Zinder SH

References (4)

Title : Complete Genome Sequence of Methanosphaerula palustris E1-9CT, a Hydrogenotrophic Methanogen Isolated from a Minerotrophic Fen Peatland - Cadillo-Quiroz_2015_Genome.Announc_3_e01280
Author(s) : Cadillo-Quiroz H , Browne P , Kyrpides N , Woyke T , Goodwin L , Detter C , Yavitt JB , Zinder SH
Ref : Genome Announc , 3 :e01280 , 2015
Abstract : Here, we report the complete genome sequence (2.92 Mb) of Methanosphaerula palustris E1-9C(T), a methanogen isolated from a minerotrophic fen. This is the first genome report of the Methanosphaerula genus, within the Methanoregulaceae family, in the Methanomicrobiales order. E1-9C(T) relatives are found in a wide range of ecological and geographical settings.
ESTHER : Cadillo-Quiroz_2015_Genome.Announc_3_e01280
PubMedSearch : Cadillo-Quiroz_2015_Genome.Announc_3_e01280
PubMedID: 26543115
Gene_locus related to this paper: metpe-metxa

Title : Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes - Seshadri_2005_Science_307_105
Author(s) : Seshadri R , Adrian L , Fouts DE , Eisen JA , Phillippy AM , Methe BA , Ward NL , Nelson WC , DeBoy RT , Khouri HM , Kolonay JF , Dodson RJ , Daugherty SC , Brinkac LM , Sullivan SA , Madupu R , Nelson KE , Kang KH , Impraim M , Tran K , Robinson JM , Forberger HA , Fraser CM , Zinder SH , Heidelberg JF
Ref : Science , 307 :105 , 2005
Abstract : Dehalococcoides ethenogenes is the only bacterium known to reductively dechlorinate the groundwater pollutants, tetrachloroethene (PCE) and trichloroethene, to ethene. Its 1,469,720-base pair chromosome contains large dynamic duplicated regions and integrated elements. Genes encoding 17 putative reductive dehalogenases, nearly all of which were adjacent to genes for transcription regulators, and five hydrogenase complexes were identified. These findings, plus a limited repertoire of other metabolic modes, indicate that D. ethenogenes is highly evolved to utilize halogenated organic compounds and H2. Diversification of reductive dehalogenase functions appears to have been mediated by recent genetic exchange and amplification. Genome analysis provides insights into the organism's complex nutrient requirements and suggests that an ancestor was a nitrogen-fixing autotroph.
ESTHER : Seshadri_2005_Science_307_105
PubMedSearch : Seshadri_2005_Science_307_105
PubMedID: 15637277
Gene_locus related to this paper: dehm1-q3z6q3 , dehm1-q3z6x9 , dehm1-q3z6z2 , dehm1-q3z8f3 , dehm1-q3za50

Title : Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1 - Kube_2005_Nat.Biotechnol_23_1269
Author(s) : Kube M , Beck A , Zinder SH , Kuhl H , Reinhardt R , Adrian L
Ref : Nat Biotechnol , 23 :1269 , 2005
Abstract : Dehalococcoides species are strictly anaerobic bacteria, which catabolize many of the most toxic and persistent chlorinated aromatics and aliphatics by reductive dechlorination and are used for in situ bioremediation of contaminated sites. Our sequencing of the complete 1,395,502 base pair genome of Dehalococcoides strain CBDB1 has revealed the presence of 32 reductive-dehalogenase-homologous (rdh) genes, possibly conferring on the bacteria an immense dehalogenating potential. Most rdh genes were associated with genes encoding transcription regulators such as two-component regulatory systems or transcription regulators of the MarR-type. Four new paralog groups of rdh-associated genes without known function were detected. Comparison with the recently sequenced genome of Dehalococcoides ethenogenes strain 195 reveals a high degree of gene context conservation (synteny) but exceptionally high plasticity in all regions containing rdh genes, suggesting that these regions are under intense evolutionary pressure.
ESTHER : Kube_2005_Nat.Biotechnol_23_1269
PubMedSearch : Kube_2005_Nat.Biotechnol_23_1269
PubMedID: 16116419
Gene_locus related to this paper: dehsc-q3zxf2 , dehsc-q3zy55 , dehsc-q3zyd4 , dehsc-q3zyk7 , dehmv-d2bg80

Title : The genome of M. acetivorans reveals extensive metabolic and physiological diversity - Galagan_2002_Genome.Res_12_532
Author(s) : Galagan JE , Nusbaum C , Roy A , Endrizzi MG , Macdonald P , FitzHugh W , Calvo S , Engels R , Smirnov S , Atnoor D , Brown A , Allen N , Naylor J , Stange-Thomann N , DeArellano K , Johnson R , Linton L , McEwan P , McKernan K , Talamas J , Tirrell A , Ye W , Zimmer A , Barber RD , Cann I , Graham DE , Grahame DA , Guss AM , Hedderich R , Ingram-Smith C , Kuettner HC , Krzycki JA , Leigh JA , Li W , Liu J , Mukhopadhyay B , Reeve JN , Smith K , Springer TA , Umayam LA , White O , White RH , Conway de Macario E , Ferry JG , Jarrell KF , Jing H , Macario AJ , Paulsen I , Pritchett M , Sowers KR , Swanson RV , Zinder SH , Lander E , Metcalf WW , Birren B
Ref : Genome Res , 12 :532 , 2002
Abstract : Methanogenesis, the biological production of methane, plays a pivotal role in the global carbon cycle and contributes significantly to global warming. The majority of methane in nature is derived from acetate. Here we report the complete genome sequence of an acetate-utilizing methanogen, Methanosarcina acetivorans C2A. Methanosarcineae are the most metabolically diverse methanogens, thrive in a broad range of environments, and are unique among the Archaea in forming complex multicellular structures. This diversity is reflected in the genome of M. acetivorans. At 5,751,492 base pairs it is by far the largest known archaeal genome. The 4524 open reading frames code for a strikingly wide and unanticipated variety of metabolic and cellular capabilities. The presence of novel methyltransferases indicates the likelihood of undiscovered natural energy sources for methanogenesis, whereas the presence of single-subunit carbon monoxide dehydrogenases raises the possibility of nonmethanogenic growth. Although motility has not been observed in any Methanosarcineae, a flagellin gene cluster and two complete chemotaxis gene clusters were identified. The availability of genetic methods, coupled with its physiological and metabolic diversity, makes M. acetivorans a powerful model organism for the study of archaeal biology. [Sequence, data, annotations and analyses are available at http://www-genome.wi.mit.edu/.]
ESTHER : Galagan_2002_Genome.Res_12_532
PubMedSearch : Galagan_2002_Genome.Res_12_532
PubMedID: 11932238
Gene_locus related to this paper: metac-MA0077 , metac-MA0362 , metac-MA0419 , metac-MA0736 , metac-MA0993 , metac-MA1571 , metac-MA1856 , metac-MA1857 , metac-MA2002 , metac-MA2343 , metac-MA2629 , metac-MA2691 , metac-MA2743 , metac-MA2933 , metac-MA3611 , metac-MA3635 , metac-MA3920 , metac-META