , Whiteley MN , Wilkinson JE , Willey DL , Williams G , Williams L , Williamson A , Williamson H , Wilming L , Woodmansey RL , Wray PW , Yen J , Zhang J , Zhou J , Zoghbi H , Zorilla S , Buck D , Reinhardt R , Poustka A , Rosenthal A , Lehrach H , Meindl A , Minx PJ , Hillier LW , Willard HF , Wilson RK , Waterston RH , Rice CM , Vaudin M , Coulson A , Nelson DL , Weinstock G , Sulston JE , Durbin R , Hubbard T , Gibbs RA , Beck S , Rogers J , Bentley DR
Ref : Nature , 434 :325 , 2005
Abstract : The human X chromosome has a unique biology that was shaped by its evolution as the sex chromosome shared by males and females. We have determined 99.3% of the euchromatic sequence of the X chromosome. Our analysis illustrates the autosomal origin of the mammalian sex chromosomes, the stepwise process that led to the progressive loss of recombination between X and Y, and the extent of subsequent degradation of the Y chromosome. LINE1 repeat elements cover one-third of the X chromosome, with a distribution that is consistent with their proposed role as way stations in the process of X-chromosome inactivation. We found 1,098 genes in the sequence, of which 99 encode proteins expressed in testis and in various tumour types. A disproportionately high number of mendelian diseases are documented for the X chromosome. Of this number, 168 have been explained by mutations in 113 X-linked genes, which in many cases were characterized with the aid of the DNA sequence.
ESTHER : Ross_2005_Nature_434_325
PubMedSearch : Ross_2005_Nature_434_325
PubMedID: 15772651
Gene_locus related to this paper: human-NLGN3 , human-NLGN4X

Title : Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution - Richards_2005_Genome.Res_15_1
Author(s) : Richards S , Liu Y , Bettencourt BR , Hradecky P , Letovsky S , Nielsen R , Thornton K , Hubisz MJ , Chen R , Meisel RP , Couronne O , Hua S , Smith MA , Zhang P , Liu J , Bussemaker HJ , van Batenburg MF , Howells SL , Scherer SE , Sodergren E , Matthews BB , Crosby MA , Schroeder AJ , Ortiz-Barrientos D , Rives CM , Metzker ML , Muzny DM , Scott G , Steffen D , Wheeler DA , Worley KC , Havlak P , Durbin KJ , Egan A , Gill R , Hume J , Morgan MB , Miner G , Hamilton C , Huang Y , Waldron L , Verduzco D , Clerc-Blankenburg KP , Dubchak I , Noor MA , Anderson W , White KP , Clark AG , Schaeffer SW , Gelbart W , Weinstock GM , Gibbs RA
Ref : Genome Res , 15 :1 , 2005
Abstract : We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25-55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species--but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.
ESTHER : Richards_2005_Genome.Res_15_1
PubMedSearch : Richards_2005_Genome.Res_15_1
PubMedID: 15632085
Gene_locus related to this paper: drome-BEM46 , drome-GH02439 , drops-ACHE , drops-b5dhd2 , drops-b5di70 , drops-b5djn7 , drops-b5dk96 , drops-b5dm12 , drops-b5dpe3 , drops-b5drp9 , drops-b5du62 , drops-b5dud8 , drops-b5dwa7 , drops-b5dwa8 , drops-b5dy09 , drops-b5dz85 , drops-b5dz86 , drops-b5e1k7 , drops-CG4390 , drops-est5a , drops-est5b , drops-est5c , drops-nrtac , drops-q2lyp3 , drops-q2lyp4 , drops-q2lyu3 , drops-q2lz68 , drops-q2m0u9 , drops-q2m169 , drops-q28wj5 , drops-q28wt2 , drops-q28wt8 , drops-q28zi3 , drops-q28zz1 , drops-q29a22 , drops-q29ad8 , drops-q29ad9 , drops-q29ae0 , drops-q29ae1 , drops-q29ay7 , drops-q29ay8 , drops-q29ay9 , drops-q29bq2 , drops-q29br3 , drops-q29d59 , drops-q29dc9 , drops-q29dd7 , drops-q29dp4 , drops-q29dw3 , drops-q29dw4 , drops-q29e16 , drops-q29ew0 , drops-q29f35 , drops-q29f66 , drops-q29fi0 , drops-q29fw0 , drops-q29fw9 , drops-q29g93 , drops-q29gb0 , drops-q29gs6 , drops-q29h54 , drops-b5dmp7 , drops-q29hd2 , drops-q29hu2 , drops-q29hu3 , drops-q29hv0 , drops-q29i09 , drops-q29js9 , drops-q29jt5 , drops-q29jt6 , drops-q29jy5 , drops-q29k25 , drops-q29kd5 , drops-q29kd6 , drops-q29ke5 , drops-q29kq9 , drops-q29kr1 , drops-q29kr3 , drops-q29kr5 , drops-q29kr8 , drops-q29kr9 , drops-q29ks6 , drops-q29kz0 , drops-q29kz1 , drops-q29l31 , drops-q29lf8 , drops-q29lv0 , drops-q29m07 , drops-q29m08 , drops-q29m27 , drops-q29m66 , drops-q29m81 , drops-q29mj7 , drops-q29mv2 , drops-q29mx0 , drops-q29n87 , drops-q29na5 , drops-q29na6 , drops-q29pe4 , drops-q29pk4 , drops-q290i1 , drops-q290k3 , drops-q290v8 , drops-q290v9 , drops-q290w0 , drops-q290z8 , drops-q291d5 , drops-q291e8 , drops-q291y3 , drops-q292f5 , drops-q292g6 , drops-q293n1 , drops-q293n4 , drops-q293n5 , drops-q293n6 , drops-q293y7 , drops-q294n3 , drops-q294n6 , drops-q294n7 , drops-q294n9 , drops-q294p0 , drops-q294p1 , drops-q294p3 , drops-q294p4 , drops-q294u9 , drops-q295h3 , drops-q296h2 , drops-q296x1 , drops-q296x2 , drops-q297h5 , drops-q298u8 , drope-b4gkk1

Title : Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae - McLeod_2004_J.Bacteriol_186_5842
Author(s) : McLeod MP , Qin X , Karpathy SE , Gioia J , Highlander SK , Fox GE , McNeill TZ , Jiang H , Muzny D , Jacob LS , Hawes AC , Sodergren E , Gill R , Hume J , Morgan M , Fan G , Amin AG , Gibbs RA , Hong C , Yu XJ , Walker DH , Weinstock GM
Ref : Journal of Bacteriology , 186 :5842 , 2004
Abstract : Rickettsia typhi, the causative agent of murine typhus, is an obligate intracellular bacterium with a life cycle involving both vertebrate and invertebrate hosts. Here we present the complete genome sequence of R. typhi (1,111,496 bp) and compare it to the two published rickettsial genome sequences: R. prowazekii and R. conorii. We identified 877 genes in R. typhi encoding 3 rRNAs, 33 tRNAs, 3 noncoding RNAs, and 838 proteins, 3 of which are frameshifts. In addition, we discovered more than 40 pseudogenes, including the entire cytochrome c oxidase system. The three rickettsial genomes share 775 genes: 23 are found only in R. prowazekii and R. typhi, 15 are found only in R. conorii and R. typhi, and 24 are unique to R. typhi. Although most of the genes are colinear, there is a 35-kb inversion in gene order, which is close to the replication terminus, in R. typhi, compared to R. prowazekii and R. conorii. In addition, we found a 124-kb R. typhi-specific inversion, starting 19 kb from the origin of replication, compared to R. prowazekii and R. conorii. Inversions in this region are also seen in the unpublished genome sequences of R. sibirica and R. rickettsii, indicating that this region is a hot spot for rearrangements. Genome comparisons also revealed a 12-kb insertion in the R. prowazekii genome, relative to R. typhi and R. conorii, which appears to have occurred after the typhus (R. prowazekii and R. typhi) and spotted fever (R. conorii) groups diverged. The three-way comparison allowed further in silico analysis of the SpoT split genes, leading us to propose that the stringent response system is still functional in these rickettsiae.
ESTHER : McLeod_2004_J.Bacteriol_186_5842
PubMedSearch : McLeod_2004_J.Bacteriol_186_5842
PubMedID: 15317790
Gene_locus related to this paper: ricco-PTRB , ricty-q68vs9 , ricty-q68w06 , ricty-q68w12 , ricty-q68w56 , ricty-q68wq9 , ricty-q68wt4 , ricty-q68x29 , ricty-q68xj3