Rijnkels M

References (2)

Title : The genome sequence of taurine cattle: a window to ruminant biology and evolution - Elsik_2009_Science_324_522
Author(s) : Elsik CG , Tellam RL , Worley KC , Gibbs RA , Muzny DM , Weinstock GM , Adelson DL , Eichler EE , Elnitski L , Guigo R , Hamernik DL , Kappes SM , Lewin HA , Lynn DJ , Nicholas FW , Reymond A , Rijnkels M , Skow LC , Zdobnov EM , Schook L , Womack J , Alioto T , Antonarakis SE , Astashyn A , Chapple CE , Chen HC , Chrast J , Camara F , Ermolaeva O , Henrichsen CN , Hlavina W , Kapustin Y , Kiryutin B , Kitts P , Kokocinski F , Landrum M , Maglott D , Pruitt K , Sapojnikov V , Searle SM , Solovyev V , Souvorov A , Ucla C , Wyss C , Anzola JM , Gerlach D , Elhaik E , Graur D , Reese JT , Edgar RC , McEwan JC , Payne GM , Raison JM , Junier T , Kriventseva EV , Eyras E , Plass M , Donthu R , Larkin DM , Reecy J , Yang MQ , Chen L , Cheng Z , Chitko-McKown CG , Liu GE , Matukumalli LK , Song J , Zhu B , Bradley DG , Brinkman FS , Lau LP , Whiteside MD , Walker A , Wheeler TT , Casey T , German JB , Lemay DG , Maqbool NJ , Molenaar AJ , Seo S , Stothard P , Baldwin CL , Baxter R , Brinkmeyer-Langford CL , Brown WC , Childers CP , Connelley T , Ellis SA , Fritz K , Glass EJ , Herzig CT , Iivanainen A , Lahmers KK , Bennett AK , Dickens CM , Gilbert JG , Hagen DE , Salih H , Aerts J , Caetano AR , Dalrymple B , Garcia JF , Gill CA , Hiendleder SG , Memili E , Spurlock D , Williams JL , Alexander L , Brownstein MJ , Guan L , Holt RA , Jones SJ , Marra MA , Moore R , Moore SS , Roberts A , Taniguchi M , Waterman RC , Chacko J , Chandrabose MM , Cree A , Dao MD , Dinh HH , Gabisi RA , Hines S , Hume J , Jhangiani SN , Joshi V , Kovar CL , Lewis LR , Liu YS , Lopez J , Morgan MB , Nguyen NB , Okwuonu GO , Ruiz SJ , Santibanez J , Wright RA , Buhay C , Ding Y , Dugan-Rocha S , Herdandez J , Holder M , Sabo A , Egan A , Goodell J , Wilczek-Boney K , Fowler GR , Hitchens ME , Lozado RJ , Moen C , Steffen D , Warren JT , Zhang J , Chiu R , Schein JE , Durbin KJ , Havlak P , Jiang H , Liu Y , Qin X , Ren Y , Shen Y , Song H , Bell SN , Davis C , Johnson AJ , Lee S , Nazareth LV , Patel BM , Pu LL , Vattathil S , Williams RL, Jr. , Curry S , Hamilton C , Sodergren E , Wheeler DA , Barris W , Bennett GL , Eggen A , Green RD , Harhay GP , Hobbs M , Jann O , Keele JW , Kent MP , Lien S , McKay SD , McWilliam S , Ratnakumar A , Schnabel RD , Smith T , Snelling WM , Sonstegard TS , Stone RT , Sugimoto Y , Takasuga A , Taylor JF , Van Tassell CP , Macneil MD , Abatepaulo AR , Abbey CA , Ahola V , Almeida IG , Amadio AF , Anatriello E , Bahadue SM , Biase FH , Boldt CR , Carroll JA , Carvalho WA , Cervelatti EP , Chacko E , Chapin JE , Cheng Y , Choi J , Colley AJ , de Campos TA , De Donato M , Santos IK , de Oliveira CJ , Deobald H , Devinoy E , Donohue KE , Dovc P , Eberlein A , Fitzsimmons CJ , Franzin AM , Garcia GR , Genini S , Gladney CJ , Grant JR , Greaser ML , Green JA , Hadsell DL , Hakimov HA , Halgren R , Harrow JL , Hart EA , Hastings N , Hernandez M , Hu ZL , Ingham A , Iso-Touru T , Jamis C , Jensen K , Kapetis D , Kerr T , Khalil SS , Khatib H , Kolbehdari D , Kumar CG , Kumar D , Leach R , Lee JC , Li C , Logan KM , Malinverni R , Marques E , Martin WF , Martins NF , Maruyama SR , Mazza R , McLean KL , Medrano JF , Moreno BT , More DD , Muntean CT , Nandakumar HP , Nogueira MF , Olsaker I , Pant SD , Panzitta F , Pastor RC , Poli MA , Poslusny N , Rachagani S , Ranganathan S , Razpet A , Riggs PK , Rincon G , Rodriguez-Osorio N , Rodriguez-Zas SL , Romero NE , Rosenwald A , Sando L , Schmutz SM , Shen L , Sherman L , Southey BR , Lutzow YS , Sweedler JV , Tammen I , Telugu BP , Urbanski JM , Utsunomiya YT , Verschoor CP , Waardenberg AJ , Wang Z , Ward R , Weikard R , Welsh TH, Jr. , White SN , Wilming LG , Wunderlich KR , Yang J , Zhao FQ
Ref : Science , 324 :522 , 2009
Abstract : To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
ESTHER : Elsik_2009_Science_324_522
PubMedSearch : Elsik_2009_Science_324_522
PubMedID: 19390049
Gene_locus related to this paper: bovin-2neur , bovin-a0jnh8 , bovin-a5d7b7 , bovin-ACHE , bovin-balip , bovin-dpp4 , bovin-dpp6 , bovin-e1bi31 , bovin-e1bn79 , bovin-est8 , bovin-f1mbd6 , bovin-f1mi11 , bovin-f1mr65 , bovin-f1n1l4 , bovin-g3mxp5 , bovin-q0vcc8 , bovin-q2kj30 , bovin-q3t0r6 , bovin-thyro

Title : Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution - Hillier_2004_Nature_432_695
Author(s) : Hillier LW , Miller W , Birney E , Warren W , Hardison RC , Ponting CP , Bork P , Burt DW , Groenen MA , Delany ME , Dodgson JB , Chinwalla AT , Cliften PF , Clifton SW , Delehaunty KD , Fronick C , Fulton RS , Graves TA , Kremitzki C , Layman D , Magrini V , McPherson JD , Miner TL , Minx P , Nash WE , Nhan MN , Nelson JO , Oddy LG , Pohl CS , Randall-Maher J , Smith SM , Wallis JW , Yang SP , Romanov MN , Rondelli CM , Paton B , Smith J , Morrice D , Daniels L , Tempest HG , Robertson L , Masabanda JS , Griffin DK , Vignal A , Fillon V , Jacobbson L , Kerje S , Andersson L , Crooijmans RP , Aerts J , van der Poel JJ , Ellegren H , Caldwell RB , Hubbard SJ , Grafham DV , Kierzek AM , McLaren SR , Overton IM , Arakawa H , Beattie KJ , Bezzubov Y , Boardman PE , Bonfield JK , Croning MD , Davies RM , Francis MD , Humphray SJ , Scott CE , Taylor RG , Tickle C , Brown WR , Rogers J , Buerstedde JM , Wilson SA , Stubbs L , Ovcharenko I , Gordon L , Lucas S , Miller MM , Inoko H , Shiina T , Kaufman J , Salomonsen J , Skjoedt K , Ka-Shu Wong G , Wang J , Liu B , Yu J , Yang H , Nefedov M , Koriabine M , deJong PJ , Goodstadt L , Webber C , Dickens NJ , Letunic I , Suyama M , Torrents D , von Mering C , Zdobnov EM , Makova K , Nekrutenko A , Elnitski L , Eswara P , King DC , Yang S , Tyekucheva S , Radakrishnan A , Harris RS , Chiaromonte F , Taylor J , He J , Rijnkels M , Griffiths-Jones S , Ureta-Vidal A , Hoffman MM , Severin J , Searle SM , Law AS , Speed D , Waddington D , Cheng Z , Tuzun E , Eichler E , Bao Z , Flicek P , Shteynberg DD , Brent MR , Bye JM , Huckle EJ , Chatterji S , Dewey C , Pachter L , Kouranov A , Mourelatos Z , Hatzigeorgiou AG , Paterson AH , Ivarie R , Brandstrom M , Axelsson E , Backstrom N , Berlin S , Webster MT , Pourquie O , Reymond A , Ucla C , Antonarakis SE , Long M , Emerson JJ , Betran E , Dupanloup I , Kaessmann H , Hinrichs AS , Bejerano G , Furey TS , Harte RA , Raney B , Siepel A , Kent WJ , Haussler D , Eyras E , Castelo R , Abril JF , Castellano S , Camara F , Parra G , Guigo R , Bourque G , Tesler G , Pevzner PA , Smit A , Fulton LA , Mardis ER , Wilson RK
Ref : Nature , 432 :695 , 2004
Abstract : We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
ESTHER : Hillier_2004_Nature_432_695
PubMedSearch : Hillier_2004_Nature_432_695
PubMedID: 15592404
Gene_locus related to this paper: chick-a0a1d5pmd9 , chick-b3tzb3 , chick-BCHE , chick-cb043 , chick-d3wgl5 , chick-e1bsm0 , chick-e1bvq6 , chick-e1bwz0 , chick-e1bwz1 , chick-e1byn1 , chick-e1bz81 , chick-e1c0z8 , chick-e1c7p7 , chick-f1nby4 , chick-f1ncz8 , chick-f1ndp3 , chick-f1nep4 , chick-f1nj68 , chick-f1njg6 , chick-f1njk4 , chick-f1njs4 , chick-f1njs5 , chick-f1nk87 , chick-f1nmx9 , chick-f1ntp8 , chick-f1nvg7 , chick-f1nwf2 , chick-f1p1l1 , chick-f1p3j5 , chick-f1p4c6 , chick-f1p508 , chick-fas , chick-h9l0k6 , chick-nlgn1 , chick-NLGN3 , chick-q5f3h8 , chick-q5zhm0 , chick-q5zi81 , chick-q5zij5 , chick-q5zin0 , chick-thyro , chick-f1nrq2 , chick-e1byd4 , chick-e1c2h6 , chick-a0a1d5pk92 , chick-a0a1d5pzg7 , chick-f1nbc2 , chick-f1nf25 , chick-f1nly5 , chick-f1p4h5 , chick-f1nzi7 , chick-f1p5k3 , chick-f1nm35 , chick-a0a1d5pl11 , chick-a0a1d5pj73 , chick-f1nxu6 , chick-a0a1d5nwc0 , chick-e1bxs8 , chick-f1p2g7 , chick-f1nd96