BACKGROUND: Decreased cholinergic tone associated with increased proinflammatory cytokines has been observed in several human diseases associated with low-grade inflammation. We examined if this attenuated cholinergic anti-inflammatory pathway (CAP) mechanism contributed to increased neuroinflammation observed in depression. METHODS: We measured cerebrospinal fluid (CSF) cholinergic markers (AChE and BChE activities) in 28 individuals with longstanding late-life major depression (LLMD) and 19 controls and their relationship to central and peripheral levels of pro-inflammatory cytokines (IL-6 and IL-8). Additionally, we examined if these cholinergic indices were related to CSF markers of microglial activation and neuroinflammation (sTREM2 and complement C3). RESULTS: Compared with controls, LLMD patients had a significant reduction in CSF BChE levels. Lower CSF BChE and AChE activities were associated with lower CSF markers of microglial and neuroinflammation (sTREM2 and C3). In addition, in LLMD patients we found an inverse relationship between peripheral marker of inflammation (plasma IL-6) and CSF BChE and AChE levels. CONCLUSIONS: Our results suggest an upregulation of the CAP mechanism in LLMD with an elevation in peripheral markers of inflammation and concomitant reduction in markers of glial activation associated with a higher cholinergic tone. Future studies should confirm these findings in a larger sample including individuals with acute and more severe depressive episodes and across all ages.
We sequenced the genome of Saccharomyces cerevisiae strain YJM789, which was derived from a yeast isolated from the lung of an AIDS patient with pneumonia. The strain is used for studies of fungal infections and quantitative genetics because of its extensive phenotypic differences to the laboratory reference strain, including growth at high temperature and deadly virulence in mouse models. Here we show that the approximately 12-Mb genome of YJM789 contains approximately 60,000 SNPs and approximately 6,000 indels with respect to the reference S288c genome, leading to protein polymorphisms with a few known cases of phenotypic changes. Several ORFs are found to be unique to YJM789, some of which might have been acquired through horizontal transfer. Localized regions of high polymorphism density are scattered over the genome, in some cases spanning multiple ORFs and in others concentrated within single genes. The sequence of YJM789 contains clues to pathogenicity and spurs the development of more powerful approaches to dissecting the genetic basis of complex hereditary traits.
Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its approximately 20-megabase genome, which contains approximately 6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype instability and phenotypic variation. C. neoformans encodes unique genes that may contribute to its unusual virulence properties, and comparison of two phenotypically distinct strains reveals variation in gene content in addition to sequence polymorphisms between the genomes.