Reese JT

References (7)

Title : Molecular traces of alternative social organization in a termite genome - Terrapon_2014_Nat.Commun_5_3636
Author(s) : Terrapon N , Li C , Robertson HM , Ji L , Meng X , Booth W , Chen Z , Childers CP , Glastad KM , Gokhale K , Gowin J , Gronenberg W , Hermansen RA , Hu H , Hunt BG , Huylmans AK , Khalil SM , Mitchell RD , Munoz-Torres MC , Mustard JA , Pan H , Reese JT , Scharf ME , Sun F , Vogel H , Xiao J , Yang W , Yang Z , Zhou J , Zhu J , Brent CS , Elsik CG , Goodisman MA , Liberles DA , Roe RM , Vargo EL , Vilcinskas A , Wang J , Bornberg-Bauer E , Korb J , Zhang G , Liebig J
Ref : Nat Commun , 5 :3636 , 2014
Abstract : Although eusociality evolved independently within several orders of insects, research into the molecular underpinnings of the transition towards social complexity has been confined primarily to Hymenoptera (for example, ants and bees). Here we sequence the genome and stage-specific transcriptomes of the dampwood termite Zootermopsis nevadensis (Blattodea) and compare them with similar data for eusocial Hymenoptera, to better identify commonalities and differences in achieving this significant transition. We show an expansion of genes related to male fertility, with upregulated gene expression in male reproductive individuals reflecting the profound differences in mating biology relative to the Hymenoptera. For several chemoreceptor families, we show divergent numbers of genes, which may correspond to the more claustral lifestyle of these termites. We also show similarities in the number and expression of genes related to caste determination mechanisms. Finally, patterns of DNA methylation and alternative splicing support a hypothesized epigenetic regulation of caste differentiation.
ESTHER : Terrapon_2014_Nat.Commun_5_3636
PubMedSearch : Terrapon_2014_Nat.Commun_5_3636
PubMedID: 24845553
Gene_locus related to this paper: zoone-a0a067r283 , zoone-a0a067qst6 , zoone-a0a067rbc7 , zoone-a0a067qz43 , zoone-a0a067qn94 , zoone-a0a067rbw9 , zoone-a0a067qx93 , zoone-a0a067rcf4 , zoone-a0a067r8q8 , zoone-a0a067rh81 , zoone-a0a067r506 , zoone-a0a067qxd4 , zoone-a0a067qy86 , zoone-a0a067qsw2 , zoone-a0a067qfp9 , zoone-a0a067ru91 , zoone-a0a067rwu7 , zoone-a0a067rmu8 , zoone-a0a067r773 , zoone-a0a067qlt8 , zoone-a0a067qhm6 , zoone-a0a067qjz2 , zoone-a0a067qs20 , zoone-a0a067rmu4 , zoone-a0a067qty7 , zoone-a0a067rk35 , zoone-a0a067rk64 , zoone-a0a067rj74 , zoone-a0a067rp97 , zoone-a0a067rjm1

Title : Finding the missing honey bee genes: lessons learned from a genome upgrade - Elsik_2014_BMC.Genomics_15_86
Author(s) : Elsik CG , Worley KC , Bennett AK , Beye M , Camara F , Childers CP , de Graaf DC , Debyser G , Deng J , Devreese B , Elhaik E , Evans JD , Foster LJ , Graur D , Guigo R , Hoff KJ , Holder ME , Hudson ME , Hunt GJ , Jiang H , Joshi V , Khetani RS , Kosarev P , Kovar CL , Ma J , Maleszka R , Moritz RF , Munoz-Torres MC , Murphy TD , Muzny DM , Newsham IF , Reese JT , Robertson HM , Robinson GE , Rueppell O , Solovyev V , Stanke M , Stolle E , Tsuruda JM , Vaerenbergh MV , Waterhouse RM , Weaver DB , Whitfield CW , Wu Y , Zdobnov EM , Zhang L , Zhu D , Gibbs RA
Ref : BMC Genomics , 15 :86 , 2014
Abstract : BACKGROUND: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes.
RESULTS: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data.
CONCLUSIONS: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.
ESTHER : Elsik_2014_BMC.Genomics_15_86
PubMedSearch : Elsik_2014_BMC.Genomics_15_86
PubMedID: 24479613

Title : The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle - Suen_2011_PLoS.Genet_7_e1002007
Author(s) : Suen G , Teiling C , Li L , Holt C , Abouheif E , Bornberg-Bauer E , Bouffard P , Caldera EJ , Cash E , Cavanaugh A , Denas O , Elhaik E , Fave MJ , Gadau J , Gibson JD , Graur D , Grubbs KJ , Hagen DE , Harkins TT , Helmkampf M , Hu H , Johnson BR , Kim J , Marsh SE , Moeller JA , Munoz-Torres MC , Murphy MC , Naughton MC , Nigam S , Overson R , Rajakumar R , Reese JT , Scott JJ , Smith CR , Tao S , Tsutsui ND , Viljakainen L , Wissler L , Yandell MD , Zimmer F , Taylor J , Slater SC , Clifton SW , Warren WC , Elsik CG , Smith CD , Weinstock GM , Gerardo NM , Currie CR
Ref : PLoS Genet , 7 :e1002007 , 2011
Abstract : Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host-microbe symbioses.
ESTHER : Suen_2011_PLoS.Genet_7_e1002007
PubMedSearch : Suen_2011_PLoS.Genet_7_e1002007
PubMedID: 21347285
Gene_locus related to this paper: acrec-f4w848 , acrec-f4wah1 , acrec-f4wai9 , acrec-f4wda7 , acrec-f4wfh7 , acrec-f4wk54 , acrec-f4wng2 , acrec-f4wpb7 , acrec-f4wpb8 , acrec-f4wpb9 , acrec-f4x2j7 , acrec-f4x3l5 , acrec-f4x6y6 , acrec-f4x7w5 , acrec-f4x7w6 , acrec-f4x378 , acrec-f4x808 , attce-h9hc46 , solin-e9ige7 , attce-w4wts9 , attce-w4x506 , attce-w4vya2 , attce-w4vyi5 , attce-w4wib4 , attce-w4wkj3 , attce-w4x3s7 , attce-w4x3u4 , attce-w4wu92 , attce-w4w1m9 , attce-w4x2m8 , attce-w4w776 , attce-w4x1t1 , attce-a0a158nl98 , attce-a0a158nmi0 , attce-a0a158nqx5 , attce-a0a158nr47.2 , attce-a0a158ns84 , attce-a0a158nvq4 , attce-a0a158nij4 , attce-a0a158nhg2 , attce-a0a158nhn7 , attce-a0a158nbh6 , attce-a0a158ne04 , attce-a0a158nyf0

Title : Functional and evolutionary insights from the genomes of three parasitoid Nasonia species - Werren_2010_Science_327_343
Author(s) : Werren JH , Richards S , Desjardins CA , Niehuis O , Gadau J , Colbourne JK , Beukeboom LW , Desplan C , Elsik CG , Grimmelikhuijzen CJ , Kitts P , Lynch JA , Murphy T , Oliveira DC , Smith CD , van de Zande L , Worley KC , Zdobnov EM , Aerts M , Albert S , Anaya VH , Anzola JM , Barchuk AR , Behura SK , Bera AN , Berenbaum MR , Bertossa RC , Bitondi MM , Bordenstein SR , Bork P , Bornberg-Bauer E , Brunain M , Cazzamali G , Chaboub L , Chacko J , Chavez D , Childers CP , Choi JH , Clark ME , Claudianos C , Clinton RA , Cree AG , Cristino AS , Dang PM , Darby AC , de Graaf DC , Devreese B , Dinh HH , Edwards R , Elango N , Elhaik E , Ermolaeva O , Evans JD , Foret S , Fowler GR , Gerlach D , Gibson JD , Gilbert DG , Graur D , Grunder S , Hagen DE , Han Y , Hauser F , Hultmark D , Hunter HCt , Hurst GD , Jhangian SN , Jiang H , Johnson RM , Jones AK , Junier T , Kadowaki T , Kamping A , Kapustin Y , Kechavarzi B , Kim J , Kiryutin B , Koevoets T , Kovar CL , Kriventseva EV , Kucharski R , Lee H , Lee SL , Lees K , Lewis LR , Loehlin DW , Logsdon JM, Jr. , Lopez JA , Lozado RJ , Maglott D , Maleszka R , Mayampurath A , Mazur DJ , McClure MA , Moore AD , Morgan MB , Muller J , Munoz-Torres MC , Muzny DM , Nazareth LV , Neupert S , Nguyen NB , Nunes FM , Oakeshott JG , Okwuonu GO , Pannebakker BA , Pejaver VR , Peng Z , Pratt SC , Predel R , Pu LL , Ranson H , Raychoudhury R , Rechtsteiner A , Reese JT , Reid JG , Riddle M , Robertson HM , Romero-Severson J , Rosenberg M , Sackton TB , Sattelle DB , Schluns H , Schmitt T , Schneider M , Schuler A , Schurko AM , Shuker DM , Simoes ZL , Sinha S , Smith Z , Solovyev V , Souvorov A , Springauf A , Stafflinger E , Stage DE , Stanke M , Tanaka Y , Telschow A , Trent C , Vattathil S , Verhulst EC , Viljakainen L , Wanner KW , Waterhouse RM , Whitfield JB , Wilkes TE , Williamson MS , Willis JH , Wolschin F , Wyder S , Yamada T , Yi SV , Zecher CN , Zhang L , Gibbs RA , Williamson M
Ref : Science , 327 :343 , 2010
Abstract : We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging genetic model, particularly for evolutionary and developmental genetics. Key findings include the identification of a functional DNA methylation tool kit; hymenopteran-specific genes including diverse venoms; lateral gene transfers among Pox viruses, Wolbachia, and Nasonia; and the rapid evolution of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility of parasitoids as pest insect-control agents.
ESTHER : Werren_2010_Science_327_343
PubMedSearch : Werren_2010_Science_327_343
PubMedID: 20075255
Gene_locus related to this paper: nasvi-ACHE1 , nasvi-ACHE2 , nasvi-k7in31 , nasvi-k7iwl9 , nasvi-k7iyk8 , nasvi-k7jlv1 , nasvi-k7in32 , nasvi-k7ind2 , nasvi-k7inh0 , nasvi-k7inh1 , nasvi-k7inh2 , nasvi-k7inp9 , nasvi-k7iun7 , nasvi-k7iv21 , nasvi-k7ivn5 , nasvi-k7ivn6 , nasvi-k7iw29 , nasvi-k7iwk5 , nasvi-k7iwl8 , nasvi-k7iz24 , nasvi-k7izb4 , nasvi-k7j5u6 , nasvi-k7j6y1 , nasvi-k7j6y2 , nasvi-k7j6y4 , nasvi-k7j718 , nasvi-k7j755 , nasvi-k7j756 , nasvi-k7j757 , nasvi-k7j7k5 , nasvi-k7j7n7 , nasvi-k7j7r8 , nasvi-k7j7s8 , nasvi-k7j7s9 , nasvi-k7j811 , nasvi-k7iny8 , nasvi-k7izf2 , nasvi-k7iwe2 , nasvi-k7j6w4 , nasvi-k7izl9 , nasvi-k7jf39 , nasvi-k7izl8 , nasvi-k7irf1 , nasvi-k7j7l1

Title : Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle - Kirkness_2010_Proc.Natl.Acad.Sci.U.S.A_107_12168
Author(s) : Kirkness EF , Haas BJ , Sun W , Braig HR , Perotti MA , Clark JM , Lee SH , Robertson HM , Kennedy RC , Elhaik E , Gerlach D , Kriventseva EV , Elsik CG , Graur D , Hill CA , Veenstra JA , Walenz B , Tubio JM , Ribeiro JM , Rozas J , Johnston JS , Reese JT , Popadic A , Tojo M , Raoult D , Reed DL , Tomoyasu Y , Kraus E , Mittapalli O , Margam VM , Li HM , Meyer JM , Johnson RM , Romero-Severson J , Vanzee JP , Alvarez-Ponce D , Vieira FG , Aguade M , Guirao-Rico S , Anzola JM , Yoon KS , Strycharz JP , Unger MF , Christley S , Lobo NF , Seufferheld MJ , Wang N , Dasch GA , Struchiner CJ , Madey G , Hannick LI , Bidwell S , Joardar V , Caler E , Shao R , Barker SC , Cameron S , Bruggner RV , Regier A , Johnson J , Viswanathan L , Utterback TR , Sutton GG , Lawson D , Waterhouse RM , Venter JC , Strausberg RL , Berenbaum MR , Collins FH , Zdobnov EM , Pittendrigh BR
Ref : Proc Natl Acad Sci U S A , 107 :12168 , 2010
Abstract : As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.
ESTHER : Kirkness_2010_Proc.Natl.Acad.Sci.U.S.A_107_12168
PubMedSearch : Kirkness_2010_Proc.Natl.Acad.Sci.U.S.A_107_12168
PubMedID: 20566863
Gene_locus related to this paper: pedhb-ACHE1 , pedhb-ACHE2 , pedhc-e0v9b5 , pedhc-e0v9b6 , pedhc-e0v9b7 , pedhc-e0vbv5 , pedhc-e0vcd0 , pedhc-e0vcl7 , pedhc-e0vd69 , pedhc-e0ve50 , pedhc-e0vel6 , pedhc-e0vel7 , pedhc-e0vf98 , pedhc-e0vfs8 , pedhc-e0vfv0 , pedhc-e0vg01 , pedhc-e0vha2 , pedhc-e0vha4 , pedhc-e0vi52 , pedhc-e0vp42 , pedhc-e0vqu6 , pedhc-e0vuj9 , pedhc-e0vup6 , pedhc-e0vv55 , pedhc-e0vwv3 , pedhc-e0vxf7 , pedhc-e0vxg1 , pedhc-e0w4a6 , pedhc-e0w4c8 , pedhc-e0w271 , pedhc-e0w444 , pedhc-e0vym0 , pedhc-e0vdk9 , pedhc-e0vk10 , pedhc-e0vgw4 , pedhc-e0vgw7 , pedhc-e0vga1 , pedhc-e0w3s1 , pedhc-e0vzt2

Title : The genome sequence of taurine cattle: a window to ruminant biology and evolution - Elsik_2009_Science_324_522
Author(s) : Elsik CG , Tellam RL , Worley KC , Gibbs RA , Muzny DM , Weinstock GM , Adelson DL , Eichler EE , Elnitski L , Guigo R , Hamernik DL , Kappes SM , Lewin HA , Lynn DJ , Nicholas FW , Reymond A , Rijnkels M , Skow LC , Zdobnov EM , Schook L , Womack J , Alioto T , Antonarakis SE , Astashyn A , Chapple CE , Chen HC , Chrast J , Camara F , Ermolaeva O , Henrichsen CN , Hlavina W , Kapustin Y , Kiryutin B , Kitts P , Kokocinski F , Landrum M , Maglott D , Pruitt K , Sapojnikov V , Searle SM , Solovyev V , Souvorov A , Ucla C , Wyss C , Anzola JM , Gerlach D , Elhaik E , Graur D , Reese JT , Edgar RC , McEwan JC , Payne GM , Raison JM , Junier T , Kriventseva EV , Eyras E , Plass M , Donthu R , Larkin DM , Reecy J , Yang MQ , Chen L , Cheng Z , Chitko-McKown CG , Liu GE , Matukumalli LK , Song J , Zhu B , Bradley DG , Brinkman FS , Lau LP , Whiteside MD , Walker A , Wheeler TT , Casey T , German JB , Lemay DG , Maqbool NJ , Molenaar AJ , Seo S , Stothard P , Baldwin CL , Baxter R , Brinkmeyer-Langford CL , Brown WC , Childers CP , Connelley T , Ellis SA , Fritz K , Glass EJ , Herzig CT , Iivanainen A , Lahmers KK , Bennett AK , Dickens CM , Gilbert JG , Hagen DE , Salih H , Aerts J , Caetano AR , Dalrymple B , Garcia JF , Gill CA , Hiendleder SG , Memili E , Spurlock D , Williams JL , Alexander L , Brownstein MJ , Guan L , Holt RA , Jones SJ , Marra MA , Moore R , Moore SS , Roberts A , Taniguchi M , Waterman RC , Chacko J , Chandrabose MM , Cree A , Dao MD , Dinh HH , Gabisi RA , Hines S , Hume J , Jhangiani SN , Joshi V , Kovar CL , Lewis LR , Liu YS , Lopez J , Morgan MB , Nguyen NB , Okwuonu GO , Ruiz SJ , Santibanez J , Wright RA , Buhay C , Ding Y , Dugan-Rocha S , Herdandez J , Holder M , Sabo A , Egan A , Goodell J , Wilczek-Boney K , Fowler GR , Hitchens ME , Lozado RJ , Moen C , Steffen D , Warren JT , Zhang J , Chiu R , Schein JE , Durbin KJ , Havlak P , Jiang H , Liu Y , Qin X , Ren Y , Shen Y , Song H , Bell SN , Davis C , Johnson AJ , Lee S , Nazareth LV , Patel BM , Pu LL , Vattathil S , Williams RL, Jr. , Curry S , Hamilton C , Sodergren E , Wheeler DA , Barris W , Bennett GL , Eggen A , Green RD , Harhay GP , Hobbs M , Jann O , Keele JW , Kent MP , Lien S , McKay SD , McWilliam S , Ratnakumar A , Schnabel RD , Smith T , Snelling WM , Sonstegard TS , Stone RT , Sugimoto Y , Takasuga A , Taylor JF , Van Tassell CP , Macneil MD , Abatepaulo AR , Abbey CA , Ahola V , Almeida IG , Amadio AF , Anatriello E , Bahadue SM , Biase FH , Boldt CR , Carroll JA , Carvalho WA , Cervelatti EP , Chacko E , Chapin JE , Cheng Y , Choi J , Colley AJ , de Campos TA , De Donato M , Santos IK , de Oliveira CJ , Deobald H , Devinoy E , Donohue KE , Dovc P , Eberlein A , Fitzsimmons CJ , Franzin AM , Garcia GR , Genini S , Gladney CJ , Grant JR , Greaser ML , Green JA , Hadsell DL , Hakimov HA , Halgren R , Harrow JL , Hart EA , Hastings N , Hernandez M , Hu ZL , Ingham A , Iso-Touru T , Jamis C , Jensen K , Kapetis D , Kerr T , Khalil SS , Khatib H , Kolbehdari D , Kumar CG , Kumar D , Leach R , Lee JC , Li C , Logan KM , Malinverni R , Marques E , Martin WF , Martins NF , Maruyama SR , Mazza R , McLean KL , Medrano JF , Moreno BT , More DD , Muntean CT , Nandakumar HP , Nogueira MF , Olsaker I , Pant SD , Panzitta F , Pastor RC , Poli MA , Poslusny N , Rachagani S , Ranganathan S , Razpet A , Riggs PK , Rincon G , Rodriguez-Osorio N , Rodriguez-Zas SL , Romero NE , Rosenwald A , Sando L , Schmutz SM , Shen L , Sherman L , Southey BR , Lutzow YS , Sweedler JV , Tammen I , Telugu BP , Urbanski JM , Utsunomiya YT , Verschoor CP , Waardenberg AJ , Wang Z , Ward R , Weikard R , Welsh TH, Jr. , White SN , Wilming LG , Wunderlich KR , Yang J , Zhao FQ
Ref : Science , 324 :522 , 2009
Abstract : To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
ESTHER : Elsik_2009_Science_324_522
PubMedSearch : Elsik_2009_Science_324_522
PubMedID: 19390049
Gene_locus related to this paper: bovin-2neur , bovin-a0jnh8 , bovin-a5d7b7 , bovin-ACHE , bovin-balip , bovin-dpp4 , bovin-dpp6 , bovin-e1bi31 , bovin-e1bn79 , bovin-est8 , bovin-f1mbd6 , bovin-f1mi11 , bovin-f1mr65 , bovin-f1n1l4 , bovin-g3mxp5 , bovin-q0vcc8 , bovin-q2kj30 , bovin-q3t0r6 , bovin-thyro

Title : The genome of the model beetle and pest Tribolium castaneum - Richards_2008_Nature_452_949
Author(s) : Richards S , Gibbs RA , Weinstock GM , Brown SJ , Denell R , Beeman RW , Gibbs R , Bucher G , Friedrich M , Grimmelikhuijzen CJ , Klingler M , Lorenzen M , Roth S , Schroder R , Tautz D , Zdobnov EM , Muzny D , Attaway T , Bell S , Buhay CJ , Chandrabose MN , Chavez D , Clerk-Blankenburg KP , Cree A , Dao M , Davis C , Chacko J , Dinh H , Dugan-Rocha S , Fowler G , Garner TT , Garnes J , Gnirke A , Hawes A , Hernandez J , Hines S , Holder M , Hume J , Jhangiani SN , Joshi V , Khan ZM , Jackson L , Kovar C , Kowis A , Lee S , Lewis LR , Margolis J , Morgan M , Nazareth LV , Nguyen N , Okwuonu G , Parker D , Ruiz SJ , Santibanez J , Savard J , Scherer SE , Schneider B , Sodergren E , Vattahil S , Villasana D , White CS , Wright R , Park Y , Lord J , Oppert B , Brown S , Wang L , Weinstock G , Liu Y , Worley K , Elsik CG , Reese JT , Elhaik E , Landan G , Graur D , Arensburger P , Atkinson P , Beidler J , Demuth JP , Drury DW , Du YZ , Fujiwara H , Maselli V , Osanai M , Robertson HM , Tu Z , Wang JJ , Wang S , Song H , Zhang L , Werner D , Stanke M , Morgenstern B , Solovyev V , Kosarev P , Brown G , Chen HC , Ermolaeva O , Hlavina W , Kapustin Y , Kiryutin B , Kitts P , Maglott D , Pruitt K , Sapojnikov V , Souvorov A , Mackey AJ , Waterhouse RM , Wyder S , Kriventseva EV , Kadowaki T , Bork P , Aranda M , Bao R , Beermann A , Berns N , Bolognesi R , Bonneton F , Bopp D , Butts T , Chaumot A , Denell RE , Ferrier DE , Gordon CM , Jindra M , Lan Q , Lattorff HM , Laudet V , von Levetsow C , Liu Z , Lutz R , Lynch JA , da Fonseca RN , Posnien N , Reuter R , Schinko JB , Schmitt C , Schoppmeier M , Shippy TD , Simonnet F , Marques-Souza H , Tomoyasu Y , Trauner J , Van der Zee M , Vervoort M , Wittkopp N , Wimmer EA , Yang X , Jones AK , Sattelle DB , Ebert PR , Nelson D , Scott JG , Muthukrishnan S , Kramer KJ , Arakane Y , Zhu Q , Hogenkamp D , Dixit R , Jiang H , Zou Z , Marshall J , Elpidina E , Vinokurov K , Oppert C , Evans J , Lu Z , Zhao P , Sumathipala N , Altincicek B , Vilcinskas A , Williams M , Hultmark D , Hetru C , Hauser F , Cazzamali G , Williamson M , Li B , Tanaka Y , Predel R , Neupert S , Schachtner J , Verleyen P , Raible F , Walden KK , Angeli S , Foret S , Schuetz S , Maleszka R , Miller SC , Grossmann D
Ref : Nature , 452 :949 , 2008
Abstract : Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
ESTHER : Richards_2008_Nature_452_949
PubMedSearch : Richards_2008_Nature_452_949
PubMedID: 18362917
Gene_locus related to this paper: trica-ACHE1 , trica-ACHE2 , trica-d2a0g9 , trica-d2a0h0 , trica-d2a0w9 , trica-d2a0x0 , trica-d2a0x1 , trica-d2a0x3 , trica-d2a0x4.1 , trica-d2a0x4.2 , trica-d2a0x6 , trica-d2a2b8 , trica-d2a2h1 , trica-d2a3c3 , trica-d2a3g9 , trica-d2a5y5 , trica-d2a309 , trica-d2a514 , trica-d2a515 , trica-d2a516 , trica-d2a577 , trica-d2a578 , trica-d6w6x8 , trica-d6w7f9 , trica-d6w7h2 , trica-d6w8e7 , trica-d6w9c0 , trica-d6w855 , trica-d6wac8 , trica-d6wan4 , trica-d6wd50 , trica-d6wd73 , trica-d6wd74 , trica-A0A139WM97 , trica-d6wfu3 , trica-d6wgl2 , trica-d6wj57 , trica-d6wj59 , trica-d6wjs3 , trica-d6wl31 , trica-d6wnv1 , trica-d6wpl0 , trica-d6wqd6 , trica-d6wqr4 , trica-d6ws52 , trica-d6wsm0 , trica-d6wu38 , trica-d6wu39 , trica-d6wu40 , trica-d6wu41 , trica-d6wu44 , trica-d6wvk5 , trica-d6wvz7 , trica-d6wwu9 , trica-d6wwv0 , trica-d6wxz0 , trica-d6wyy1 , trica-d6wyy2 , trica-d6x0z2 , trica-d6x0z5 , trica-d6x0z6 , trica-d6x4b2 , trica-d6x4e8 , trica-d6x4e9 , trica-d6x197 , trica-d7eip7 , trica-d7eld3 , trica-d7us45 , trica-q5wm43 , trica-q5zex9 , trica-d6wie5 , trica-d6w7t0 , trica-d6x4h0 , trica-d6x4h1 , trica-a0a139wae8 , trica-a0a139wc96 , trica-d6x325 , trica-d2a4s2 , trica-d6wvw8