Birren B

References (7)

Title : Comparative genomics of vancomycin-resistant Staphylococcus aureus strains and their positions within the clade most commonly associated with Methicillin-resistant S. aureus hospital-acquired infection in the United States - Kos_2012_MBio_3_e00112
Author(s) : Kos VN , Desjardins CA , Griggs A , Cerqueira G , Van Tonder A , Holden MT , Godfrey P , Palmer KL , Bodi K , Mongodin EF , Wortman J , Feldgarden M , Lawley T , Gill SR , Haas BJ , Birren B , Gilmore MS
Ref : MBio , 3 : , 2012
Abstract : Methicillin-resistant Staphylococcus aureus (MRSA) strains are leading causes of hospital-acquired infections in the United States, and clonal cluster 5 (CC5) is the predominant lineage responsible for these infections. Since 2002, there have been 12 cases of vancomycin-resistant S. aureus (VRSA) infection in the United States-all CC5 strains. To understand this genetic background and what distinguishes it from other lineages, we generated and analyzed high-quality draft genome sequences for all available VRSA strains. Sequence comparisons show unambiguously that each strain independently acquired Tn1546 and that all VRSA strains last shared a common ancestor over 50 years ago, well before the occurrence of vancomycin resistance in this species. In contrast to existing hypotheses on what predisposes this lineage to acquire Tn1546, the barrier posed by restriction systems appears to be intact in most VRSA strains. However, VRSA (and other CC5) strains were found to possess a constellation of traits that appears to be optimized for proliferation in precisely the types of polymicrobic infection where transfer could occur. They lack a bacteriocin operon that would be predicted to limit the occurrence of non-CC5 strains in mixed infection and harbor a cluster of unique superantigens and lipoproteins to confound host immunity. A frameshift in dprA, which in other microbes influences uptake of foreign DNA, may also make this lineage conducive to foreign DNA acquisition. IMPORTANCE: Invasive methicillin-resistant Staphylococcus aureus (MRSA) infection now ranks among the leading causes of death in the United States. Vancomycin is a key last-line bactericidal drug for treating these infections. However, since 2002, vancomycin resistance has entered this species. Of the now 12 cases of vancomycin-resistant S. aureus (VRSA), each was believed to represent a new acquisition of the vancomycin-resistant transposon Tn1546 from enterococcal donors. All acquisitions of Tn1546 so far have occurred in MRSA strains of the clonal cluster 5 genetic background, the most common hospital lineage causing hospital-acquired MRSA infection. To understand the nature of these strains, we determined and examined the nucleotide sequences of the genomes of all available VRSA. Genome comparison identified candidate features that position strains of this lineage well for acquiring resistance to antibiotics in mixed infection.
ESTHER : Kos_2012_MBio_3_e00112
PubMedSearch : Kos_2012_MBio_3_e00112
PubMedID: 22617140
Gene_locus related to this paper: staau-SA2240

Title : Dynamics of Pseudomonas aeruginosa genome evolution - Mathee_2008_Proc.Natl.Acad.Sci.U.S.A_105_3100
Author(s) : Mathee K , Narasimhan G , Valdes C , Qiu X , Matewish JM , Koehrsen M , Rokas A , Yandava CN , Engels R , Zeng E , Olavarietta R , Doud M , Smith RS , Montgomery P , White JR , Godfrey PA , Kodira C , Birren B , Galagan JE , Lory S
Ref : Proc Natl Acad Sci U S A , 105 :3100 , 2008
Abstract : One of the hallmarks of the Gram-negative bacterium Pseudomonas aeruginosa is its ability to thrive in diverse environments that includes humans with a variety of debilitating diseases or immune deficiencies. Here we report the complete sequence and comparative analysis of the genomes of two representative P. aeruginosa strains isolated from cystic fibrosis (CF) patients whose genetic disorder predisposes them to infections by this pathogen. The comparison of the genomes of the two CF strains with those of other P. aeruginosa presents a picture of a mosaic genome, consisting of a conserved core component, interrupted in each strain by combinations of specific blocks of genes. These strain-specific segments of the genome are found in limited chromosomal locations, referred to as regions of genomic plasticity. The ability of P. aeruginosa to shape its genomic composition to favor survival in the widest range of environmental reservoirs, with corresponding enhancement of its metabolic capacity is supported by the identification of a genomic island in one of the sequenced CF isolates, encoding enzymes capable of degrading terpenoids produced by trees. This work suggests that niche adaptation is a major evolutionary force influencing the composition of bacterial genomes. Unlike genome reduction seen in host-adapted bacterial pathogens, the genetic capacity of P. aeruginosa is determined by the ability of individual strains to acquire or discard genomic segments, giving rise to strains with customized genomic repertoires. Consequently, this organism can survive in a wide range of environmental reservoirs that can serve as sources of the infecting organisms.
ESTHER : Mathee_2008_Proc.Natl.Acad.Sci.U.S.A_105_3100
PubMedSearch : Mathee_2008_Proc.Natl.Acad.Sci.U.S.A_105_3100
PubMedID: 18287045
Gene_locus related to this paper: pseae-a3kt39 , pseae-a3l6v1 , pseae-clipa , pseae-CPO , pseae-llipa , pseae-metx , pseae-PA0201 , pseae-PA0231 , pseae-PA0308 , pseae-PA0368 , pseae-PA0480 , pseae-PA0502 , pseae-PA0543 , pseae-PA0599 , pseae-PA1166 , pseae-PA1239 , pseae-PA1291 , pseae-PA1304 , pseae-PA1510 , pseae-PA1558 , pseae-PA1597 , pseae-PA1990 , pseae-PA2086 , pseae-PA2098 , pseae-PA2302 , pseae-PA2425 , pseae-PA2451 , pseae-PA2540 , pseae-PA2682 , pseae-PA2689 , pseae-PA2745 , pseae-PA2764 , pseae-PA2927 , pseae-PA2934 , pseae-PA2949 , pseae-PA3132 , pseae-PA3301 , pseae-PA3324 , pseae-PA3327 , pseae-PA3429 , pseae-PA3586 , pseae-PA3628 , pseae-PA3695 , pseae-PA3859 , pseae-PA3994 , pseae-PA4152 , pseae-PA4968 , pseae-PA5080 , pseae-PHAC2 , pseae-phaD , pseae-phag , pseae-PVDD , pseae-Q8G8C7 , pseae-Q8G8T6 , pseae-Q9APW4 , pseae-rhla , pseae-q9i252

Title : Genome sequence of Aedes aegypti, a major arbovirus vector - Nene_2007_Science_316_1718
Author(s) : Nene V , Wortman JR , Lawson D , Haas B , Kodira C , Tu ZJ , Loftus B , Xi Z , Megy K , Grabherr M , Ren Q , Zdobnov EM , Lobo NF , Campbell KS , Brown SE , Bonaldo MF , Zhu J , Sinkins SP , Hogenkamp DG , Amedeo P , Arensburger P , Atkinson PW , Bidwell S , Biedler J , Birney E , Bruggner RV , Costas J , Coy MR , Crabtree J , Crawford M , Debruyn B , Decaprio D , Eiglmeier K , Eisenstadt E , El-Dorry H , Gelbart WM , Gomes SL , Hammond M , Hannick LI , Hogan JR , Holmes MH , Jaffe D , Johnston JS , Kennedy RC , Koo H , Kravitz S , Kriventseva EV , Kulp D , LaButti K , Lee E , Li S , Lovin DD , Mao C , Mauceli E , Menck CF , Miller JR , Montgomery P , Mori A , Nascimento AL , Naveira HF , Nusbaum C , O'Leary S , Orvis J , Pertea M , Quesneville H , Reidenbach KR , Rogers YH , Roth CW , Schneider JR , Schatz M , Shumway M , Stanke M , Stinson EO , Tubio JM , Vanzee JP , Verjovski-Almeida S , Werner D , White O , Wyder S , Zeng Q , Zhao Q , Zhao Y , Hill CA , Raikhel AS , Soares MB , Knudson DL , Lee NH , Galagan J , Salzberg SL , Paulsen IT , Dimopoulos G , Collins FH , Birren B , Fraser-Liggett CM , Severson DW
Ref : Science , 316 :1718 , 2007
Abstract : We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
ESTHER : Nene_2007_Science_316_1718
PubMedSearch : Nene_2007_Science_316_1718
PubMedID: 17510324
Gene_locus related to this paper: aedae-ACHE , aedae-ACHE1 , aedae-glita , aedae-q0iea6 , aedae-q0iev6 , aedae-q0ifn6 , aedae-q0ifn8 , aedae-q0ifn9 , aedae-q0ifp0 , aedae-q0ig41 , aedae-q1dgl0 , aedae-q1dh03 , aedae-q1dh19 , aedae-q1hqe6 , aedae-Q8ITU8 , aedae-Q8MMJ6 , aedae-Q8T9V6 , aedae-q16e91 , aedae-q16f04 , aedae-q16f25 , aedae-q16f26 , aedae-q16f28 , aedae-q16f29 , aedae-q16f30 , aedae-q16gq5 , aedae-q16iq5 , aedae-q16je0 , aedae-q16je1 , aedae-q16je2 , aedae-q16ks8 , aedae-q16lf2 , aedae-q16lv6 , aedae-q16m61 , aedae-q16mc1 , aedae-q16mc6 , aedae-q16mc7 , aedae-q16md1 , aedae-q16ms7 , aedae-q16nk5 , aedae-q16rl5 , aedae-q16rz9 , aedae-q16si8 , aedae-q16t49 , aedae-q16wf1 , aedae-q16x18 , aedae-q16xp8 , aedae-q16xu6 , aedae-q16xw5 , aedae-q16xw6 , aedae-q16y04 , aedae-q16y05 , aedae-q16y06 , aedae-q16y07 , aedae-q16y39 , aedae-q16y40 , aedae-q16yg4 , aedae-q16z03 , aedae-q17aa7 , aedae-q17av1 , aedae-q17av2 , aedae-q17av3 , aedae-q17av4 , aedae-q17b28 , aedae-q17b29 , aedae-q17b30 , aedae-q17b31 , aedae-q17b32 , aedae-q17bm3 , aedae-q17bm4 , aedae-q17bv7 , aedae-q17c44 , aedae-q17cz1 , aedae-q17d32 , aedae-q17g39 , aedae-q17g40 , aedae-q17g41 , aedae-q17g42 , aedae-q17g43 , aedae-q17g44 , aedae-q17gb8 , aedae-q17gr3 , aedae-q17if7 , aedae-q17if9 , aedae-q17ig1 , aedae-q17ig2 , aedae-q17is4 , aedae-q17l09 , aedae-q17m26 , aedae-q17mg9 , aedae-q17mv4 , aedae-q17mv5 , aedae-q17mv6 , aedae-q17mv7 , aedae-q17mw8 , aedae-q17mw9 , aedae-q17nw5 , aedae-q17nx5 , aedae-q17pa4 , aedae-q17q69 , aedae-q170k7 , aedae-q171y4 , aedae-q172e0 , aedae-q176i8 , aedae-q176j0 , aedae-q177k1 , aedae-q177k2 , aedae-q177l9 , aedae-j9hic3 , aedae-q179r9 , aedae-u483 , aedae-j9hj23 , aedae-q17d68 , aedae-q177c7 , aedae-q0ifp1 , aedae-a0a1s4fx83 , aedae-a0a1s4g2m0 , aedae-q1hr49

Title : The complete genome and proteome of Mycoplasma mobile - Jaffe_2004_Genome.Res_14_1447
Author(s) : Jaffe JD , Stange-Thomann N , Smith C , Decaprio D , Fisher S , Butler J , Calvo S , Elkins T , Fitzgerald MG , Hafez N , Kodira CD , Major J , Wang S , Wilkinson J , Nicol R , Nusbaum C , Birren B , Berg HC , Church GM
Ref : Genome Res , 14 :1447 , 2004
Abstract : Although often considered "minimal" organisms, mycoplasmas show a wide range of diversity with respect to host environment, phenotypic traits, and pathogenicity. Here we report the complete genomic sequence and proteogenomic map for the piscine mycoplasma Mycoplasma mobile, noted for its robust gliding motility. For the first time, proteomic data are used in the primary annotation of a new genome, providing validation of expression for many of the predicted proteins. Several novel features were discovered including a long repeating unit of DNA of approximately 2435 bp present in five complete copies that are shown to code for nearly identical yet uniquely expressed proteins. M. mobile has among the lowest DNA GC contents (24.9%) and most reduced set of tRNAs of any organism yet reported (28). Numerous instances of tandem duplication as well as lateral gene transfer are evident in the genome. The multiple available complete genome sequences for other motile and immotile mycoplasmas enabled us to use comparative genomic and phylogenetic methods to suggest several candidate genes that might be involved in motility. The results of these analyses leave open the possibility that gliding motility might have arisen independently more than once in the mycoplasma lineage.
ESTHER : Jaffe_2004_Genome.Res_14_1447
PubMedSearch : Jaffe_2004_Genome.Res_14_1447
PubMedID: 15289470
Gene_locus related to this paper: mycmo-q6ki90 , mycmo-q6kim4

Title : Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype - Jaillon_2004_Nature_431_946
Author(s) : Jaillon O , Aury JM , Brunet F , Petit JL , Stange-Thomann N , Mauceli E , Bouneau L , Fischer C , Ozouf-Costaz C , Bernot A , Nicaud S , Jaffe D , Fisher S , Lutfalla G , Dossat C , Segurens B , Dasilva C , Salanoubat M , Levy M , Boudet N , Castellano S , Anthouard V , Jubin C , Castelli V , Katinka M , Vacherie B , Biemont C , Skalli Z , Cattolico L , Poulain J , de Berardinis V , Cruaud C , Duprat S , Brottier P , Coutanceau JP , Gouzy J , Parra G , Lardier G , Chapple C , McKernan KJ , McEwan P , Bosak S , Kellis M , Volff JN , Guigo R , Zody MC , Mesirov J , Lindblad-Toh K , Birren B , Nusbaum C , Kahn D , Robinson-Rechavi M , Laudet V , Schachter V , Quetier F , Saurin W , Scarpelli C , Wincker P , Lander ES , Weissenbach J , Roest Crollius H
Ref : Nature , 431 :946 , 2004
Abstract : Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests approximately 900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
ESTHER : Jaillon_2004_Nature_431_946
PubMedSearch : Jaillon_2004_Nature_431_946
PubMedID: 15496914
Gene_locus related to this paper: tetng-3neur , tetng-4neur , tetng-ACHE , tetng-BCHE , tetng-h3cfz4 , tetng-h3ci57 , tetng-h3cl30 , tetng-h3cnh2 , tetng-nlgn2b , tetng-h3czr1 , tetng-h3dbr5 , tetng-nlgn2a , tetng-nlgn3b , tetng-q4ref8 , tetng-q4rjp3 , tetng-q4rjy3 , tetng-q4rk53 , tetng-q4rk63 , tetng-q4rk66 , tetng-q4rkk3 , tetng-q4rli3 , tetng-q4rn09 , tetng-q4rqj4 , tetng-q4rqz6 , tetng-q4rr22 , tetng-q4rru9 , tetng-q4rtq6 , tetng-q4rvf8 , tetng-q4rwa0 , tetng-q4rx90 , tetng-q4ryv8 , tetng-q4ryz3 , tetng-q4s0h8 , tetng-q4s5x0 , tetng-q4s6r1 , tetng-q4s6t6 , tetng-q4s7e3 , tetng-q4s7x6 , tetng-q4s8t5 , tetng-q4s9w9 , tetng-q4s050 , tetng-q4s091 , tetng-q4s144 , tetng-q4s309 , tetng-q4s578 , tetng-q4sal4 , tetng-q4sbm6 , tetng-q4sbp0 , tetng-q4sbu0 , tetng-q4sd49 , tetng-q4ser6 , tetng-q4sfm7 , tetng-q4sgm5 , tetng-q4sgv2 , tetng-q4sh74 , tetng-q4shl7 , tetng-q4si60 , tetng-q4sie5 , tetng-q4sku6 , tetng-q4smu0 , tetng-q4smy3 , tetng-q4snp0 , tetng-q4snq3 , tetng-q4spa7 , tetng-q4spq0 , tetng-q4sqr3 , tetng-q4sty0 , tetng-q4suu2 , tetng-q4suz1 , tetng-q4sxh3 , tetng-q4syn6 , tetng-q4szk0 , tetng-q4szy0 , tetng-q4t3m9 , tetng-q4t4a1 , tetng-q4t6m1 , tetng-q4t7r6 , tetng-q4t173 , tetng-q4t826 , tetng-q4t920 , tetng-q4ta33 , tetng-q4tab8 , tetng-q4tb62 , tetng-q4tbe2 , tetng-h3dbw2 , tetng-h3cpc8 , tetng-h3cjy0 , tetng-h3d966 , tetng-h3d3e3 , tetng-h3d961 , tetng-h3ctg6 , tetng-h3dde8 , tetng-h3dde9 , tetng-h3det9 , tetng-h3cre8 , tetng-h3dfb4 , tetng-h3clj8

Title : The genome sequence of the filamentous fungus Neurospora crassa - Galagan_2003_Nature_422_859
Author(s) : Galagan JE , Calvo SE , Borkovich KA , Selker EU , Read ND , Jaffe D , FitzHugh W , Ma LJ , Smirnov S , Purcell S , Rehman B , Elkins T , Engels R , Wang S , Nielsen CB , Butler J , Endrizzi M , Qui D , Ianakiev P , Bell-Pedersen D , Nelson MA , Werner-Washburne M , Selitrennikoff CP , Kinsey JA , Braun EL , Zelter A , Schulte U , Kothe GO , Jedd G , Mewes W , Staben C , Marcotte E , Greenberg D , Roy A , Foley K , Naylor J , Stange-Thomann N , Barrett R , Gnerre S , Kamal M , Kamvysselis M , Mauceli E , Bielke C , Rudd S , Frishman D , Krystofova S , Rasmussen C , Metzenberg RL , Perkins DD , Kroken S , Cogoni C , Macino G , Catcheside D , Li W , Pratt RJ , Osmani SA , DeSouza CP , Glass L , Orbach MJ , Berglund JA , Voelker R , Yarden O , Plamann M , Seiler S , Dunlap J , Radford A , Aramayo R , Natvig DO , Alex LA , Mannhaupt G , Ebbole DJ , Freitag M , Paulsen I , Sachs MS , Lander ES , Nusbaum C , Birren B
Ref : Nature , 422 :859 , 2003
Abstract : Neurospora crassa is a central organism in the history of twentieth-century genetics, biochemistry and molecular biology. Here, we report a high-quality draft sequence of the N. crassa genome. The approximately 40-megabase genome encodes about 10,000 protein-coding genes--more than twice as many as in the fission yeast Schizosaccharomyces pombe and only about 25% fewer than in the fruitfly Drosophila melanogaster. Analysis of the gene set yields insights into unexpected aspects of Neurospora biology including the identification of genes potentially associated with red light photobiology, genes implicated in secondary metabolism, and important differences in Ca2+ signalling as compared with plants and animals. Neurospora possesses the widest array of genome defence mechanisms known for any eukaryotic organism, including a process unique to fungi called repeat-induced point mutation (RIP). Genome analysis suggests that RIP has had a profound impact on genome evolution, greatly slowing the creation of new genes through genomic duplication and resulting in a genome with an unusually low proportion of closely related genes.
ESTHER : Galagan_2003_Nature_422_859
PubMedSearch : Galagan_2003_Nature_422_859
PubMedID: 12712197
Gene_locus related to this paper: neucr-5E6.090 , neucr-64C2.080 , neucr-90C4.300 , neucr-a7uw78 , neucr-a7uwh6 , neucr-a7uwy7 , neucr-apth1 , neucr-ATG15 , neucr-B7H23.190 , neucr-B11O8.160 , neucr-B13B3.090 , neucr-B14D6.130 , neucr-B18E6.050 , neucr-B19A17.360 , neucr-B23G1.090 , neucr-CBPYA , neucr-MET5 , neucr-NCU00292.1 , neucr-NCU00350.1 , neucr-NCU00536.1 , neucr-NCU00825.1 , neucr-NCU02148.1 , neucr-NCU02679.1 , neucr-NCU02904.1 , neucr-NCU02924.1 , neucr-NCU03158.1 , neucr-NCU04930.1 , neucr-NCU06332.1 , neucr-NCU06573.1 , neucr-NCU07081.1 , neucr-NCU07415.1 , neucr-NCU07909.1 , neucr-NCU08752.1 , neucr-NCU09575.1 , neucr-NCU10022.1 , neucr-ppme1 , neucr-q6mfs7 , neucr-q7rxb4 , neucr-q7rxv5 , neucr-q7ry06 , neucr-q7ryd2 , neucr-q7rzk2 , neucr-q7s0g7 , neucr-q7s1x0 , neucr-q7s2b3 , neucr-q7s2c5 , neucr-q7s2p4 , neucr-q7s2u9 , neucr-q7s3c6 , neucr-q7s3c8 , neucr-q7s3m2 , neucr-q7s4e3 , neucr-q7s4f8 , neucr-q7s4j4 , neucr-q7s5d6 , neucr-q7s5m2 , neucr-q7s5v8 , neucr-q7s6c5 , neucr-q7s8h2 , neucr-q7s070 , neucr-q7s082 , neucr-q7s134 , neucr-q7s216 , neucr-q7s259 , neucr-q7s260 , neucr-q7s283 , neucr-q7s512 , neucr-q7s736 , neucr-q7s828 , neucr-q7s897 , neucr-q7sbf9 , neucr-q7sbn0 , neucr-q7scr4 , neucr-q7sdw5 , neucr-q7sdx9 , neucr-q7se51 , neucr-q7sea3 , neucr-q7sez8 , neucr-q7sff7 , neucr-q7sga3 , neucr-q7sgj0 , neucr-q7sgp3 , neucr-q7sha3 , neucr-q7sha5 , neucr-q7shu8 , neucr-q9p6a7 , neucr-q872l1 , neucr-f5hbr2 , neucr-q7ry64

Title : The genome of M. acetivorans reveals extensive metabolic and physiological diversity - Galagan_2002_Genome.Res_12_532
Author(s) : Galagan JE , Nusbaum C , Roy A , Endrizzi MG , Macdonald P , FitzHugh W , Calvo S , Engels R , Smirnov S , Atnoor D , Brown A , Allen N , Naylor J , Stange-Thomann N , DeArellano K , Johnson R , Linton L , McEwan P , McKernan K , Talamas J , Tirrell A , Ye W , Zimmer A , Barber RD , Cann I , Graham DE , Grahame DA , Guss AM , Hedderich R , Ingram-Smith C , Kuettner HC , Krzycki JA , Leigh JA , Li W , Liu J , Mukhopadhyay B , Reeve JN , Smith K , Springer TA , Umayam LA , White O , White RH , Conway de Macario E , Ferry JG , Jarrell KF , Jing H , Macario AJ , Paulsen I , Pritchett M , Sowers KR , Swanson RV , Zinder SH , Lander E , Metcalf WW , Birren B
Ref : Genome Res , 12 :532 , 2002
Abstract : Methanogenesis, the biological production of methane, plays a pivotal role in the global carbon cycle and contributes significantly to global warming. The majority of methane in nature is derived from acetate. Here we report the complete genome sequence of an acetate-utilizing methanogen, Methanosarcina acetivorans C2A. Methanosarcineae are the most metabolically diverse methanogens, thrive in a broad range of environments, and are unique among the Archaea in forming complex multicellular structures. This diversity is reflected in the genome of M. acetivorans. At 5,751,492 base pairs it is by far the largest known archaeal genome. The 4524 open reading frames code for a strikingly wide and unanticipated variety of metabolic and cellular capabilities. The presence of novel methyltransferases indicates the likelihood of undiscovered natural energy sources for methanogenesis, whereas the presence of single-subunit carbon monoxide dehydrogenases raises the possibility of nonmethanogenic growth. Although motility has not been observed in any Methanosarcineae, a flagellin gene cluster and two complete chemotaxis gene clusters were identified. The availability of genetic methods, coupled with its physiological and metabolic diversity, makes M. acetivorans a powerful model organism for the study of archaeal biology. [Sequence, data, annotations and analyses are available at http://www-genome.wi.mit.edu/.]
ESTHER : Galagan_2002_Genome.Res_12_532
PubMedSearch : Galagan_2002_Genome.Res_12_532
PubMedID: 11932238
Gene_locus related to this paper: metac-MA0077 , metac-MA0362 , metac-MA0419 , metac-MA0736 , metac-MA0993 , metac-MA1571 , metac-MA1856 , metac-MA1857 , metac-MA2002 , metac-MA2343 , metac-MA2629 , metac-MA2691 , metac-MA2743 , metac-MA2933 , metac-MA3611 , metac-MA3635 , metac-MA3920 , metac-META