Brinkac LM

References (24)

Title : AbGRI4, a novel antibiotic resistance island in multiply antibiotic-resistant Acinetobacter baumannii clinical isolates - Chan_2020_J.Antimicrob.Chemother_75_2760
Author(s) : Chan AP , Choi Y , Clarke TH , Brinkac LM , White RC , Jacobs MR , Bonomo RA , Adams MD , Fouts DE
Ref : J Antimicrob Chemother , 75 :2760 , 2020
Abstract : OBJECTIVES: To investigate the genomic context of a novel resistance island (RI) in multiply antibiotic-resistant Acinetobacter baumannii clinical isolates and global isolates. METHODS: Using a combination of long and short reads generated from the Oxford Nanopore and Illumina platforms, contiguous chromosomes and plasmid sequences were determined. BLAST-based analysis was used to identify the RI insertion target. RESULTS: Genomes of four multiply antibiotic-resistant A. baumannii clinical strains, from a US hospital system, belonging to prevalent MLST ST2 (Pasteur scheme) and ST281 (Oxford scheme) clade F isolates were sequenced to completion. A class 1 integron carrying aadB (tobramycin resistance) and aadA2 (streptomycin/spectinomycin resistance) was identified. The class 1 integron was 6.8kb, bounded by IS26 at both ends, and embedded in a new target location between an alpha/beta-hydrolase and a reductase. Due to its novel insertion site and unique RI composition, we suggest naming this novel RI AbGRI4. Molecular analysis of global A. baumannii isolates identified multiple AbGRI4 RI variants in non-ST2 clonal lineages, including variations in the resistance gene cassettes, integron backbone and insertion breakpoints at the hydrolase gene. CONCLUSIONS: A novel RI insertion target harbouring a class 1 integron was identified in a subgroup of ST2/ST281 clinical isolates. Variants of the RI suggested evolution and horizontal transfer of the RI across clonal lineages. Long- and short-read hybrid assembly technology completely resolved the genomic context of IS-bounded RIs, which was not possible using short reads alone.
ESTHER : Chan_2020_J.Antimicrob.Chemother_75_2760
PubMedSearch : Chan_2020_J.Antimicrob.Chemother_75_2760
PubMedID: 32681170

Title : Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions - Loper_2012_PLoS.Genet_8_e1002784
Author(s) : Loper JE , Hassan KA , Mavrodi DV , Davis EW, 2nd , Lim CK , Shaffer BT , Elbourne LD , Stockwell VO , Hartney SL , Breakwell K , Henkels MD , Tetu SG , Rangel LI , Kidarsa TA , Wilson NL , van de Mortel JE , Song C , Blumhagen R , Radune D , Hostetler JB , Brinkac LM , Durkin AS , Kluepfel DA , Wechter WP , Anderson AJ , Kim YC , Pierson LS, 3rd , Pierson EA , Lindow SE , Kobayashi DY , Raaijmakers JM , Weller DM , Thomashow LS , Allen AE , Paulsen IT
Ref : PLoS Genet , 8 :e1002784 , 2012
Abstract : We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.
ESTHER : Loper_2012_PLoS.Genet_8_e1002784
PubMedSearch : Loper_2012_PLoS.Genet_8_e1002784
PubMedID: 22792073
Gene_locus related to this paper: psebn-f2kd12 , psefl-e2xn15 , psefs-c3k632 , psepf-q3k919 , psebn-f2k9f6 , psefl-i2br68 , psefl-i4k4a8 , 9psed-i4l6c7 , 9psed-i4xqw9 , psefl-j2epr2 , 9psed-j2ew12 , psefs-c3k813 , psefl-w2f4e5 , 9psed-s6i647 , 9psed-j2wmk3 , 9psed-i4kt90 , 9psed-a0a068aip7 , 9psed-j2nei8 , 9psed-i4kw69 , psefl-i2bvr1 , psefl-j2mu40 , 9psed-j2ync4

Title : Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils - Ward_2009_Appl.Environ.Microbiol_75_2046
Author(s) : Ward NL , Challacombe JF , Janssen PH , Henrissat B , Coutinho PM , Wu M , Xie G , Haft DH , Sait M , Badger J , Barabote RD , Bradley B , Brettin TS , Brinkac LM , Bruce D , Creasy T , Daugherty SC , Davidsen TM , DeBoy RT , Detter JC , Dodson RJ , Durkin AS , Ganapathy A , Gwinn-Giglio M , Han CS , Khouri H , Kiss H , Kothari SP , Madupu R , Nelson KE , Nelson WC , Paulsen I , Penn K , Ren Q , Rosovitz MJ , Selengut JD , Shrivastava S , Sullivan SA , Tapia R , Thompson LS , Watkins KL , Yang Q , Yu C , Zafar N , Zhou L , Kuske CR
Ref : Applied Environmental Microbiology , 75 :2046 , 2009
Abstract : The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N(2) fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.
ESTHER : Ward_2009_Appl.Environ.Microbiol_75_2046
PubMedSearch : Ward_2009_Appl.Environ.Microbiol_75_2046
PubMedID: 19201974
Gene_locus related to this paper: korve-q1ihr9 , korve-q1ii02 , korve-q1iit0 , korve-q1ilk4 , korve-q1imj9 , korve-q1ims4 , korve-q1iqj0 , korve-q1isy7 , korve-q1itj5 , korve-q1itz6 , korve-q1ivc8 , acic5-c1f1u6 , acic5-c1f2i7 , acic5-c1f4m6 , acic5-c1f4y4 , acic5-c1f5a7 , acic5-c1f5u2 , acic5-c1f7a9 , acic5-c1f7x6 , acic5-c1f8y9 , acic5-c1f9m2 , acic5-c1f594 , acic5-c1f609 , acic5-c1f692 , acic5-c1f970 , acic5-c1fa52 , korve-q1iiw2 , korve-q1ivn9 , solue-q01nb0 , solue-q01qj6 , solue-q01r37 , solue-q01rq8 , solue-q01rz0 , solue-q01t44 , solue-q01t57 , solue-q01ts5 , solue-q01tv4 , solue-q01vd8 , solue-q01vr3 , solue-q01vw5 , solue-q01w12 , solue-q01wt9 , solue-q01y40 , solue-q01ym8 , solue-q01z24 , solue-q01z97 , solue-q01zl4 , solue-q01zm0 , solue-q01zm5 , solue-q01zm7 , solue-q02aa4 , solue-q02ab9 , solue-q02b72 , solue-q02bs8 , solue-q02bt7 , solue-q02cp0 , solue-q02d61 , solue-q020h3 , solue-q020i8 , solue-q021i6 , solue-q022b1 , solue-q022p8 , solue-q022q2 , solue-q022q3 , solue-q022x2 , solue-q022x5 , solue-q022x6 , solue-q022x8 , solue-q023e7 , solue-q024d9 , solue-q025c1 , solue-q026j1 , solue-q026k6 , solue-q026r6 , solue-q027p2 , solue-q027r8 , solue-q01zt5 , korve-q1itw6 , solue-q01yh7 , solue-q02ad6 , korve-q1imj6 , korve-q1iuf6 , acic5-c1f891 , solue-q026h7

Title : Comparative genomic evidence for a close relationship between the dimorphic prosthecate bacteria Hyphomonas neptunium and Caulobacter crescentus - Badger_2006_J.Bacteriol_188_6841
Author(s) : Badger JH , Hoover TR , Brun YV , Weiner RM , Laub MT , Alexandre G , Mrazek J , Ren Q , Paulsen IT , Nelson KE , Khouri HM , Radune D , Sosa J , Dodson RJ , Sullivan SA , Rosovitz MJ , Madupu R , Brinkac LM , Durkin AS , Daugherty SC , Kothari SP , Giglio MG , Zhou L , Haft DH , Selengut JD , Davidsen TM , Yang Q , Zafar N , Ward NL
Ref : Journal of Bacteriology , 188 :6841 , 2006
Abstract : The dimorphic prosthecate bacteria (DPB) are alpha-proteobacteria that reproduce in an asymmetric manner rather than by binary fission and are of interest as simple models of development. Prior to this work, the only member of this group for which genome sequence was available was the model freshwater organism Caulobacter crescentus. Here we describe the genome sequence of Hyphomonas neptunium, a marine member of the DPB that differs from C. crescentus in that H. neptunium uses its stalk as a reproductive structure. Genome analysis indicates that this organism shares more genes with C. crescentus than it does with Silicibacter pomeroyi (a closer relative according to 16S rRNA phylogeny), that it relies upon a heterotrophic strategy utilizing a wide range of substrates, that its cell cycle is likely to be regulated in a similar manner to that of C. crescentus, and that the outer membrane complements of H. neptunium and C. crescentus are remarkably similar. H. neptunium swarmer cells are highly motile via a single polar flagellum. With the exception of cheY and cheR, genes required for chemotaxis were absent in the H. neptunium genome. Consistent with this observation, H. neptunium swarmer cells did not respond to any chemotactic stimuli that were tested, which suggests that H. neptunium motility is a random dispersal mechanism for swarmer cells rather than a stimulus-controlled navigation system for locating specific environments. In addition to providing insights into bacterial development, the H. neptunium genome will provide an important resource for the study of other interesting biological processes including chromosome segregation, polar growth, and cell aging.
ESTHER : Badger_2006_J.Bacteriol_188_6841
PubMedSearch : Badger_2006_J.Bacteriol_188_6841
PubMedID: 16980487
Gene_locus related to this paper: hypna-q0bwt8 , hypna-q0bwv5 , hypna-q0bww7 , hypna-q0bxb2 , hypna-q0bxr5 , hypna-q0by84 , hypna-q0byl3 , hypna-q0bz23 , hypna-q0bzi5 , hypna-q0c0f7 , hypna-q0c0f8 , hypna-q0c2v8 , hypna-q0c2w1 , hypna-q0c2w4 , hypna-q0c3g0 , hypna-q0c4j0 , hypna-q0c4n1 , hypna-q0c4q9 , hypna-q0c4v5 , hypna-q0c386 , hypna-q0c539 , hypna-q0c611

Title : Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens - Myers_2006_Genome.Res_16_1031
Author(s) : Myers GS , Rasko DA , Cheung JK , Ravel J , Seshadri R , DeBoy RT , Ren Q , Varga J , Awad MM , Brinkac LM , Daugherty SC , Haft DH , Dodson RJ , Madupu R , Nelson WC , Rosovitz MJ , Sullivan SA , Khouri H , Dimitrov GI , Watkins KL , Mulligan S , Benton J , Radune D , Fisher DJ , Atkins HS , Hiscox T , Jost BH , Billington SJ , Songer JG , McClane BA , Titball RW , Rood JI , Melville SB , Paulsen IT
Ref : Genome Res , 16 :1031 , 2006
Abstract : Clostridium perfringens is a Gram-positive, anaerobic spore-forming bacterium commonly found in soil, sediments, and the human gastrointestinal tract. C. perfringens is responsible for a wide spectrum of disease, including food poisoning, gas gangrene (clostridial myonecrosis), enteritis necroticans, and non-foodborne gastrointestinal infections. The complete genome sequences of Clostridium perfringens strain ATCC 13124, a gas gangrene isolate and the species type strain, and the enterotoxin-producing food poisoning strain SM101, were determined and compared with the published C. perfringens strain 13 genome. Comparison of the three genomes revealed considerable genomic diversity with >300 unique "genomic islands" identified, with the majority of these islands unusually clustered on one replichore. PCR-based analysis indicated that the large genomic islands are widely variable across a large collection of C. perfringens strains. These islands encode genes that correlate to differences in virulence and phenotypic characteristics of these strains. Significant differences between the strains include numerous novel mobile elements and genes encoding metabolic capabilities, strain-specific extracellular polysaccharide capsule, sporulation factors, toxins, and other secreted enzymes, providing substantial insight into this medically important bacterial pathogen.
ESTHER : Myers_2006_Genome.Res_16_1031
PubMedSearch : Myers_2006_Genome.Res_16_1031
PubMedID: 16825665
Gene_locus related to this paper: clope-CPE0307 , clope-CPE0432 , clope-CPE1581 , clope-CPE1596 , clope-CPE1989 , clope-CPE2231 , clope-lipa , clope-LIPB , clope-PLDB

Title : Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment - Palenik_2006_Proc.Natl.Acad.Sci.U.S.A_103_13555
Author(s) : Palenik B , Ren Q , Dupont CL , Myers GS , Heidelberg JF , Badger JH , Madupu R , Nelson WC , Brinkac LM , Dodson RJ , Durkin AS , Daugherty SC , Sullivan SA , Khouri H , Mohamoud Y , Halpin R , Paulsen IT
Ref : Proc Natl Acad Sci U S A , 103 :13555 , 2006
Abstract : Coastal aquatic environments are typically more highly productive and dynamic than open ocean ones. Despite these differences, cyanobacteria from the genus Synechococcus are important primary producers in both types of ecosystems. We have found that the genome of a coastal cyanobacterium, Synechococcus sp. strain CC9311, has significant differences from an open ocean strain, Synechococcus sp. strain WH8102, and these are consistent with the differences between their respective environments. CC9311 has a greater capacity to sense and respond to changes in its (coastal) environment. It has a much larger capacity to transport, store, use, or export metals, especially iron and copper. In contrast, phosphate acquisition seems less important, consistent with the higher concentration of phosphate in coastal environments. CC9311 is predicted to have differences in its outer membrane lipopolysaccharide, and this may be characteristic of the speciation of some cyanobacterial groups. In addition, the types of potentially horizontally transferred genes are markedly different between the coastal and open ocean genomes and suggest a more prominent role for phages in horizontal gene transfer in oligotrophic environments.
ESTHER : Palenik_2006_Proc.Natl.Acad.Sci.U.S.A_103_13555
PubMedSearch : Palenik_2006_Proc.Natl.Acad.Sci.U.S.A_103_13555
PubMedID: 16938853
Gene_locus related to this paper: syns3-q0i8r7 , syns3-q0i9w2 , syns3-q0i996 , syns3-q0ia13 , syns3-q0ia55 , syns3-q0ib73 , syns3-q0ibm2 , syns3-q0ibp1 , syns3-q0iby1 , syns9-q3ax89 , syns3-q0ibv4

Title : Comparative genomics of emerging human ehrlichiosis agents - Dunning Hotopp_2006_PLoS.Genet_2_e21
Author(s) : Dunning Hotopp JC , Lin M , Madupu R , Crabtree J , Angiuoli SV , Eisen JA , Seshadri R , Ren Q , Wu M , Utterback TR , Smith S , Lewis M , Khouri H , Zhang C , Niu H , Lin Q , Ohashi N , Zhi N , Nelson W , Brinkac LM , Dodson RJ , Rosovitz MJ , Sundaram J , Daugherty SC , Davidsen T , Durkin AS , Gwinn M , Haft DH , Selengut JD , Sullivan SA , Zafar N , Zhou L , Benahmed F , Forberger H , Halpin R , Mulligan S , Robinson J , White O , Rikihisa Y , Tettelin H
Ref : PLoS Genet , 2 :e21 , 2006
Abstract : Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.
ESTHER : Dunning Hotopp_2006_PLoS.Genet_2_e21
PubMedSearch : Dunning Hotopp_2006_PLoS.Genet_2_e21
PubMedID: 16482227
Gene_locus related to this paper: anapz-q2gj80 , anapz-q2gle9 , anapz-q2glf0 , anapz-q2gln7 , ehrch-q40iu0 , ehrch-q40jj7 , ehrcr-q2gfq9 , neosm-q2gcq8 , neosm-q2gdf2 , neosm-q2gcn8 , anapz-q2gk48 , ehrcr-q2ggj6

Title : Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition - Joardar_2005_J.Bacteriol_187_6488
Author(s) : Joardar V , Lindeberg M , Jackson RW , Selengut J , Dodson R , Brinkac LM , Daugherty SC , Deboy R , Durkin AS , Giglio MG , Madupu R , Nelson WC , Rosovitz MJ , Sullivan S , Crabtree J , Creasy T , Davidsen T , Haft DH , Zafar N , Zhou L , Halpin R , Holley T , Khouri H , Feldblyum T , White O , Fraser CM , Chatterjee AK , Cartinhour S , Schneider DJ , Mansfield J , Collmer A , Buell CR
Ref : Journal of Bacteriology , 187 :6488 , 2005
Abstract : Pseudomonas syringae pv. phaseolicola, a gram-negative bacterial plant pathogen, is the causal agent of halo blight of bean. In this study, we report on the genome sequence of P. syringae pv. phaseolicola isolate 1448A, which encodes 5,353 open reading frames (ORFs) on one circular chromosome (5,928,787 bp) and two plasmids (131,950 bp and 51,711 bp). Comparative analyses with a phylogenetically divergent pathovar, P. syringae pv. tomato DC3000, revealed a strong degree of conservation at the gene and genome levels. In total, 4,133 ORFs were identified as putative orthologs in these two pathovars using a reciprocal best-hit method, with 3,941 ORFs present in conserved, syntenic blocks. Although these two pathovars are highly similar at the physiological level, they have distinct host ranges; 1448A causes disease in beans, and DC3000 is pathogenic on tomato and Arabidopsis. Examination of the complement of ORFs encoding virulence, fitness, and survival factors revealed a substantial, but not complete, overlap between these two pathovars. Another distinguishing feature between the two pathovars is their distinctive sets of transposable elements. With access to a fifth complete pseudomonad genome sequence, we were able to identify 3,567 ORFs that likely comprise the core Pseudomonas genome and 365 ORFs that are P. syringae specific.
ESTHER : Joardar_2005_J.Bacteriol_187_6488
PubMedSearch : Joardar_2005_J.Bacteriol_187_6488
PubMedID: 16159782
Gene_locus related to this paper: pse14-q48cb3 , pse14-q48ck7 , pse14-q48cs3 , pse14-q48ct2 , pse14-q48d82 , pse14-q48da3 , pse14-q48dj9 , pse14-q48dq5 , pse14-q48e33 , pse14-q48es1 , pse14-q48f84 , pse14-q48fg2 , pse14-q48g47 , pse14-q48g51 , pse14-q48gq9 , pse14-q48h40 , pse14-q48ha4 , pse14-q48hb4 , pse14-q48he1 , pse14-q48hq0 , pse14-q48hq2 , pse14-q48ia0 , pse14-q48im0 , pse14-q48j48 , pse14-q48ji2 , pse14-q48k54 , pse14-q48k55 , pse14-q48k63 , pse14-q48kc1 , pse14-q48kt9 , pse14-q48ku0 , pse14-q48lb6 , pse14-q48lj1 , pse14-q48ln2 , pse14-q48m56 , pse14-q48mh5 , pse14-q48mq7 , pse14-q48nt0 , pse14-q48p24 , pse14-q48pi7 , pse14-q48pi8 , pse14-q48pi9 , pse14-q48pq2 , pse14-q48pq5 , psesm-METX , psesm-q87y20 , psesm-q889k3 , psesy-PIP , psesy-PSPTO0162 , psesy-PSPTO1766 , psesy-PSPTO2134 , psesy-PSPTO3135 , pseu2-q4zwv7 , psesg-e7p3i0

Title : Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5 - Paulsen_2005_Nat.Biotechnol_23_873
Author(s) : Paulsen IT , Press CM , Ravel J , Kobayashi DY , Myers GS , Mavrodi DV , DeBoy RT , Seshadri R , Ren Q , Madupu R , Dodson RJ , Durkin AS , Brinkac LM , Daugherty SC , Sullivan SA , Rosovitz MJ , Gwinn ML , Zhou L , Schneider DJ , Cartinhour SW , Nelson WC , Weidman J , Watkins K , Tran K , Khouri H , Pierson EA , Pierson LS, 3rd , Thomashow LS , Loper JE
Ref : Nat Biotechnol , 23 :873 , 2005
Abstract : Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.
ESTHER : Paulsen_2005_Nat.Biotechnol_23_873
PubMedSearch : Paulsen_2005_Nat.Biotechnol_23_873
PubMedID: 15980861
Gene_locus related to this paper: psef5-metx , psef5-q4k3c9 , psef5-q4k4b4 , psef5-q4k4t4 , psef5-q4k4u7 , psef5-q4k4y2 , psef5-q4k5b5 , psef5-q4k5k6 , psef5-q4k5w4 , psef5-q4k6z9 , psef5-q4k7i6 , psef5-q4k7u9 , psef5-q4k8j2 , psef5-q4k9i3 , psef5-q4k458 , psef5-q4k713 , psef5-q4k717 , psef5-q4k873 , psef5-q4k906 , psef5-q4k982 , psef5-q4k989 , psef5-q4k993 , psef5-q4kax4 , psef5-q4kay8 , psef5-q4kaz0 , psef5-q4kaz4 , psef5-q4kb21 , psef5-q4kbd7 , psef5-q4kbs3 , psef5-q4kbs6 , psef5-q4kc18 , psef5-q4kc21 , psef5-q4kcd3 , psef5-q4kch8 , psef5-q4kcj3 , psef5-q4kck4 , psef5-q4kcn8 , psef5-q4kcq2 , psef5-q4kcx3 , psef5-q4kd54 , psef5-q4kda1 , psef5-q4kdb4 , psef5-q4ke18 , psef5-q4keh1 , psef5-q4kej0 , psef5-q4keq4 , psef5-q4kes9 , psef5-q4kf14 , psef5-q4kfj4 , psef5-q4kfw0 , psef5-q4kfw1 , psef5-q4kfx7 , psef5-q4kgg3 , psef5-q4kgj9 , psef5-q4kgs6 , psef5-q4kh30 , psef5-q4kha2 , psef5-q4khf1 , psef5-q4khl0 , psef5-q4khv5 , psef5-q4ki42 , psef5-q4kj24 , psef5-q4kj95 , psef5-q4kjk5 , psef5-q4kjk7 , psef5-q4kjm8 , psef5-q4kjt7 , psef5-q4kk20 , psef5-q4kk22 , psef5-q4kk59 , psef5-q4kkf7 , psefl-PLTG , psepf-PHAZ , psef5-q4kfd8

Title : The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses - Methe_2005_Proc.Natl.Acad.Sci.U.S.A_102_10913
Author(s) : Methe BA , Nelson KE , Deming JW , Momen B , Melamud E , Zhang X , Moult J , Madupu R , Nelson WC , Dodson RJ , Brinkac LM , Daugherty SC , Durkin AS , DeBoy RT , Kolonay JF , Sullivan SA , Zhou L , Davidsen TM , Wu M , Huston AL , Lewis M , Weaver B , Weidman JF , Khouri H , Utterback TR , Feldblyum TV , Fraser CM
Ref : Proc Natl Acad Sci U S A , 102 :10913 , 2005
Abstract : The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites, and cold-adapted enzymes. From a genomic perspective, cold adaptation is suggested in several broad categories involving changes to the cell membrane fluidity, uptake and synthesis of compounds conferring cryotolerance, and strategies to overcome temperature-dependent barriers to carbon uptake. Modeling of three-dimensional protein homology from bacteria representing a range of optimal growth temperatures suggests changes to proteome composition that may enhance enzyme effectiveness at low temperatures. Comparative genome analyses suggest that the psychrophilic lifestyle is most likely conferred not by a unique set of genes but by a collection of synergistic changes in overall genome content and amino acid composition.
ESTHER : Methe_2005_Proc.Natl.Acad.Sci.U.S.A_102_10913
PubMedSearch : Methe_2005_Proc.Natl.Acad.Sci.U.S.A_102_10913
PubMedID: 16043709
Gene_locus related to this paper: colp3-q47uc4 , colp3-q47uc7 , colp3-q47ut6 , colp3-q47ut7 , colp3-q47v81 , colp3-q47vk3 , colp3-q47vy9 , colp3-q47w94 , colp3-q47wj4 , colp3-q47wr2 , colp3-q47ws7 , colp3-q47ws9 , colp3-q47x08 , colp3-q47x48 , colp3-q47yd5 , colp3-q47ye2 , colp3-q47yq1 , colp3-q47yv1 , colp3-q47za7 , colp3-q47zp5 , colp3-q48ac9 , colp3-q48aj8 , colp3-q48aq9 , colp3-q480e1 , colp3-q481z4 , colp3-q482y8 , colp3-q484d8 , colp3-q484k3 , colp3-q485e4 , colp3-q485t4 , colp3-q486t5 , colp3-q487b7 , colp3-q487s5 , colp3-q488a3 , colp3-q488d2 , colp3-q488d8 , colp3-q488e7 , colp3-q488f8 , colp3-q488p2 , colp3-q489b1 , colp3-q489i6 , colp3-q47ya3

Title : Genome sequence of the PCE-dechlorinating bacterium Dehalococcoides ethenogenes - Seshadri_2005_Science_307_105
Author(s) : Seshadri R , Adrian L , Fouts DE , Eisen JA , Phillippy AM , Methe BA , Ward NL , Nelson WC , DeBoy RT , Khouri HM , Kolonay JF , Dodson RJ , Daugherty SC , Brinkac LM , Sullivan SA , Madupu R , Nelson KE , Kang KH , Impraim M , Tran K , Robinson JM , Forberger HA , Fraser CM , Zinder SH , Heidelberg JF
Ref : Science , 307 :105 , 2005
Abstract : Dehalococcoides ethenogenes is the only bacterium known to reductively dechlorinate the groundwater pollutants, tetrachloroethene (PCE) and trichloroethene, to ethene. Its 1,469,720-base pair chromosome contains large dynamic duplicated regions and integrated elements. Genes encoding 17 putative reductive dehalogenases, nearly all of which were adjacent to genes for transcription regulators, and five hydrogenase complexes were identified. These findings, plus a limited repertoire of other metabolic modes, indicate that D. ethenogenes is highly evolved to utilize halogenated organic compounds and H2. Diversification of reductive dehalogenase functions appears to have been mediated by recent genetic exchange and amplification. Genome analysis provides insights into the organism's complex nutrient requirements and suggests that an ancestor was a nitrogen-fixing autotroph.
ESTHER : Seshadri_2005_Science_307_105
PubMedSearch : Seshadri_2005_Science_307_105
PubMedID: 15637277
Gene_locus related to this paper: dehm1-q3z6q3 , dehm1-q3z6x9 , dehm1-q3z6z2 , dehm1-q3z8f3 , dehm1-q3za50

Title : Major structural differences and novel potential virulence mechanisms from the genomes of multiple campylobacter species - Fouts_2005_PLoS.Biol_3_e15
Author(s) : Fouts DE , Mongodin EF , Mandrell RE , Miller WG , Rasko DA , Ravel J , Brinkac LM , DeBoy RT , Parker CT , Daugherty SC , Dodson RJ , Durkin AS , Madupu R , Sullivan SA , Shetty JU , Ayodeji MA , Shvartsbeyn A , Schatz MC , Badger JH , Fraser CM , Nelson KE
Ref : PLoS Biol , 3 :e15 , 2005
Abstract : Sequencing and comparative genome analysis of four strains of Campylobacter including C. lari RM2100, C. upsaliensis RM3195, and C. coli RM2228 has revealed major structural differences that are associated with the insertion of phage- and plasmid-like genomic islands, as well as major variations in the lipooligosaccharide complex. Poly G tracts are longer, are greater in number, and show greater variability in C. upsaliensis than in the other species. Many genes involved in host colonization, including racR/S, cadF, cdt, ciaB, and flagellin genes, are conserved across the species, but variations that appear to be species specific are evident for a lipooligosaccharide locus, a capsular (extracellular) polysaccharide locus, and a novel Campylobacter putative licABCD virulence locus. The strains also vary in their metabolic profiles, as well as their resistance profiles to a range of antibiotics. It is evident that the newly identified hypothetical and conserved hypothetical proteins, as well as uncharacterized two-component regulatory systems and membrane proteins, may hold additional significant information on the major differences in virulence among the species, as well as the specificity of the strains for particular hosts.
ESTHER : Fouts_2005_PLoS.Biol_3_e15
PubMedSearch : Fouts_2005_PLoS.Biol_3_e15
PubMedID: 15660156
Gene_locus related to this paper: camje-CJ0796C , camjr-q5ht69 , camjr-q5ht95 , camjr-q5huc7 , camjr-q5hwg6 , camju-a3yll6

Title : Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901 - Wu_2005_PLoS.Genet_1_e65
Author(s) : Wu M , Ren Q , Durkin AS , Daugherty SC , Brinkac LM , Dodson RJ , Madupu R , Sullivan SA , Kolonay JF , Haft DH , Nelson WC , Tallon LJ , Jones KM , Ulrich LE , Gonzalez JM , Zhulin IB , Robb FT , Eisen JA
Ref : PLoS Genet , 1 :e65 , 2005
Abstract : We report here the sequencing and analysis of the genome of the thermophilic bacterium Carboxydothermus hydrogenoformans Z-2901. This species is a model for studies of hydrogenogens, which are diverse bacteria and archaea that grow anaerobically utilizing carbon monoxide (CO) as their sole carbon source and water as an electron acceptor, producing carbon dioxide and hydrogen as waste products. Organisms that make use of CO do so through carbon monoxide dehydrogenase complexes. Remarkably, analysis of the genome of C. hydrogenoformans reveals the presence of at least five highly differentiated anaerobic carbon monoxide dehydrogenase complexes, which may in part explain how this species is able to grow so much more rapidly on CO than many other species. Analysis of the genome also has provided many general insights into the metabolism of this organism which should make it easier to use it as a source of biologically produced hydrogen gas. One surprising finding is the presence of many genes previously found only in sporulating species in the Firmicutes Phylum. Although this species is also a Firmicutes, it was not known to sporulate previously. Here we show that it does sporulate and because it is missing many of the genes involved in sporulation in other species, this organism may serve as a "minimal" model for sporulation studies. In addition, using phylogenetic profile analysis, we have identified many uncharacterized gene families found in all known sporulating Firmicutes, but not in any non-sporulating bacteria, including a sigma factor not known to be involved in sporulation previously.
ESTHER : Wu_2005_PLoS.Genet_1_e65
PubMedSearch : Wu_2005_PLoS.Genet_1_e65
PubMedID: 16311624
Gene_locus related to this paper: carhz-metx , carhz-q3abd5 , carhz-q3adp4

Title : Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial pan-genome - Tettelin_2005_Proc.Natl.Acad.Sci.U.S.A_102_13950
Author(s) : Tettelin H , Masignani V , Cieslewicz MJ , Donati C , Medini D , Ward NL , Angiuoli SV , Crabtree J , Jones AL , Durkin AS , DeBoy RT , Davidsen TM , Mora M , Scarselli M , Margarit y Ros I , Peterson JD , Hauser CR , Sundaram JP , Nelson WC , Madupu R , Brinkac LM , Dodson RJ , Rosovitz MJ , Sullivan SA , Daugherty SC , Haft DH , Selengut J , Gwinn ML , Zhou L , Zafar N , Khouri H , Radune D , Dimitrov G , Watkins K , O'Connor KJ , Smith S , Utterback TR , White O , Rubens CE , Grandi G , Madoff LC , Kasper DL , Telford JL , Wessels MR , Rappuoli R , Fraser CM
Ref : Proc Natl Acad Sci U S A , 102 :13950 , 2005
Abstract : The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.
ESTHER : Tettelin_2005_Proc.Natl.Acad.Sci.U.S.A_102_13950
PubMedSearch : Tettelin_2005_Proc.Natl.Acad.Sci.U.S.A_102_13950
PubMedID: 16172379
Gene_locus related to this paper: strag-ESTA , strag-GBS0040 , strag-GBS0107 , strag-GBS1828 , strag-pepx , strag-q3dah6 , strag-SAG0246 , strag-SAG0383 , strag-SAG0679 , strag-SAG0680 , strag-SAG0785 , strag-SAG0912 , strag-SAG1562 , strag-SAG2132

Title : The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough - Heidelberg_2004_Nat.Biotechnol_22_554
Author(s) : Heidelberg JF , Seshadri R , Haveman SA , Hemme CL , Paulsen IT , Kolonay JF , Eisen JA , Ward N , Methe B , Brinkac LM , Daugherty SC , DeBoy RT , Dodson RJ , Durkin AS , Madupu R , Nelson WC , Sullivan SA , Fouts D , Haft DH , Selengut J , Peterson JD , Davidsen TM , Zafar N , Zhou L , Radune D , Dimitrov G , Hance M , Tran K , Khouri H , Gill J , Utterback TR , Feldblyum TV , Wall JD , Voordouw G , Fraser CM
Ref : Nat Biotechnol , 22 :554 , 2004
Abstract : Desulfovibrio vulgaris Hildenborough is a model organism for studying the energy metabolism of sulfate-reducing bacteria (SRB) and for understanding the economic impacts of SRB, including biocorrosion of metal infrastructure and bioremediation of toxic metal ions. The 3,570,858 base pair (bp) genome sequence reveals a network of novel c-type cytochromes, connecting multiple periplasmic hydrogenases and formate dehydrogenases, as a key feature of its energy metabolism. The relative arrangement of genes encoding enzymes for energy transduction, together with inferred cellular location of the enzymes, provides a basis for proposing an expansion to the 'hydrogen-cycling' model for increasing energy efficiency in this bacterium. Plasmid-encoded functions include modification of cell surface components, nitrogen fixation and a type-III protein secretion system. This genome sequence represents a substantial step toward the elucidation of pathways for reduction (and bioremediation) of pollutants such as uranium and chromium and offers a new starting point for defining this organism's complex anaerobic respiration.
ESTHER : Heidelberg_2004_Nat.Biotechnol_22_554
PubMedSearch : Heidelberg_2004_Nat.Biotechnol_22_554
PubMedID: 15077118
Gene_locus related to this paper: desvh-q72b36 , desvh-q72ed6 , desvh-q728i3 , desvh-q729w4 , desvh-q72b15

Title : Whole genome comparisons of serotype 4b and 1\/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species - Nelson_2004_Nucleic.Acids.Res_32_2386
Author(s) : Nelson KE , Fouts DE , Mongodin EF , Ravel J , DeBoy RT , Kolonay JF , Rasko DA , Angiuoli SV , Gill SR , Paulsen IT , Peterson J , White O , Nelson WC , Nierman W , Beanan MJ , Brinkac LM , Daugherty SC , Dodson RJ , Durkin AS , Madupu R , Haft DH , Selengut J , Van Aken S , Khouri H , Fedorova N , Forberger H , Tran B , Kathariou S , Wonderling LD , Uhlich GA , Bayles DO , Luchansky JB , Fraser CM
Ref : Nucleic Acids Research , 32 :2386 , 2004
Abstract : The genomes of three strains of Listeria monocytogenes that have been associated with food-borne illness in the USA were subjected to whole genome comparative analysis. A total of 51, 97 and 69 strain-specific genes were identified in L.monocytogenes strains F2365 (serotype 4b, cheese isolate), F6854 (serotype 1/2a, frankfurter isolate) and H7858 (serotype 4b, meat isolate), respectively. Eighty-three genes were restricted to serotype 1/2a and 51 to serotype 4b strains. These strain- and serotype-specific genes probably contribute to observed differences in pathogenicity, and the ability of the organisms to survive and grow in their respective environmental niches. The serotype 1/2a-specific genes include an operon that encodes the rhamnose biosynthetic pathway that is associated with teichoic acid biosynthesis, as well as operons for five glycosyl transferases and an adenine-specific DNA methyltransferase. A total of 8603 and 105 050 high quality single nucleotide polymorphisms (SNPs) were found on the draft genome sequences of strain H7858 and strain F6854, respectively, when compared with strain F2365. Whole genome comparative analyses revealed that the L.monocytogenes genomes are essentially syntenic, with the majority of genomic differences consisting of phage insertions, transposable elements and SNPs.
ESTHER : Nelson_2004_Nucleic.Acids.Res_32_2386
PubMedSearch : Nelson_2004_Nucleic.Acids.Res_32_2386
PubMedID: 15115801
Gene_locus related to this paper: lismc-c1l0d9 , lismf-q71xq4 , lismo-LMO0110 , lismo-LMO0493 , lismo-LMO0580 , lismo-LMO0752 , lismo-LMO0760 , lismo-LMO0857 , lismo-LMO0950 , lismo-LMO0951 , lismo-LMO0977 , lismo-LMO1128 , lismo-LMO1258 , lismo-LMO1674 , lismo-LMO2089 , lismo-LMO2109 , lismo-LMO2433 , lismo-LMO2450 , lismo-LMO2452 , lismo-LMO2453 , lismo-LMO2578 , lismo-LMO2677 , lismo-LMO2755 , lismo-metx

Title : Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements - Wu_2004_PLoS.Biol_2_E69
Author(s) : Wu M , Sun LV , Vamathevan J , Riegler M , Deboy R , Brownlie JC , McGraw EA , Martin W , Esser C , Ahmadinejad N , Wiegand C , Madupu R , Beanan MJ , Brinkac LM , Daugherty SC , Durkin AS , Kolonay JF , Nelson WC , Mohamoud Y , Lee P , Berry K , Young MB , Utterback T , Weidman J , Nierman WC , Paulsen IT , Nelson KE , Tettelin H , O'Neill SL , Eisen JA
Ref : PLoS Biol , 2 :E69 , 2004
Abstract : The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the alpha-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel-D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections.
ESTHER : Wu_2004_PLoS.Biol_2_E69
PubMedSearch : Wu_2004_PLoS.Biol_2_E69
PubMedID: 15024419
Gene_locus related to this paper: wolpm-q73gf0 , wolpm-q73gx7

Title : Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes - Seshadri_2004_Proc.Natl.Acad.Sci.U.S.A_101_5646
Author(s) : Seshadri R , Myers GS , Tettelin H , Eisen JA , Heidelberg JF , Dodson RJ , Davidsen TM , DeBoy RT , Fouts DE , Haft DH , Selengut J , Ren Q , Brinkac LM , Madupu R , Kolonay J , Durkin SA , Daugherty SC , Shetty J , Shvartsbeyn A , Gebregeorgis E , Geer K , Tsegaye G , Malek J , Ayodeji B , Shatsman S , McLeod MP , Smajs D , Howell JK , Pal S , Amin A , Vashisth P , McNeill TZ , Xiang Q , Sodergren E , Baca E , Weinstock GM , Norris SJ , Fraser CM , Paulsen IT
Ref : Proc Natl Acad Sci U S A , 101 :5646 , 2004
Abstract : We present the complete 2,843,201-bp genome sequence of Treponema denticola (ATCC 35405) an oral spirochete associated with periodontal disease. Analysis of the T. denticola genome reveals factors mediating coaggregation, cell signaling, stress protection, and other competitive and cooperative measures, consistent with its pathogenic nature and lifestyle within the mixed-species environment of subgingival dental plaque. Comparisons with previously sequenced spirochete genomes revealed specific factors contributing to differences and similarities in spirochete physiology as well as pathogenic potential. The T. denticola genome is considerably larger in size than the genome of the related syphilis-causing spirochete Treponema pallidum. The differences in gene content appear to be attributable to a combination of three phenomena: genome reduction, lineage-specific expansions, and horizontal gene transfer. Genes lost due to reductive evolution appear to be largely involved in metabolism and transport, whereas some of the genes that have arisen due to lineage-specific expansions are implicated in various pathogenic interactions, and genes acquired via horizontal gene transfer are largely phage-related or of unknown function.
ESTHER : Seshadri_2004_Proc.Natl.Acad.Sci.U.S.A_101_5646
PubMedSearch : Seshadri_2004_Proc.Natl.Acad.Sci.U.S.A_101_5646
PubMedID: 15064399
Gene_locus related to this paper: trede-q73j01 , trede-q73kf5 , trede-q73kp3 , trede-q73ks1 , trede-q73nf8 , trede-q73qt5 , trede-q73qv0 , trede-q73ra4 , trede-q73ri8 , trede-Q93EK3 , trede-TDE0521

Title : Structural flexibility in the Burkholderia mallei genome - Nierman_2004_Proc.Natl.Acad.Sci.U.S.A_101_14246
Author(s) : Nierman WC , DeShazer D , Kim HS , Tettelin H , Nelson KE , Feldblyum T , Ulrich RL , Ronning CM , Brinkac LM , Daugherty SC , Davidsen TD , DeBoy RT , Dimitrov G , Dodson RJ , Durkin AS , Gwinn ML , Haft DH , Khouri H , Kolonay JF , Madupu R , Mohammoud Y , Nelson WC , Radune D , Romero CM , Sarria S , Selengut J , Shamblin C , Sullivan SA , White O , Yu Y , Zafar N , Zhou L , Fraser CM
Ref : Proc Natl Acad Sci U S A , 101 :14246 , 2004
Abstract : The complete genome sequence of Burkholderia mallei ATCC 23344 provides insight into this highly infectious bacterium's pathogenicity and evolutionary history. B. mallei, the etiologic agent of glanders, has come under renewed scientific investigation as a result of recent concerns about its past and potential future use as a biological weapon. Genome analysis identified a number of putative virulence factors whose function was supported by comparative genome hybridization and expression profiling of the bacterium in hamster liver in vivo. The genome contains numerous insertion sequence elements that have mediated extensive deletions and rearrangements of the genome relative to Burkholderia pseudomallei. The genome also contains a vast number (>12,000) of simple sequence repeats. Variation in simple sequence repeats in key genes can provide a mechanism for generating antigenic variation that may account for the mammalian host's inability to mount a durable adaptive immune response to a B. mallei infection.
ESTHER : Nierman_2004_Proc.Natl.Acad.Sci.U.S.A_101_14246
PubMedSearch : Nierman_2004_Proc.Natl.Acad.Sci.U.S.A_101_14246
PubMedID: 15377793
Gene_locus related to this paper: burma-a5j5w8 , burma-a5tj72 , burma-a5tq93 , burma-metx , burma-q62a61 , burma-q62ar2.1 , burma-q62ar2.2 , burma-q62ax8 , burma-q62b60 , burma-q62b79 , burma-q62bh9 , burma-q62bl4 , burma-q62bl7 , burma-q62c00 , burma-q62cg5 , burma-q62d41 , burma-q62d56 , burma-q62d83 , burma-q62dg2 , burma-q62du7 , burma-q62e67 , burma-q62eb8 , burma-q62ed8 , burma-q62f28 , burma-q62fx7 , burma-q62g26 , burma-q62gx9 , burma-q62gy2 , burma-q62hq2 , burma-q62i62 , burma-q62ib8 , burma-q62ie8 , burma-q62j07 , burma-q62j15 , burma-q62jn5 , burma-q62jy7 , burma-q62kb7 , burma-q62kg0 , burma-q62kh9 , burma-q62lp7 , burma-q62m40 , burma-q62mc3 , burma-q62mf4 , burma-q62mq7 , burma-q629m1 , burma-q629p4 , burma-q629u0 , burps-q3v7s4 , burps-hboh

Title : The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria - Read_2003_Nature_423_81
Author(s) : Read TD , Peterson SN , Tourasse N , Baillie LW , Paulsen IT , Nelson KE , Tettelin H , Fouts DE , Eisen JA , Gill SR , Holtzapple EK , Okstad OA , Helgason E , Rilstone J , Wu M , Kolonay JF , Beanan MJ , Dodson RJ , Brinkac LM , Gwinn M , DeBoy RT , Madpu R , Daugherty SC , Durkin AS , Haft DH , Nelson WC , Peterson JD , Pop M , Khouri HM , Radune D , Benton JL , Mahamoud Y , Jiang L , Hance IR , Weidman JF , Berry KJ , Plaut RD , Wolf AM , Watkins KL , Nierman WC , Hazen A , Cline R , Redmond C , Thwaite JE , White O , Salzberg SL , Thomason B , Friedlander AM , Koehler TM , Hanna PC , Kolsto AB , Fraser CM
Ref : Nature , 423 :81 , 2003
Abstract : Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity--including haemolysins, phospholipases and iron acquisition functions--and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.
ESTHER : Read_2003_Nature_423_81
PubMedSearch : Read_2003_Nature_423_81
PubMedID: 12721629
Gene_locus related to this paper: bacan-BA0160 , bacan-BA0950 , bacan-BA0954 , bacan-BA1019 , bacan-BA1242 , bacan-BA1727 , bacan-BA1747 , bacan-BA1866 , bacan-BA1914 , bacan-BA2015 , bacan-BA2392 , bacan-BA2417 , bacan-BA2557 , bacan-BA2607 , bacan-BA2687 , bacan-BA2694 , bacan-BA2738 , bacan-BA2865 , bacan-BA3068 , bacan-BA3165 , bacan-BA3178 , bacan-BA3187 , bacan-BA3343 , bacan-BA3372 , bacan-BA3703 , bacan-BA3805 , bacan-BA3863 , bacan-BA3877 , bacan-BA3887 , bacan-BA4324 , bacan-BA4328 , bacan-BA4338 , bacan-BA4577 , bacan-BA4983 , bacan-BA5009 , bacan-BA5110 , bacan-BA5136 , bacan-DHBF , bacan-q81tt2 , bacce-BC0192 , bacce-BC1788 , bacce-BC1954 , bacce-BC2141 , bacce-BC2171 , bacce-BC4730 , bacce-BC4862 , bacce-BC5130 , bacce-PHAC , bacce-q72yu1 , baccr-pepx

Title : Genome of Geobacter sulfurreducens: metal reduction in subsurface environments - Methe_2003_Science_302_1967
Author(s) : Methe BA , Nelson KE , Eisen JA , Paulsen IT , Nelson W , Heidelberg JF , Wu D , Wu M , Ward N , Beanan MJ , Dodson RJ , Madupu R , Brinkac LM , Daugherty SC , DeBoy RT , Durkin AS , Gwinn M , Kolonay JF , Sullivan SA , Haft DH , Selengut J , Davidsen TM , Zafar N , White O , Tran B , Romero C , Forberger HA , Weidman J , Khouri H , Feldblyum TV , Utterback TR , Van Aken SE , Lovley DR , Fraser CM
Ref : Science , 302 :1967 , 2003
Abstract : The complete genome sequence of Geobacter sulfurreducens, a delta-proteobacterium, reveals unsuspected capabilities, including evidence of aerobic metabolism, one-carbon and complex carbon metabolism, motility, and chemotactic behavior. These characteristics, coupled with the possession of many two-component sensors and many c-type cytochromes, reveal an ability to create alternative, redundant, electron transport networks and offer insights into the process of metal ion reduction in subsurface environments. As well as playing roles in the global cycling of metals and carbon, this organism clearly has the potential for use in bioremediation of radioactive metals and in the generation of electricity.
ESTHER : Methe_2003_Science_302_1967
PubMedSearch : Methe_2003_Science_302_1967
PubMedID: 14671304
Gene_locus related to this paper: geosl-q74a54 , geosl-q74ac8 , geosl-q74eb1 , geosl-q747u4 , geosl-q747v8 , geosl-q749w4

Title : Complete genome sequence of the Q-fever pathogen Coxiella burnetii - Seshadri_2003_Proc.Natl.Acad.Sci.U.S.A_100_5455
Author(s) : Seshadri R , Paulsen IT , Eisen JA , Read TD , Nelson KE , Nelson WC , Ward NL , Tettelin H , Davidsen TM , Beanan MJ , DeBoy RT , Daugherty SC , Brinkac LM , Madupu R , Dodson RJ , Khouri HM , Lee KH , Carty HA , Scanlan D , Heinzen RA , Thompson HA , Samuel JE , Fraser CM , Heidelberg JF
Ref : Proc Natl Acad Sci U S A , 100 :5455 , 2003
Abstract : The 1,995,275-bp genome of Coxiella burnetii, Nine Mile phase I RSA493, a highly virulent zoonotic pathogen and category B bioterrorism agent, was sequenced by the random shotgun method. This bacterium is an obligate intracellular acidophile that is highly adapted for life within the eukaryotic phagolysosome. Genome analysis revealed many genes with potential roles in adhesion, invasion, intracellular trafficking, host-cell modulation, and detoxification. A previously uncharacterized 13-member family of ankyrin repeat-containing proteins is implicated in the pathogenesis of this organism. Although the lifestyle and parasitic strategies of C. burnetii resemble that of Rickettsiae and Chlamydiae, their genome architectures differ considerably in terms of presence of mobile elements, extent of genome reduction, metabolic capabilities, and transporter profiles. The presence of 83 pseudogenes displays an ongoing process of gene degradation. Unlike other obligate intracellular bacteria, 32 insertion sequences are found dispersed in the chromosome, indicating some plasticity in the C. burnetii genome. These analyses suggest that the obligate intracellular lifestyle of C. burnetii may be a relatively recent innovation.
ESTHER : Seshadri_2003_Proc.Natl.Acad.Sci.U.S.A_100_5455
PubMedSearch : Seshadri_2003_Proc.Natl.Acad.Sci.U.S.A_100_5455
PubMedID: 12704232
Gene_locus related to this paper: coxbu-BIOH , coxbu-CBU0752 , coxbu-CBU1119 , coxbu-CBU1225 , coxbu-CBU1529 , coxbu-CBU1769 , coxbu-CBU1975

Title : The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts - Paulsen_2002_Proc.Natl.Acad.Sci.U.S.A_99_13148
Author(s) : Paulsen IT , Seshadri R , Nelson KE , Eisen JA , Heidelberg JF , Read TD , Dodson RJ , Umayam L , Brinkac LM , Beanan MJ , Daugherty SC , DeBoy RT , Durkin AS , Kolonay JF , Madupu R , Nelson WC , Ayodeji B , Kraul M , Shetty J , Malek J , Van Aken SE , Riedmuller S , Tettelin H , Gill SR , White O , Salzberg SL , Hoover DL , Lindler LE , Halling SM , Boyle SM , Fraser CM
Ref : Proc Natl Acad Sci U S A , 99 :13148 , 2002
Abstract : The 3.31-Mb genome sequence of the intracellular pathogen and potential bioterrorism agent, Brucella suis, was determined. Comparison of B. suis with Brucella melitensis has defined a finite set of differences that could be responsible for the differences in virulence and host preference between these organisms, and indicates that phage have played a significant role in their divergence. Analysis of the B. suis genome reveals transport and metabolic capabilities akin to soil/plant-associated bacteria. Extensive gene synteny between B. suis chromosome 1 and the genome of the plant symbiont Mesorhizobium loti emphasizes the similarity between this animal pathogen and plant pathogens and symbionts. A limited repertoire of genes homologous to known bacterial virulence factors were identified.
ESTHER : Paulsen_2002_Proc.Natl.Acad.Sci.U.S.A_99_13148
PubMedSearch : Paulsen_2002_Proc.Natl.Acad.Sci.U.S.A_99_13148
PubMedID: 12271122
Gene_locus related to this paper: brume-BMEI0552 , brume-BMEI0733 , brume-BMEI1044 , brume-BMEI1119 , brume-BMEI1365 , brume-BMEI1594 , brume-BMEI1608 , brume-BMEI1822 , brume-BMEI1884 , brume-BMEI1951 , brume-BMEI2011 , brume-BMEII0047 , brume-BMEII0681 , brume-BMEII0989 , brume-PCAD , brusu-BR0288 , brusu-BR1291 , brusu-BR1327 , brusu-BRA0989

Title : Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae - Tettelin_2002_Proc.Natl.Acad.Sci.U.S.A_99_12391
Author(s) : Tettelin H , Masignani V , Cieslewicz MJ , Eisen JA , Peterson S , Wessels MR , Paulsen IT , Nelson KE , Margarit I , Read TD , Madoff LC , Wolf AM , Beanan MJ , Brinkac LM , Daugherty SC , DeBoy RT , Durkin AS , Kolonay JF , Madupu R , Lewis MR , Radune D , Fedorova NB , Scanlan D , Khouri H , Mulligan S , Carty HA , Cline RT , Van Aken SE , Gill J , Scarselli M , Mora M , Iacobini ET , Brettoni C , Galli G , Mariani M , Vegni F , Maione D , Rinaudo D , Rappuoli R , Telford JL , Kasper DL , Grandi G , Fraser CM
Ref : Proc Natl Acad Sci U S A , 99 :12391 , 2002
Abstract : The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the other completely sequenced genomes identified genes specific to the streptococci and to S. agalactiae. These in silico analyses, combined with comparative genome hybridization experiments between the sequenced serotype V strain 2603 V/R and 19 S. agalactiae strains from several serotypes using whole-genome microarrays, revealed the genetic heterogeneity among S. agalactiae strains, even of the same serotype, and provided insights into the evolution of virulence mechanisms.
ESTHER : Tettelin_2002_Proc.Natl.Acad.Sci.U.S.A_99_12391
PubMedSearch : Tettelin_2002_Proc.Natl.Acad.Sci.U.S.A_99_12391
PubMedID: 12200547
Gene_locus related to this paper: strag-ESTA , strag-GBS0040 , strag-GBS1828 , strag-pepx , strag-SAG0108 , strag-SAG0246 , strag-SAG0383 , strag-SAG0521 , strag-SAG0679 , strag-SAG0680 , strag-SAG0681 , strag-SAG0785 , strag-SAG0912 , strag-SAG1040 , strag-SAG1562 , strag-SAG2132